-
Notifications
You must be signed in to change notification settings - Fork 10
/
ORNL-4397.txt
3008 lines (1643 loc) · 59.9 KB
/
ORNL-4397.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
OCKHEED MARTIN ENERGY RESEARCH LIBRARIES
' i
3 Y445k 0515563 0
ORNL-4397
Contract No. W-7405-eng-26
INSTRUMENTATION AND CONTROLS DIVISION
ANALYSES OF TRANSIENTS IN THE MSRE SYSTEM WITH 23 FUEL
O. W. Burke F.H.S. Clark
JUNE 1969
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION
LOCKHEED MARTIN ENERGY RESEARCH LIBRARIES
RN
3 Y45k 05155L3 0
CONTENTS
ABSTRACT . v v v & v v v v o e v e v e e e
INTRODUCTION . . . . . . . . e
ANALOG COMPUTER MODELS
Reactor Core Heat Generation and Hecf Trcnsfer Model
External Heat Rejection .
Safety System Simulation. . . . . . .
Reactor Control System Simulation. . .
N DN NN
n b kN —
PROCEDURES AND RESULTS . . .
3.1 Reactor Control System Performance . .
3.2 Startup Accident . . . . . . .. ..
3.3 The ®32U Resuspension Accident . .
CONCLUSIONS . . v v v v v v v v v e e e v e e
ACKNOWLEDGMENTS . . . . .
APPENDIX . . . .« v v v v v v v e e e e e .
REFERENCES . . . . . . . . . . e e e e e e e e
Nuclear Kinetics Models . . . . . . C e
5.1 Neutron Kinetics in a Circulating Fuel Reactor
5.2 The Temperature Equations . . . . . . . . . .
5.3 External Heat Rejection . . . . . . . « . . . « . .
5.4 Sofety Systems . . . . . . . . . e e e e e e e e
5.5 Control System . . . . . . . . . .. .
5.6 Control System Lag Meosuremenfs Made af fhe MSRE ..
------
25
25
. 26
26
. 31
34
. .35
. 38
. 42
. 46
ANALYSES OF TRANSIENTS IN THE MSRE SYSTEM WITH *33U FUEL
O. W. Burke F.H.S. Clark
ABSTRACT
The 23U fueled MSRE system was simulated on the ORNL analog
computer. The simulated system was used to evaluate the existing MSRE
control and safety systems when used on the 23U fueled system. The
pertinent results and conclusions were as follows:
1. The safety system will limit the “startup accident" so that the
peak power will be 100 kw.
2. A quantity of 33U sufficient to cause a reactivity change of
approximately -1% 8K/K when precipitated out of the fuel
at some point in the system external to the core could be swept
back into the core in a concentrated form without causing
excessive core damage.
3. The existing controller will control the #3°U fueled system in
a stable manner; however, an increased velocity feedback
gain will be required.
1. INTRODUCTION
While plans were being made to fuel the MSRE with *33U, there was some
uncertainty pertaining to the adequacy of the existing MSRE safety and control sys-
tems. To dispel this uncertainty, the following bits of information were needed:
i | 1. The degree of stability of the 33U loaded MSRE system while under auto-
matic control of the power level.
2. The response of the safety system to a "startup accident."
3. The maximum mass of **?U that can be tolerated in a "33 resuspension
accident."
The startup accident is defined as the continuous uncontrolled withdrawal of all shim
rods at maximum rod velocity.
An analog computer simulation of the “2°U fueled MSRE was used to obtain
the desired information.
2. ANALOG COMPUTER MODELS
Analog computer models of the subsystems of the MSRE developed earlier®™*
were used in various combinations as required by the nature of the transient to be
simulated, the range of the variables of interest, and the power level of concern.
2.1 Nuclear Kinetics Models
Two point-reactor nuclear kinetics models were used with six delayed neutron
groups. The output of one model was nuclear power, P; the output of the other was
the logarithm of nuclear power, log,, P . The log P model was used for startup and
low-power operation of the reactor where the range of P was very large and the heat
generation was negligible. The regular kinetics model was used when the heat genera-
tion effects could not be ignored.
2.1.1 Regular Nuclear Kinetics Model
The mathematical equations describing the regular nuclear kinetics model
(Fig. 1) are as follows:
dn -
—ng = (p_f\"—@n(f) + i)\ici(r) ’ (])
i=]
ORNL -DWG 69-2213
q
1
+ - Z)\icr
5 — LIMITER
‘ 25, -— f————{+0.5T0
Cio ! + -0
+100° Too0 0.0926 : —100ye——o B
“ ‘
25 HO
MIJ 3
+100 Vo2 M7
o—m—0 |-CONTROLLER
PURE TIME LAG FOR INSERT
i
|
|
| O
| ¢l MODE SWITCH
I +100 Vo o‘osoo
i
|
|
1
VELOCITY
]
LIMITER
+ 0.5 TO
! . x DEAD BAND + sy 108
. | 300 +100 00—
£ | CONTROLLER o 0
| ACTUATION C!RCUIT 100 ot M3
\ —O
} +100 v.045o
8 | PURE TIME LAG FOR WITHDRAW
O ‘ -
= 0.8200
a3 \
gC 1
Ew |
P
zz + INSERT
| 04000
25 | < VELOCITY
?Lg ; M7 M7K
= & 4 .
EE ‘[ +1{00 Vv ! START ~ - 20V = 1in./sec
52 | |
2 | - ;
| .
| ,20V = tin. ,
| 0.0752 / cOv=
MG w in./sec
| Mver ST 7 '52
01872 - [ I (AMP. 09) —a CONTROL
- —[ca1it) ROD
@ 4 | CONTROL ROD VELOCITY
| ‘ POSITION
0.0830 | 585
|
-Py +Pr : 20V = 1in./sec
| 04000 + S|
| 5
| - 5 START o
Orcee e MSJ Jo 2t 1Y) WIT HDR AW
‘~1oo v
|
————— CONTROLLER LOGIC
AND
CONTROL ROD DRIVES
i
!
I
—P; l -F ! +P - — ; - - - T - T T T T
40, ! 38, 374 - 50Kk 2uf ; |
. XLN 5P G i RECIPROCAL
‘ 1 3 {13 FPERIOD ‘}
] | —5.82v=
- = — = ——— '5"“"'"**********" T T T T + 1sec ‘
U Liwiren | REACTOR PERIOD Aggggfim_____J PERIOD
‘ A | SAFETY SYSTEM
| : ‘ ACTUATOR |
| S s+ i00vV !
i ‘ | PERIOD 6 MoK !
| | SAFETY @ !
| | SET POINT |
i SAFETY SYSTEM TIME LAG GENERATOR | P10V Caron 0100 |
* (Y40 sec) 1 |
L e b e 1
o
wt[25010%gp ) =+ e ‘ +100v LIMITER |
_ oo :\ TIME | C—(+100} :
i _ . M - 5F FROM ;
e - _CM/2\ 1oov 1sec | zjtfo— 100V I POWER LEVEL SET/100 AMP ,— |
2 [ SAFETY SYSTEM 293 f ;
| | ACTUATOR +ierl| S . |
- SAFETY ROD REACTIVITY GENERATOR CIMITER V6. 27 \ 9 L 1Q470_fl_4oov |
0—(~+90) \ ? MIK |
‘ LATCH !
Fig. 1. Schematic Diagrams of the Analog Computer Models of the MSRE
Control and Safety Systems and of the MSRE Reactor Kinetics.
and
AT
dCi(f) Bi Ci(f - 'TL)e L Ci(f)
g T A -G - T T @)
c c
where
n = number of neutrons in the reactor,
0 = reactivity, 5K /K ,
A = prompt neutron generation time,
B = the fractional yield of all delayed neutron precursors as a result of
fission,
N ]/Ti , where T, is the mean life of the ith group of delayed neutron
precursors,
Bi = fractional yield of the ith group of delayed neutron precursors as a result
of fission, T B. = B,
1. T core residence time of fuel,
T residence time of fuel in the loop external to the core.
The third and fourth terms on the right-hand side of Eq. (2) are not found in
the nuclear kinetics equations of stationary fuel reactors. The fourth term specifies
the rate at which delayed neutron precursors of the ith group are removed from the
core by fuel circulation. The third term specifies the rate at which the delayed neu-
tron precursors of the ith group re-enter the core after they have traversed the external
loop .
A consistent set of units must be used in these equations. In the computer
model, P (expressed in megawatts) replaced n in the equations. The computer voltage
scaling of P was different for the different transients; therefore, the machine-scaled
equations will not be shown.
The development of Egs. (1) and (2) is discussed in detail in the Appendix,
Sect. 5.1.
2.1.2 The Log P Nuclear Kinetics Model
The Log P model (Fig. 2) equations are as follows:
&
. dg(t) p -8
i ;kihi(f) ' )
dh.(t)
. dg(t) _ i 1
RS =T Dyt
-x. 7, (1)
] P L
I h.[r = 700 e : 4)
dh. (1) B.
| dg(t) _ "i 1
e T 20 h(n], (5)
and
‘ t _ !
h [t -5 0] :_J e - TC* h (Bt ] (6)
where
glt) = |ogel\|(’r) ,
h.(t) = Ci(f)/N(f) .
The detailed derivation of Eqs. (3), (4), (5), and (6) is shown in the Appendix,
Sect. 5. 1.
2.2 Reactor Core Heat Generation and Heat Transfer Model
The core was divided into four concentric regions in the radial direction with
respect to the direction of fuel flow. In the axial direction (direction of flow) the
regions were further subdivided into from one to three axial regions, or lumps. The .
regional layout of the core is shown in the upper right-hand corner of Fig. 3.
The mathematical equations describing each of these lumps are identical ex-
cept for the physical constants. The equations for a typical lump, which consists of
one section of graphite and two sections of fuel, are
iT_G: 9 __p_ - hA, (’T' __> 7)
dt MGCG T MGCG G f
dTy b hA, L -
i ke fr T mclTe T ) T m T T ) @)
ff ff f
and -
dT hA W
fo _ C z (= _ = fls _
¥ M C T M (TG TF)+M (TF TFo)’ (¥)
fo™f fof fo
where
TG = average temperature of graphite,
MG = mass of graphite section,
CG = heat capacity of graphite section,
a = fraction of total heat produced in the graphite section,
PT = total rate of heat production,
h = heat transfer coefficient between graphite and fuel,
A = heat transfer area between graphite and fuel, ]
T = average temperature of fuel in a lump,
—+
ORNL-DWG 69-2214
_— — . - 0.7956 M2
S —_
TRANSPORT W + N 100 V(O O
LAG NO. ! O
RATOR ‘
AL 28 [O—fuzay—- |
/ :7
s J 0.4700
1.000 %) - @
| ‘,—10_SON-@ ' ! -100v O
0.0443 | 100y
—100 Vo @ ]
6 »3 i
\“OZMN 100 A . o Los
= :
T o TN Car 0.4343 O LOGoN
|
: - 27 : \ [ ,,#@*O .
—100Vv Qo3 0.0535 25M0 - — 0 |
e AT TRANSPORT CONTROL
By e el OUT | a6 no. 2 Fl ROD p 10 -
004 GENERATOR i ! ‘ OV = 0.01 WATTS
N oM | | = (P27)01250 - - ‘ |
{1, 04170 . 2x10%A rt————-—|- - - — - - — - - - - - - T — T T T |\ T
Do+ ) o | | |
) |
0.0337 ;
—x,h
_ 2h2
A mia 10& Q2 ez ! |
/ +A Ap | S
= i e
hy o | e
106 0.0197 +100V | t
100V O {13 ||
’—4’ [
. M @
0.0062 |
5 e
‘ { ROD 3 RODS 1‘
i -t00v -gov
1P
5(7)0.0438
SAFETY SR ™
ROD | 24 g+ 100V
POSITION, . 0.0100
in. 4N Q77
0 72
o
=
i
x
+ Z
|
. _o\o_ -
r
1
\
|
i
\
\
\
\
\
i
|
I
1
|
|
l
|
!
\
\
|
|
1
\
\
|
1
1‘—SAFETV
T
| VELOCITY
in./sec 684 KQ
1ot 0.1840 A4o.3250
100
i —100 V.—F Q08 )
| @ ) 710)\4h4
:\ + Tc \ 63
04130 L‘ —H_ O 1200 PERIOD SAFETY SIGNAL GENERATOR &
’ SAFETY ROD DRIVES
—A 10 (217} 62 e e — — — -
+[1OOh5] N l ‘ e b L
/A +28.02V 2N b | M3J k
100ns 0.3400 *s"s : I+ '
00 ROO |
— {00 VO_' —100V h5!0 0.25%83 0.1 L —-100 v J'
i __________
— (ot %)
oy 0.0250 |
+10xgh |
10l +[1000 hg ] N
/1A +85.2 v TALO
Jo=
1000hg 0.2200
- 100 0.8520
—100vV O —— 100V
10hg g
Fig. 2. Schematic Diagrams of the Analog Computer Models of the MSRE Pericd
Safety System and the MSRE Log P Model.
ORNL-DWG 69- 2215
—100Q vV o — 100V — 100V |
0.0114 00192 0.0143 |
055 0.6325 P24)0.9205 ?8)0 5647 !
P O— _ fPTO 010 | - s ~P O 4@7 S — ;
+6325w10 ‘{ +9205v1o L +9647v1O ‘ e
‘ | 3 i
0.039 @ 0.0379 P10> t ) 0_0389@ — e - q-2 .
| ! | ‘e
i ; ! i 3-2| =
r-* - . ™ . | L. o Pan N - i | | 3
| 0.4 0434 ‘ ; ‘ 0.0635 0.0326 ! 14—
1 . 0.0885 i |
452 - e —_ 60)0.0795 . T 14 _ -
g oc()) | P e 01075504 EO * oosegwsa ! i 23,4 l
0.0434 i !
5 0.0635 © 0.0795 T‘"""ao 0.0635 T kfi ’ |
Q0 _ . . 2 . - R o
§ oo Q03— . €0, {10,) 5, QSD | ‘ CORE
i . I —41.33 v o . —54.46 V +6e1.1ay T 1] 76883V T A +75V LAYOUT
C C Ic e I
- g ;
‘+PTO 05@0.4433 -P.O -@ @o 4792 + P o—@ @o 5946 —p O @12) o,eua LR O (1,) 65) 0.6883 —pPO—{as, ng 0.7500 }
— | e
0.2130 0.5200 ] 0.6460 0.6670 | 0.5860 0.2500 |
T +100V | yMp 2=t —100 v ‘ T 6+00 v LUMEE;QW _e-toov | £+1OOVLJ LUMP 2-3 b —100V o
: 0.008B0 (I 100V 0.015 ooV 0.0105 —100 Vv .
. fi
i~R O ?1)0 5763 -P.O Q '62)0 8197 - 058)0.84 91
T 2 ! T 1) 162,)0. o T ‘ .
| c ) g | &'C |
| +57e3v1o 0.0381 +ar.97v|io 0.0362 +84.91v]10 ;
' L 34, - {23y b— 1 | 9y 32, >--i . 35, @ - {674 .
| > > 9 : N4 | I 3 i . - | 1
, i i : i
2} ! | 2 e A . | A i {T o
Zz 0.0868 0.0635 j f 0.0326
5 P 4 0.0893 o . o9 N
D e e R - e T _ —_ >z ’* 1500 - syt - IaTs]
0.045({70 Bls A200 | .z( L1980 G.utuB i PeZr — PiD - o8
g ) [ ooses(1s) | {en)o € | o)
| 0.0868 L3 , 01590 5 c. 1590 0.0635 - 0.0326
| 5 : /77\\ - — - 4{ 1 /-\_‘
58, 19, > | : zo( — {q27 <1 153 L {Qog)—
—aiy —52.96V +58.35 v o 1 “e4.22 v - +68.59 v
fc c é /\ c J\
/
+P 72,]0.4110 —P. O-—{29 ) +P O |9 67, 10.5296 - 21 0.5835 +RO-—Q15 ) {067)0.6422 P O—{Q16 ) 0.6859
T ; T 2 \ T (L T } , T ;%/5 \7/ T o
0.1680 o 5110 046 0.0198 , !
B i T __“_+WOO V_|:U__MP 3 - +1OOVLUMP 3- 2 o *4007\1 o _ °+1OOV LUMP 3-3 0t100\1 ! ‘
i 0.0050 _$7100V ' 0.0058 —1oov \ o ) _ | |
b 0.4766 41 ‘ [
o . 0 () (2o = L
? | i'C ‘ i -
i 10 003247 | + 51, 4W 10 TEMP €
00403 - - 21, i ;
__ | | TO CONTROLLER\ -
+47.66V | } s o.4 1;A5ODE SWITCH
<+ - — ™ | ; veLocity \[92) 046 !
. f
g OO?GE . 0.1068 01124 (68, ! /3’ 0.2950 i ngDBACK O,ROD VELOCITY r 73,)0.1429
O] 0. 0532 0. |2WOGG‘ O30 29( 321 } - | ! _P6 .—\ } FROM AMP. 40, H _
& 00762 0.1310 04124 | 0.0670 ! 3 ©62) °HI0OVIE O = (5P | 09823 )
| i | 01000 FROM AMP. 203 I '@«afloov
-l E Al L& N | .
— ~38.55V I harer v -44.96 v ' P peaO,,OOO g-100v |
I | ' | - | —56.25 v
e 1 - | 1 80p) 04125 |
+ P 70, <57| 0.3855 -5 (}———@D 1 56,)0.4127 i+ PO 7f38 @o) 04496 -F, O_Q-/' : |
01040 0.2230 \I/ | 0.2320 l 0.1080 | — +11.25v 0.0400 |
+1OOV LUMP4 1 =100V 1 +fiOOV LUMP 4-2 | ‘ i 5 |
————— e -— e R — & | \ - 25,1
0.01a6 1100V o o o o o § R NS ‘
O 07095 P 0.1429 y !
T e \ 26 — ! ‘
l TEMP CONTROLLER 2 e
@ » o w e
© | 0.2858 29— - | 0.0347 235
g B ‘ SM3 H00(t-KT)
o | +75v - 000 -Ky {28,
© | — - e o — . o 62 05000 +3.47 v A\ *‘Oovi
! 0.6500 \ 0.4000 [ ! 2 0029? _ _
\ 0.0720 GJ"D | : } 9p) 00750 } Q.0703 e -
r 0.0657 T | (225) L. Thwov | {
carsy 0.6500 T 0.6 ! ; | . 75% 0.0500 "
b 5 & A % H & >
FROM ] s 0a v : +37, 75V , —i613\./ 1643V
AMP 11, [ Ic
0.4204 ! 32:}0.3750 032 100V (862 0.1613 ‘59 o100V
+P —P - .
7O T - ¢ 0.5500 0.3867 0032?
, -
0.0792 —100 Vv +100V
LUMP 1-1 HEAT SINK
Fig. 3.
Schematic Diagram of the Analog Computer Mode!| of MSRE Heat
Generation and Heat Transfer.
MF = mass of fuel in the first section,