-
Notifications
You must be signed in to change notification settings - Fork 10
/
ORNL-4541.txt
18858 lines (15553 loc) · 630 KB
/
ORNL-4541.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
JUN 17 9N
B BUER et B
. Mffi%Tfifi T ORNL-4541§d‘¥
n
UC-80 — Reactor Technology
CONCEPTUAL DESIGN STUDY OF A
SINGLE-FLUID MOLTEN-SALT BREEDER REACTOR
Molten-Salt Reactor Program Staff
Compiled and edited by
Roy C. Robertson
“J
OAK RIDGE NATIONAL LABORATORY
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION
ORNL-4541
UC-80 — Reactor Technology
Contract No, W-7405-eng-26
MOLTEN-SALT REACTOR PROGRAM
CONCEPTUAL DESIGN STUDY OF A
SINGLE-FLUID MOLTEN-SALT BREEDER REACTOR
Molten-Salt Reactor Program Staff
Compiled and edited by
Roy C. Robertson
With principal report contributions by:
John L. Anderson P. N. Haubenreich Roy C. Robertson
H. F. Bauman E. C. Hise M. W. Rosenthal
C. E. Bettis P. R. Kasten Dunlap Scott
E. S. Bettis R. J. Ked| W. H, Sides
R. B. Briggs H. E. McCoy A. N. Smith
W. L. Carter H. A. McLain 0. L. Smith
C. W. Collins L. E. McNeese J. R. Tallackson
W. P. Eatherly J. R. McWherter Roy E, Thoma
S. J. Ditto R. L. Moore H. L. Watts
W. K. Furlong A, M, Perry L. V. Wilson
JUNE 1971
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION
= = - ; : ' }fiytvf:a
; ~ | ORNL-DWG 70-14134
LR
- .,ql
1 e ) A= Nl =T
i 4
1000 Mw(e) MSBR STATION.
- L
-
Contents
SUMMARY ' si i 60 £ ocbrline Wb apsiaast 2 dnsinas drs it e Aaow wie b asian s (% a0 e e g TV o Khniae 1T 08 ix
ACANOWLEDGMEISTS. § 8 s. 42005 5% Me b 0 5. 35m Ma a1d 5\ s dtmta.ine. ausoials ads i sise s s arn fesuniy e nin xvi
I INTRODDECTION - vp s o' vas 3adad s i o s st o0x sk sndimtaahs, sha's a s sh whaie i ghe shn v i ath joepip 1
2. OVERALL SYSTEMS DESCRIPTIONS ANDFEATURES . ... ... it iriiniinncinnnrnans 3
21 ROACTOL PIIniary SYBIAIM- 5 o160 92w i@ 6t € Aol #5 Al 5056 i 674 § B8 RES 55 v 5 & 5% Gt o 3 3
2.2 ' ‘SecondaryeSalt COoulating Byatont .. « & « 5 48 Sei s b tia et Vvt e e SAG e r PI 50 2T 2 Ty & 5
2.3 Steam-Power System for the Turbine-GeneratorPlant . . ......... ... iiennrnn. 5
2k RrarDalt P BUSIBIN | i s v sl s % W d dik i & 5o K el e @ Ry it A vehasa i wh e 6
e LSRN BB e o Tovn Wi Bt 1 W0 B e TR 88 B AL S S e will N WP By e 4 4 b s 7
2.6 . Futl-Salt-Procdssiig SYSIem | 26062535 5.0 5 60 2 50s 555 5 5ga Poalh 90 €5 K540 355 S ITE-A% B AW €66 4 7
2.7 Auxiliary and Other SUpport SYSIEmIS & ¢ v v b s v o 0 sis s 0 6a sia s i 0486 & 0K ols e aq T Ewies 9
3. "REACTOR PRIMARY 'SYSTEM 46+ Bad 06 G030 ol 0l 50 by aipidt Siainied aid nh g oy o 4o o5 Sk 10
3.1 General Desolipon i v d s vivvd s ad aw e bt d aw o Vi wae A Ve T T Y S d AT W A 10
Sl Design ObISCHWR, 5 i s 50 gos 25815 0 5es 0 8 i PR AT 0P 2006 4o TS a4 L 298 W E 10
3.1.2 General Description and Design Considerations . . . .. ... ..ot cvivinres 10
3.2 - SPeOial MAtalElk - - i1 s h 53 Dok ach Gorinis no si il WE A0 Bl 45 & @E A5 9% RS RYE T Bk B 20
321 POl BRI o 1.5 5 5 aorBe 5 A B A e R o SR SR T e 5 20
3.:2.2 'Co0lafit SAL, « s S visid 55 Tad 2l B plnd aii i S poal BG4 5L A S SRS MEE T AT 4T B e a2 22
328 - Rector GEaphlle ! o ¢ b v.us oxrmr e 1 siamm s e opDve vs 4ig 240 38 SaEiave & o o ey p ¥ 22
et (Hatelloy N .o oW & AR Ak 8 s s e dTnbd vod #5238 5 piie o aas o pse e (s &35 825 38 26
3.3 +Nuclear Characterlstics i ¢ s sni sasndivaiidmbin s Padwa sardbas X dad b aow e »e as 6 28
3.3.1 Selection of MSBRCOT IRSIZIN 2. i G siwnis #2 o 5 ssph o 5 o5 gt 85 % 848N 5 0 & ke 28
3.3.2' “Optimizatioh o \COre DesIBN ....c <5« 2 5 F8.0% % sv.avn 5 0cs ¥ niidmn e min & 048 Fiv' Siminss 29
3.3.3 Effect of Changes in the Fuel-Cycle and Core Design Parameters . ................ 31
3.3 Regctivity Coefficiensts ... « & i afnc s amen s o s valed e 5 sl @ 1 MK &a w36 Vel ataae i 35
3.3.5 Gammaand Neutron Heatingin the MSBR < . % oo oo mrccnvid s abaie oot aba 36
336 FissionProduct Heating in the MSBR. .. ..ci6 i dssvabrsnrsnvspunreehidbohagds 37
3.3V “THttum Froduetionand TRSDUHANE o 5% 5ow a bl iain S % resid i e s Ko s Gingdieis s 38
3.4 Thermal and Hydraulic Design of Coreand Reflector . . . . ... .. ¢ i ioinenann 44
BRI, BEORE: o 0% 2w 5, 40T 1 DA 3 A SR B PR R b T O RYR ACBY V WOR 7 ST S Pl sy e il 44
342 Rodigl RTIEOLOL : c <555 08 edis nig® 4 T alavie B 55 d i@ o kit Qs SeoPs .09 00 o 49
343 Accial RETISCIOTE < o4 5 b 5 i oivie A FRES A Vam ta a'n 50 a D ke Gion o s e Tumsd R s S und s 50
35 Reaotor Vel Dosipll. 2555533005 Pe barmt n P vid B2 s 43 nsmsotatis wB o2 2ud 24 a1
35.1. Réaitor VEsse]l DeSCAPHOM « et 35166 55 4 6675 aehomd mie-s1srion pasesra ¢ S66550sbe500 4598 51
3.5.2' Reactor Vessel Temperatires caaieeas a-ijae o se ba i s $5 @i sm €6 &o 5060w &6 e 52
353" Nonotof Wassel SUORIE: .. w5 rs B 1 15 570 o oih! dia vty e e G5 o0l FUd ik & 29 5 & &8 52
iii
iv
3.6 Peitoary Systanm SSEPIG 15 5.8 S sl ie s it wbs mrefodlinars 595 4 o afr 3cp i o €5 A e dh ks 53
37 Prary Heat BXCHAnEOIT v o vuieivina 0550/ 0,0 4% U9 8 Po sie o'k d v B o ol 5 5% & 015 4438 7 54
SE { Dealg ReHISMBIEE . cholilicis ins o it ui s i o mirama sty oy (o v sy Ao e G § O 54
IR TR SICITEED I 5rv- 3 v 9 e I s . et e i AN 91, 0 o AN AT e 1) 7, 20 54
2:1:3 , Denan Caleulations: o .:v 6% 03 3 vE5 s i mPsItdd s 0GR Ta BOCRG I b TGRS 57
3:74 ‘Relisbility of Designr Calealations' . a .« +w5 ma & w hsrries o v 5edw be s ia Lo wd oo 58
38 Salt Clrchlation Pumps «u s« v b i d o hsdnd nora o mSEua/a 2o 0 el ok e &85 i 34 W EA0E ENaDA 58
38,1 Euel-BaltFPUNIDE 2 020 r Pt aale snsd i oG8 Sl 0 R DE G4 R oTTus B rid o s oo 58
382 'Coolatt-Sai CIrCBoN PURDE 45 § : 5% §+ 2528 s st 499005 2 5 av st s ot neh 61
35:3 + St Franster PUMD + ¢ » ot tturn, b Bwi i piu 1850, il s € 0003 3 0 T uBross 4t oG d s B a 61
29" Bubhle GeidPaton and T DOPRIAIO . » 4 5 & £3-54 ¢ AR S A A & 08 Fw shag oo a e @ nsiiie wreraa s ¥ @ 61
591 EoauCHON:. i v o o eh e I e Wade i e R Wt Ga B8 ca TS ST g e e I B B 61
3.9.2 DL CENIEIEE 4w i o7afiate .00 8 p oo™ Eip malwy 50 G0 D AT A P m s DY, v E AL AN 61
F93 BUDDIE SCIRTEIOT . v6s 3 rouhai’s §.075 2.8 5 Wons” snm S1a nis GRS et 5 £ S 00 @ £ 63
3.9.4 Bubble Removal and Addition SyStem « i v ve e e ss o v evesscos oaiass nsiessn ona 63
4. COOLANT-SALT CIRCULATING SYSTEME .. 5 ;o 85 5628 oo dan ot o b a4 b ot sagdod snkudtas 65
BT TGEHOIAD e 350 5 2 090 B0k e T5 o4 V55 08 BRSO bt e Oih YL EE B E aio I b s wiod sl 65
4.2 et GENAIMIONE . o 5 i-iin iiv Baigh 5.8 s Bre ddvalalh O 8 S AR @ CRAY b dalih asw OsbiEwa 65
2 IGERBTR] ' it ol ale o tin e 2L WS N R My B ik e B R bR B T v e % 65
. TRCHBUON o ot i v B 53 WAL, S8 BRI o R ok W I el 5 e wrg #oF 5 66
4:2.8 Design CAeUIaON . o5 o 5.0 4 sob g0d Son L ys A8 5557000, 56 2 B IE D o #o ShE CR0cOdN o5 0 68
4.24 Relability of Dezign CalcHIBlONE v v s « 0 et aodnn v e v ad 1o gos sad pk ol ad s v 68
43, " Soanl REheatery & ..<v: iu % 15 RPE .« U avvh v AL 2B TR 40 WE A8 RV 0L S T Bt 16 558 s 69
AT L GETBRAE % T B S BN S PR WE ¥R D SR R A VSR AR AT ACSEAFA AN IS RO 69
G52 BIERCHDUOM .« .- 20ks 51 ivsacer Do o 500 Pra s FRA FaB% 5 v b eanhs & u & Mo i g & pw & 69
&3.2 . Doiltn Caleiiation® v & <o 5.0 vad e Kb agind'd ool b e S e s e N Wiy s S § 71
434 Religbility of Degign Colculations’ st:. . s % 5% s wie e v o, a5 sy @ mmhody 4 A A Pdre &8 o0 o s 71
A4 CoalaDi-Sall SYEteIti PIPIN = o 5 s o5 a8 5 P08 v igssnss sub o agsen sciib il 354 o1 b #0680 3% 57 56 71
4.2 - SecOmIary-BVs il ROPIOTIURKS : o2 < - tiaon By i § 1 S o A SRS da s ar i B DS G el 71
LG ~CODIMIDSEIEINAMTBVEIONE o i3 T s sid e P e afs i wie it AR A e 1 s i A o4¢ 72
o BEBAMPOWERSYSTEM. o005 boive soim s doie b g b i luily £ 9 Badiir & oIe B e i s arengis & 3 5§ 74
Dk ERBERL % 5 2tk S i Dl v hd Bl e T RS AT W Bd WA At A D . B £iris O B8 S lE Al 74
5.2 Description of the Reference Design MSBR Steam-Power System . . - ......., ...c...0.u.. 75
' . MSBR Plant Thrminl BINCISRCE . » 5.5 0008 et v sl 5,0 60 v aig logo i rsbols b B ov0as B0 006 o2 86 ik o293l 77
5.4 Selection of Steam Conditions for the MSBR Steam-Power Cycle . . . ... ................. 77
55 'Usé of Rehéatin the MSBR SIeantCyeIe. & v« o s ol s 00 ol via i 6r g b ehipe & ibne aiaie aia g o eds £ided 79
5.6 Effect of Feedwater Temperature on the MSBR Steam-PowerCycle . .................... 80
5.7 Pressure-Booster Pumps for Mixing Feedwater-Heating System . . ... ... ..., iiuron. 81
5.8 Mixing Chamber for Feedwater HOating ... ...« o v ciaevias cumaes soneis sorns s o siv o908 81
3.9 Superheat Control'by AttempParation « .. ..« swaw s advoi s o d s edis a Gk adhas a awas e s 81
S8 Robeut Steamn PYhBaRtols. 2. 5o Suils Fa el % d @ B st bb smieie e Too s R 0o 509 Sk vl e BE. £ 81
2101 - OondralibesctipoN o < & & e . 0R e F5-8 0 5% @ B o5 Nt s R25 58 a3 4 TVEEFE 00195 81
5102 - Detiid ConfluatAlionS. oo wesls i siingides s fpus fu aimngn O350 RS nis ook #1 81
6. FURL-SALTDRAIN SYSTEM . s s i ooaidals smisls & i o 9o olnyife 9% o & s iy oy 3 o8 4o 84
673 Gentral Doslgn CoRBIAOTatOnS « o « o.v ssvomnrsdin 3.5 sMGE LFYA € SEED 3 2EE0h SEh3E 575 S D5 3655 84
6.2 Fuel-Salt Drain Line . .. ... .ccc it vrimueecennoceesasansevoersansasassssssesass 85
6.3 Primary Drain Tank with Salt-Cooled Heat-Disposal System . ......................... 85
ISR s T A AR -y T N e (PSR- PR G A S S G NIy 85
632 et Sonrchs I Dy Tank'. 5.5 55 %5 5wea e 2 o hare 8 sl 0d Sesndhag. SEivs o 90
6:3.3' Heat Transfer in Drain Tank'Walls: < . v s v o i svets 5% 563 60a 3% 95 omie o s 75 ols 544 9 90
054" " EeNReIGSRD OIS | v icr wiu e 3 B s 5 ol d'n w% ARANE Pt e g sl s & ¢ Sront o B 91
64 Fuel-Salt Driin Tank With NaK Cooling . .. ... iivcisesssionsteibosessis vaaiasss 94
QAL INEONIICHION ¢ 3. a6 2t s alannats Baramats g ai o G an ike hob S04 50 28 1 R aras BiYit 94
T S Y [T O O TN e P O e o PR T SR S N L A Y X T 95
6:8 LSl SIOTIgR ERIR. S8 v ii R os Fo RS R T F e e Bt d bm s waeSuepet B S P aiknd abe 97
& REACGTOR OFE-GAS SYSTEM . i i5: oi606 00 iociua 0 51 iake 4 5. w1505 viiho (poosn 0675 60 A19 7008 5@’ Koot 16 98
ol CODEEAN S & 75 5% 5 G & a oA s DB SR b B e b B v e T i S e e P Al i 98
7.2 Basic Assumptions and Design Criteria for Steady-State Operation . . .................... 99
7.3 Summary Description of Off-Gas System . . . .+ v e cveevpvvsevsronvonssssssonssnses 100
7.4 The 475 Xepon HOldup SYSEID « & & 4.0 535w § daoniaic d 000 a0s Diika § Wie b st % B 15otd £9 517 102
Fud - Eong-Peladt ChartOal BRd . oi ¢ ovisi bRstmud $oanwe o as 2o m Gbhe Al Dol s 2 et 104
$.6 The GagCleanip Systen 15 o e b il T 2 I B R L A T e R A S e Sa RS SsTatae 106
Gt ORGSO & 4008 QiR FSATTET RaRERIZ T4 11 §50.5 48 0k 300 % b Bodaintiauple. Sves 9 109
273 T B T T T T Tt P Ty e 109
8. FUEL-SALT PROCESSING SYSTEM . i< 53 a0a 2 aals s0irdm 6 0.5 685488 36 8 Coea 4o is oiainss 110
Bl GEHOERL i 55 a0 St 5 I . e B A B 0 A VA e W AN R e R 110
B3 {Protaciinium ISGIAtON' ; & 5iid v 1ed & LA bp AN SE 5 U QM aE e RS R TR 5GP &2 111
8.3 'Rare-Barth Remioval .« ..vc.s ofs wos 60 534 83 5r 8% <ra ' sor aedei fad & 5.5 5L AT 46 48 b Fite Sadan 112
R4 Tifgraed PIant FIOWSRREE & ;. < fintaliis & wl svensiin S ausre o6l s & vis B o ,a00 alodie o, ale = wdut & o/ 5% 112
BS ' Sali-Bismutl COntattond « «. o2 fa'irils 5 & aa's vdidd arahic w48 @43 ki G Ve §iFd s i 55ROk 114
5.6 . PRIOTIDBOIE A 0. v 02 0t s 55 S AL w A TE A o, S i 5 W, S e iy i TR B 9 AR s 208 114
87 el ReconStutlon. . 58 v wad D8 o rtisvi L ns S 6§ DB TH LSS, 5 0 ) DA o 114
8.8 SaltCleanup :1.:vsceatinirmIfavispmidossaadPaisas PEavalBatessdd s sd@ensma 114
8.9 PURDEL .o 67 5 .Fvs Rebivn A ABTDE e § 50T s g waE S sivia s d e vioesernshie s e o sl K yS 20 115
B0 MEROAINE . 55 ; = o4 3% bdrsd e svb B s PRI EE st esis ol Fufos S SLstaopte S ki d saachss o od o 05 115
0 LIGUIDWASTE DISPFOSAL BYSTEM oy 5 ands 75 siidie s5v o wolp 5% ooty e o p 908 e d P8 bris sit ™ ss 116
10. PLANT OPERATION, CONTROL, AND INSTRUMENTATION .. ..... ..ot iiiennnaiinnns 117
3OL! ERNBIBL: < ¢ 5 T o R 5T 2000 it i Die Call s Bk o0 M bimy e Sl TS SR AP R Y44 AT 117
102 " MISBIC RoacRVity COIEAL 7. 20/h 0 seid & 2.5 8o s v o aod il wm Bl 00 n e 0 ok olphie & scdad 0.8 117
10.3: Reactivity Control for Emergency SHULAOWR . .i 4 i sogivo aisasrnaa 65 oo as v oo s oo oo 119
vi
10:4° FPlant Prolective SYSEM 1.v.0 58 65 iy rnLirin avy S dvhedell o 3 va v 78 &5 v s P syt ca 3 119
04,0 “GEDBEAD 450t et v W 48 56 R fba s D BB WER @ B2 B aE Fo 50 Basim Sll3us 0 0kt s 119
102" Reactivity RoGUEHION = ok ah 3 chili it Gk a5 @R ah S W5 Shon: e 0 R €5 M8 5508 2 119
1043 LoRdRodneHON - ; : 58 s ¥ AT dns i ala ol 3% 2 b i R g b 4 s e MES 4l 40 § 119
JOM4.4 " FURLIRAIN 57 5.5 660 0 TR wASA T man 5 AR 30 Voo v, 0 Wy S0 i v (h s A 4 119
10.5 Availability of Instrumentation and Controls for the Reference Design MSBR . . ............ 120
106, Allowable Rites o Load ChanBes: ¢, .« 25 8o i a2 0k b os TEwdi s a0 st ank e anlaaie diapaas 120
10;7. Contiol of Full and Paral Load OPBIAtON + 52 9= 3@ b vt vemayens s s netavsboesss e 121
10.8 ' Copteo! fhrEast SERAOWN 5.5 satd e 5 % citeterns’ ip oivisimet ifod 250555 dhe st gtote Bialin tane1n 9.9 e 122
10.9 Startup, Standby, and Shutdown Procedures . ... «...cuiiiiaetensosesam novesnsaianre 123
1005L) ASDTELEL 5 w0 wwie e 9% At 50 n¥ dlige 58 56 Bam ol i o5 v B 3000 B v A Brmie 45 sl 123
092 | AU PTOBEUNEE . v vcv n s o rvmin & r mis i v s o - ey SV W WA oy 8w 124
10.9:3° NormnalSORBAOIWN 513 5 alani #75 ack bt 5 R 3 s v a9 Fore i e e R 2 i g 125
115 AMKILTARY SYSTEME. o 2t 0 S0t urte S o2 S 07 018 A58 308 8 SETT ISR B A0 JVNAE L RS 126
LY. AT EIRtItC POWOD o6 via i i o o8 A abin ol e s §8 wascdele Mid b o8 A3 S SRR 3557 2 126
112 Coll Eleotric Hokting SYBIBIER. - 5-: 3 s s bra aass s N alsr s 58 m ik d 4o 8 ora 55 ook s 91 ige i xes 126
11.3 Radioactive Material Disposal SYSteml ..c « i vus sc sia hpseionsinmgie sa an aad oo onees aoaa 127
12, MAINTENANCE AND REPAIR SYSTEMS o+ ¢ iii:6 cn i saunie s sdra o s 4518 65070 8,0 9. o o/355 SO0 129
BT S R T v Tt e o T Wl A S A W W TN A R M R T 7B i W i i e 129
12.2. 'Semidirect Maintenance PYoCedUres. . « & : o1 g 5l syeic s s 3.8 o B sF Fad bl S0 afed e 4B 38 89 s 130
12.3 »Reifibte MaltenRaics ProCeauies. o . ; sn.v.o8 5300 is s v s s b S LNE 25 RURS IS s s a Botis 130
12.4 Graphite Disposal and Alternate Reactor Vessel Head Reclamation ..................... 133
125 1DeconiamiiBON: ;%0 i wessiei s 088 a0e s a6 5 i B ins s Syl i G5 Rk e e g i (. o a0 134
13 BULLDINGS - ANDCONTAINMENT ). : o5 e 5a® o b Ko and ok 1o osi e ambe ¥ o dndvhal dnysd 135
13UL" ALBEIEE o5 5 75 S8 3 s ATa R h ATAE & T A B o T Tl £ G e Ghararie i 35 e g PRGOS 135
132 Repotor Bullding . ;o a2 Sesa s i bfais.a sl Sumiem 8 s 0k i as a8, 308 0 Wa alerSuis oa kv 135
135 [ RSO DOIL R < 30554 Mo G Tl wl ot Mo fha® ¥ S B n sl I 2ot M TadiA 3¢ s 08 138
134 Paniaty-Bram TaKCEIL ..o sevividtie o 5 atetels Svi e o ats 3 vivonss €4 FE Feotd €5 26 M §oinie 144
13.5 “Proedic-Valve Ol 5 le o0 wesahiv ot p ilp wBddd 6 65 5500 W5 oo difa Wi araiea & so0 e 145
13.6: Spent Reactor Core and Heat Exchanger Cells ...; cvevvr e svmvrvs trnysvg uvdvangeey i 145
1T WEBIE SIOrame Gl .-c . 5.« < 3 22000 U0 5,505 agd-aall Al oudracs By 38, 000- s B Bis. kAN 5, SEorR 3 Airovy, 510 O 146
138 - Cherleal. Processing Cotl ' i 004« wivids & i naig Mi afewand sahel & a o 2% aei i o & avasind & ¥ 5 146
139 O SYSIBMITBHL 302,708 3wninm b e s A 55 A P R D8 STt T DSl S T S e Y S 5o 4 146
1'3.10- Miscellaneons Reactor BUllding Cells' ., . . . < cnevocrsnnsnomancasss smeneesssesseis 146
13.11 Steam-Generator Cells and Service A8 i« « s sireh s ain s vbsaistsdass pbniasssseis 146
1 3.1 PestwaterBaterand Tardineg BiltIogs ... « Dload tro v 51 miph o aie 3ohimm sislf ob 9 o0 5k Foaiwonrs 147
4. SITE PESCRIPTION | -3 10015575 aibiai-one: oo et inle b ma B 5.0 Amiats® V6 dv asTe s saBss 8D 36 Hacd 606 3 148
vii
15, COST ESTIMATES FOR THE MSBR STATION .. 4 a a5 ouere v sbedinsisiona osnie g ataism s sd s ol vl & » 150
151! CRpHal CoRt EsBmble ot - o i ive ice Slmain s brm o i ok 5 whaliiate o s otade ata o ivid s, a'a i v ik 150
192 Tower. Produchion Cosl . o0 f*7 6 a5 sle 0 . 00 R a3 6 w5 50t et K 4 Laneialk v sdlors 4% e 151
16, UNCERTAINTIES AND ALTERNATIVES, AND THEIR EFFECTS ON FEASIBILITY
AND FERPORMANCE ©.ii% a0 5560500 308 01756 5 BEnle D 88 et siete iub aidisns & 53 4 dvw Bu Aom s a/in 154
Y61 OB S cwr s SR e T b T e dt DS eE ¢ b AN e B B aate e Fe el a R L5 300 o B LS 2. 154
162 NIABHAIE . e ndinimt Bk $I aaehe Be 50 a win o8 Suapsdaln B0 WA 518 Seidde §it Agevs w.ae B9 5S 154
L0221 BUBLSEIL 36 A0 b ncio i b BiBiiis 656 ornion 1 b i dieiion's eIV Oa S A Salsbils 8% 154
36.4.2" . SeoonNAREY TINMIA . an.i'e sis o6 miteare it sy min e by’ 4 Wiaw shie stels @.a e MELGR e it o 155
16253 "TRESEILOR I £ « o w9 ¥% M 75 5 e v 0 S R AR A SR s e 156
1624 GTAPIULE: o 4 50 s B as 7 5.5 4 3 A0 s 5 W G5 T WM o T T P B T B By AL W 157
16:3 Systéetis And CoORMANEIE 53 5vusi 5 3 o5 GBI WK a5 DVraED 037 abrd o DG BPE 57s 024 Bes Imbinis 158
16.3.) VEMetOP .. .15 e b adaniat ake e vah e rod sl de Bt & i a5 sitazt o @ et DA 158
1632 Primary Heat EXChangers : ;.8 i« s 0 0300 8 dradac o 55 0 s ofea b & @ o wn avoebon 570 158
16353 " 1St Choilatioy PUIMDE £ 505 6 s it S0 895 & s RS2 L4 R ATS DB 48 F5 + B AF AN puibacd ¥ 158
DE:IH, INER TAUK -4 3% 05 msirniebe @oitrets oin & oliidajechirsh. HPe Sk o6 5855000 o5 Bl ma ¢ 159
16:3:5) PoolaSTLINEa VR . o5 s £ee dasen s o vk s asw 56 s gl o 8% 37 Pk rein & 159
16.3.6 Gaseous Fission Product Removal System . ... .....cc.cininariinnncasncenns 159
1637 OIFGAS BB ... 5 0% 50 wia s 695 6 5Pe8.Eig n b Ble §16%.906 753 & 5od s7& 0l 5 Wa lm jud o 00a s 159
DOLIE" "R GODBRIATONE: b i v 3 Soie & & W MIE W M. o SN Sr BRa e e B el SN Py 55 159
1639 ‘Ihstrumentation and CODIrOIR .55 o6, 6 am i 00 55 €0 2 ked ¥)a e soiies o1 sr 1 160
16.3.10 Piping and Equipment SUPPOTts -« : caaraa o si caman o Cansas bo vad-sead ss s 160
16.3: 11 'Coll Conictlon: 2. . 054 300002 £ o o U B TR 5 Sonrda 1008 et miaimn ot Sefl en aiara 160
164 " TRUGN CORBHSHERt A ¢ ¢ wis vy 55 5.080E b w2 G o ga o500 TPV (RS R .G v S 160
16.9 ' ‘Chemicsl Processibg SYRLAIN 4 & < 5/n'e s 5 in @k d F o & @ i o i AtRE B4 208 4o swibde 216 bty 6l toe 162
16:6 Fission PLOdUCt BEhAVIOE .0 5/s 1-c v 55 4% o 60606 0 Bt aih Fas g be as ne i ths il snshanl ife 163
16.7 Steam Conditions in the Thermal-Power Cycle .. ... v v eentinnnenvnneremncrssrvs 163
16.8 Maintenance Equipment and Procedures ... i .« cuswii swis sen aveinesms s aoradsns e ie 164
169 Safety Studies .. ... ..coivteii ittt entnereneonsosooneescseassancesssensos 165
REPERENCES. 58 5 ar ex s D% bodih ot aft shind oo A <) 4gtan mevi do $F Ton o ae e fine 5 sbe i e 166
APPENDIX.A: THEORY OF NOBLE GAS MIGRATION 's. ¢ o 545 moiy oo sipe v o8 40 modvd 494 r s seres 170
APPENDIXB: NEUTRONTHYSICS <40 p 05 Ch s 2 0ets & s - ide s el sa s i e ing mi aisa s 175
APPENDIX C. EQUIVALENT UNITS FOR ENGLISH ENGINEERING AND
INVEBRNATIONAL SYBTBME . 0ot drsn-eabed bablevasndden st is it ie s B0 0 es et 176
Summary
Preparation of a conceptual design for a 1000-MW(e)
single-fluid molten-salt reactor power station has given
confidence that such a plant is technically feasible and
economically attractive. Successful operation of the
Molten-Salt Reactor Experiment and the substantial
amount of research and development already accom-
plished on molten-salt reactor materials and processes
indicate that after the technology has been extended in
a few specific areas, a prototype Molten-Salt Breeder
Reactor (MSBR) plant could be successfully con-
structed and operated. Studies of the fuel-salt chemical
processing system are not as far advanced, but small-
scale experiments lead to optimism that a practical
system can be developed.
The reference MSBR operates on the Th-**3*U cycle,
with both fissile and fertile materials incorporated in
a single molten-salt mixture of the fluorides of lith-
ium, beryllium, thorium, and uranium. This salt, with
the composition LiF-BeF,-ThF;-UF; (71.7-16.0-12.0-
0.3 mole %), has a liquidus temperature of 930°F
(772°K), has good flow and heat transfer properties,
and has a very low vapor pressure in the operating
temperature range. It is also nonwetting and virtually
noncorrosive to graphite and the Hastelloy N container
material.
The 22-ft-diam by 20-ft-high reactor vessel contains
graphite for neutron moderation and reflection, with
the moderating region divided into zones of different
fuel-to-graphite ratios. As the salt flows upward through
the passages in and between the bare graphite bars,
fission energy heats it from about 1050°F (839°K) to
1300°F (978°K). Graphite control rods at the center of
the core are moved to displace salt and thus regulate the
nuclear power and average temperature, but these rods
do not need to be fast scramming for safety purposes.
Long-term reactivity control is by adjustment of the
fuel concentration.
The core neutron power density was chosen to give a
moderator life of about four years, based on the
irradiation tolerance of currently available grades of
graphite. The specific inventory of the plant, including
the processing system, is 1.47 kg of fissile material per
ix
MW(e), which, together with the breeding ratio of 1.06,
gives an annual fissile yield of 3.3%. The heat-power
system has a net thermal efficiency of over 44%, which
makes a reactor plant of about 2250 MW(t) ample for a
net electrical output of 1000 MW(e).
A simplified flow diagram of the MSBR is shown in
Fig. S.1. The primary salt is circulated outside the
reactor vessel through four loops. (For simplicity, only
one loop is shown in the figure.) Each circuit contains a
16,000-gpm single-stage centrifugal pump and a shell-
and-tube heat exchanger, Tritium, xenon, and krypton
are sparged from the circulating primary salt by helium
introduced in a side stream by a bubble generator and
subsequently removed by a gas separator. A 1-gpm
(0.06 liter/sec) side stream of the primary salt is
continuously processed to remove ??3Pa, to recover the
bred 233U, and to adjust the fissile content. A drain
tank provides safe storage of the salt during mainte-
nance operations.
Heat is transferred from the primary salt to a
secondary fluid, sodium fluoroborate, having a compo-
sition of NaBF;-NaF (92-8 mole %) and a ligaidus
temperature of 725°F (658°K). Each of the four
secondary circuits has a 20,000-gpm centrifugal pump
with variablespeed drive. The secondary salt streams
are divided between the steam pgenerators and the
reheaters to obtain 1000°F steam temperatures from
each, Steam is supplied to a single 3500-psia,
1000°F/1000°F, 1035-MW(e) turbine-generator unit
exhausting at 1% in. Hg abs. Regenerative heating and
live steam mixing are used to heat the feedwater
entering the steam generator to 700°F (644°K) to
provide assurance that the coolant salt remains liquid.
The estimated plant capital costs for a fully developed
MSBR, although differing in breakdown, are about the
same as those for a light-water nuclear power station.
Fuel-cycle costs are expected to be quite low and
relatively insensitive to the prices of fissile and fertile
materials.
The major uncertainties in the conceptual design are
in the areas of tritium confinement, fuel-salt processing,
graphite and Hastelloy N behavior under irradiation,
suitability of the coolant salt, maintenance procedures, Principal design data for the reference MSBR power
and behavior of the fission product particulates. Al- station are listed in Table S.1 both in English engi-
though more study is needed of these aspects, it is neering units, as commonly used in the molten-salt
believed that they can be resolved with reasonable reactor literature, and in the International (metric)
difficulty. system of units.
ORNL-DWG 70-11SD6
FLOW DIVIDER
. .
BOTTLE = a4
STORAGE 18 17 16
CLEAN
PURGE
He E
15
14 3 4
12| *He
i He I
NS0°F
1
1300°F | Y 550°F 6x105 ib/hr
”I MIXER
2
"I sso°r |
1050°F 95 x 108 In/hr 71 %105 1b/he / \
it =
CHEMICAL
PROCESSING_}
Fig. S.1. Simplified flow diagram of MSBR system. (1) Reactor, (2) Primary heat exchanger, (3) Fuel-salt pump, (4) Coolant-salt
pump, (5) Steam generator, (6) Steam reheater, (7) Reheat steam preheater, (8) Steam turbine-generator, (9) Steam condenser, (10)
Feedwater booster pump, (11) Fuel-salt drain tank, (12) Bubble generator, (13) Gas separator, (14) Entrainment separator, (15)
Holdup tank, (16) 47-hr Xe holdup charcoal bed, (17) Long-delay charcoal bed, (18) Gas cleanup and compressor system.
xi
Table S.1. Summary of principal data for MSBR power station
Engineering units?
International system units?
General
Thermal capacity of reactor
Gross electrical generation
Net electrical output
Net overall thermal efficiency
Net plant heat rate
Structures
Reactor cell, diameter X height
Confinement building, diameter X height
Reactor
Vessel 1D
Vessel height at center (approx)
Vessel wall thickness
Vessel head thickness
Vessel design pressure (abs)
Core height
Number of core elements
Radial thickness of reflector
Volume fraction of salt in central core zone
Volume fraction of salt in outer core zone
Average overall core power density
Peak power density in core
Average thermal-neutron flux
Peak thermal-neutron flux
Maximum graphite damage flux (>50 keV)
Damage flux at maximum damage
region (approx)
Graphite temperature at maximum neutron
flux region
Graphite temperature at maximum graphite
damage region
Estimated useful life of graphite
Total weight of graphite in reactor
Maximum flow velocity of salt in core
Total fuel salt in reactor vessel
Total fuel-salt volume in primary system
Fissile-fuel inventory in reactor primary
system and fuel processing plant
Thorium inventory
Breeding ratio
Yield
Doubling time, compounded continuously,
at 80% power factor
Primury heat exchangers (for each of 4 units)
Thermal capacity, each
Tube-side conditions (fuel salt)
Tube OD
Tube length (approx)
Number of tubes
Inlet-outlet conditions
Mass flow rate
Total heat transfer surface
Shell-side conditions (coolant salt)
Shell ID
Inlet-outlet temperatures
Mass flow rate
Overall heat transfer coefficient (approx)
2250 MW(t)
1035 MW(e)
1000 MW(e)
44.4%
7690 Btu/kWhr
72X 421t
134 X 189 ft
0.37
22.2 kW/liter
70.4 kW/liter
2,6 X 10'® peutrons cm ™2 gec !
8.3 X 10'4 neutrons cm 2 sec ™!
3.5 X 10'? neutrons cm ™2 sec™!
3.3 X 10'* neutrons em 2 sec”!
1284°F
1307°F
4 years
669,000 1b
8.5 fps
1074 ft2
1720 13
3316 1b
150,000 1b
1.06
3.2 %/year
22 years
556.3 MW(1)
3/3 in.
22.2 ft
5896
1300-1050°F
23.45 x 10% ib/hr
13,000 f£t?
68.1 in.
850-1150°F
17.6 X 10% 1b/hr
850 Btu hr! f1~2 (°F) !
2250 MW(t)
1035 MW(e)
1000 MW(e)
44 49,
2252 J/kW-sec
220X 128 m
40.8 X 57.6 m
6.77 m
6.1m
5.08 cm
7.62 cm
5.2 X 105 N/m?
3.96 m
1412
0.762 m
0.13
0.37
22.2 kW/liter
70.4 kXW/liter
2.6 X 104 neutrons cm 2 sec "
8.3 X 10'? neutrons cm ™2 sec™}
3.5 X 10'? neutrons cm 2 sec™!
3.3 % 10'® neutrons cm 2 sec ™
969°K
982°K
4 years
304,000 kg
2,6 m/sec
30.4 m?
48.7 m?
1504 kg
68,100 kg
1.06
3.2 %/year
22 years
556.3 MW(t)
0.953 cm
6,8 m
5896
978—-839°K
2955 kg/sec
1208 m?
1.73 m
727-894°K
2218 kg/sec
4820 Wm™2 (°g)!
*®1i
Table S.1 (continued)
Engineering units?
International system units?
Primary pumps (for each of 4 units)
Pump capacity, nominal
Rated haad
Speed
Specific speed
Impeller input power
Design temperature
Secondary pumps (for each of 4 units)
Pump capacity, nominal
Rated head
Speed, principal
Specific speed
Impeller input power
Design temperature
Fuel-salt drain tank (1 unit)
Outside diameter
Overall height
Storage capacity
Design pressure
Number of coolant U-tubes
Size of tubes, OD
Number of separate coolant circuits
Coolant fluid
Under normal steady-state conditions:
Maximum heat load
Coolant circulation rate
Coolant temperatures, in/out
Maximum tank wall temperature
Maximum transient heat load
Fuel-salt storage tank (1 unit)
Storage capacity
Heat-removal capacity
Coolant fluid
Coolant-salt storage tanks (4 units)
Total volume of coolant salt in systems
Storage capacity of each tank
Heat-remaval capacity, first tank in series
Steam generators (for each of 16 units)
Thermal capacity
Tube-side conditions (steam at 3600-3800
psi)
Tube OD
Tube-sheet-to-tube-sheet length (approx)
Number of tubes
Inlet-outlet temperatures
Mass flow rate
Total heat transfer surface
Shell-side conditions (coolant salt)
Shell 1D
[nlet-outlet temperatures
Mass tlow rate
Apparent overall heat transfer coefficient
range
16,000 gpm
&N £a
v oA
890 rpm
2625 rpm(gpm)?*5 /()0 75
2350 hp
1300°F
20,000 gpm
300 ft
1190 rpm
2330 rpm(gpm)®*5 /(f)°-75
3100 hp
1300°F
14 ft
22 fi
2500 ft?
55 psi
1500
3/4 in.
40
TLiF-BeF,
18 MW(t)
830 gpm
900-1050°F
~1260°F
53 MW(t)
2500 ft3
1 MW(t)
Boiling water
8400 £t3
2100 £t
400 kW
120.7 MW(1)
1/2 in.
76.4 ft
393
700-1000°F
633,000 Ib/hr
3929 1t?
1.5 ft
1150-850°F
3.82 X 105 Ib/hr
490-530 Btu hr ™! ft™2 (°F) !
1.01 m®/sec
43.7m
93.2 radians/sec
5.321 radians/sec(m?/sec)®5 /(m)0*73
1752 kW
978°K
1.262 m?/sec
91.4m
124.6 radians/sec
4.73 radians/sec{m>/sec)?*5 /(m)®' 75
2310 kW
978°K
427 m
6.7l m
70.8 m?
3.79 X 10° N/m?
1500
1,91 ecm
40
TLiF-BeF;
18 MW(1)
0.0524 m?/sec
755-839°K
~955°K
53 MW(1)
70.8 m?
1 MW(t)
Boiling water
237.9 m?
59.5 m?
400 kW
120.7 MW(1)
1,27 cm
23.3m
393
644-811°K
79.76 kg/sec
365 m?
0.457 m
894-727°K
481.3 kg/sec
2780-3005 W m ™2 (°K) ™!
Table 8.1 (continued)
Engineering units? International system units?
Steam reheaters (for each of 8 units)
Thermal capacity 36.6 MW(t) 36,6 MW(1)
Tube-side conditions (steam at 550 psi)
Tube OD 3/4 in, 1.9 ecm
Tube length 30,3 ft 9.24 m
Number of tubes 400 400
Inlet-outlet temperatures 650-1000°F 616-811°K
Mass flow rate 641,000 1b/hr 80.77 kg/sec
Total heat transfer surface 2381 ft? 221.2 m?
Shell-side conditions (coolant salt)
Shell ID 21,2 in, 0.54 m
Inlet-outlet temperatures 1150-850°F 894-727°K
Mass flow rate 1,16 X 108 Ib/hr 146.2 kg/sec
Overall heat transfer coefficient 298 Btu hr ™! 72 (*F)~! 1690 W m ™2 (°K) ™
Turbine-generator plant (see “‘General” above)
Number of turbine-generator units 1 1
Turbine throttle conditions 3500 psia, 1000°F 24,1 X 10° N/m?, 811°K
Turbine throttle mass flow rate 7.15 % 10° Ib/hr 900.9 kg/sec
Reheat steam to IP turbine 540 psia, 1000°F 3.72 X 10% N/m?, 811°K
Condensing pressure (abs) 1.5 in. Hg 5,078 N/m?
Boiler feed pump work 19,700 hp 14,690 kW
(steam-turbine-driven), each of 2 units
Booster feed pump work (motor-driven), 6200 hp 4620 kW
each of 2 units
Fuel-salt inventory, primary system
Reactor
Core zone I 290 ft3 8.2 m?
Core zone 11 382 ft? 10.8 m®
Plenums, inlets, outlets 218 ft3 6.2 m*
2-in. annulus 135 f° 3.8 m?
Reflectors 49 ft3 1.4 m?
Primary heat exchangers
Tubes 269 ft3 7.6 m>
Inlets, outlets 27§63 0.8 m3
Pump bowls 185 ft3 5.2m?
Piping, including drain line 145 ft3 4.1 m®
Off-gas bypass loop 10 3 0.3m°
Tank heels and miscellaneous 10 i3 0.3 m3
Total enriched salt in primary system 1720 f3 48.7 m?
Fucl-processing system (Chemical Treatment
Plant)
Inventory of barren salt (Lif-BeF,-ThF ) 480 £ 13.6 m®
in plant
Processing rate 1 gpm 63,1 X 1078 m3/sec
Cycle time for salt inventory 10 days 10 days
Heat generation in salt to processing plant 56 kW/ft? 1980 kW/m?
Design properties of fuel salt
Components 7LiF-BeF,-ThF4-UF4 TLiF-BeF;-ThF4-UF 4
Composition 71.7-16-12-0.3 mole % 71.7-16-12-0.3 mole %
Molecular weight (approx) 64 64
Melting temperature (approx) 930°F 772°K