-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathORNL-TM-1854.txt
6629 lines (3169 loc) · 149 KB
/
ORNL-TM-1854.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
OAK RIDGE NATlONAI. I.ABORATORY
- operated by
UNION CARBlDE CORPORATION
ErfNUCLEAR DIVISION S
ST for the s
U S ATOMIC ENERGY COMMISSION
ORNI. TM—'- -
(LTS
- 'fi-:':H*E"‘MéC"??f -"'." d IR wear;_ | J L
- fmfi flflfiddgffi' HAS Gery Rca 7
. V1
B9 INVENTIONS OF PATSHT 1 EweD.
i
. -S_HHTIOE Thls document ,--con!ams lnforrnchon of @ prelammory nufure L
ond was’ prepared “primarily for’ ‘internal wse at the Ook Ridge Nahonut Rty e
" Laboratory. It s ‘subject to revision or correction und therefore &oes
T not represent a hnal ‘repor SR P : ,
e S e b A e by A 2
1 r b o e iy
g e e
© ot 2 e 5.
s T e i ] 1L
o A 4 ke e ey
af
LEGAL ROTICE
. This report was prepared as an account of Gé\;cmmont sponsored work, Noiqhor the United Stof;s,
_ nor the Commission, nor any person oefing on behalf of the Commission:
A. Makes eny warranty or representation, expressed or Implied, with respect to the accufccy,
completeness,. or usefulness of the lnformation contained in this report, or that the vse of
any information, apparatus, molhod or process disclosed in this _teport may not infringe
privct-ly owned rights; or
. B, Assumes any liabilities with respect to ihe use of, or for damcgos nsuhlnq from the use of
any information, apparatus, methed, or process disclosed in this report.
As vused in the cbove, '"person acting on behalf of the Commlulon” includes any employes or -
contractor -of the Commission, or employes of such tontractor, to the extent that such employse
- or contractor of “the Commission, or empleyee of such contractor prepares, disseminates, or
provides access to, any Information pursuant to hu omploymont or contract with the Commission, -
Cor hls lmploymem with such contractor.
A P s A R e
e) q-’ »E
*) &Bm* ¥
‘ ‘
L
ORNL~-TM-1854
iy
CFSTI PRICES |
T
rfie. $.3 %% un - és/
Contract No. W-7405-eng-26
METALS AND CERAMICS DIVISION
| , LEGAL NOTICE
. This report was prepared as an sccount of Guverment sponsored work. Nefther the United
i Btates, nor the Commiasion, nor any person acting on behalf of the Commission: ‘ :
+"of any information, apparatus, method, or process disclosed in this report may not infringe
i, privately owned rights; or ! o . .
‘-« B. Assumes any lHabilities with respect to the use of, or for damages resulting from the
; use of any information, ipparatus, method, or process dizclosed in this report.
MATERTALS DEVELOPFIENT FOR MOLTEN-SALT BREEDER REACTORS
H. E. McCoy, Jr., and J. R. Weir, Jr.
JUNE 1967
" 0AK RIDGE NATIONAL LABORATORY
. Oak Ridge, Tennessee
- operated by
UNION CARBIDE CORPORATION
: : .. for the :
U.S. ATOMIC ENERGY COMMISSION
b AR LSS
él‘E%-g
.
4)) ‘5?
w) fi%fi ¢
131
- CONTENTS
Abstraet e e w
Introduction .. |
Status of the'Developmentsof'HaStelloy.N
General Properties | .
.Physical Properties . . . . . C e e
Mechanical Properties . . . . .
Tensile Properti€s . v v v v v v « o o o o«
Creep Properties . . . . . . . | |
Fatigue Propertles . . . . . . « .« . . . . .
Effects of Irradisation . . « v o v o v v v v o 0 o .
Corrosion by Molten Fluorlde Salts
: Loop Studies . . o v v v v v u e w0 .
MSRE Operatlng'Experience
Resistance to Gaseous Contaminants
Oxidation Resistance_r.'.b. « . Q e e e
Resistance to Nitriding .. .'. e e e e
Compatibillty with Superheated ‘Steam f-.-; .
Fabrication of Hastelloy N Systems and ComponentSy
Raw Material Fabrication
Welding and Brazing of Hastelloy N ... c e e
Joining for Reactor Component Fabrlcatlon
Pressure Vessel and. Piplng S e e e e
Heat Exchangers .~.*.*;~5 e e e a e e
. Dissimilar Metal Joints . . .. . . .
: Remote Joining .. .',_ _ | | _
" Remote - Welding".ffi }-;*. e e e e e e
~ Brazing and Mbchanieel_Joints. C e e e e
Remote Inspectlon f}. e e e e e e e e e e
Status of Development of Graphite'_,;”._. . |
Grade CCB Graphlte _; . e
SETUCEUTE o o o o o e e e e .
Permeability . « « ¢« « ¢ ¢ ¢ v o ¢ o 4 e .
Page
VW U W W |
w N NN MNNMNNN N MM OWOWOWOW W W WD R P
B 5 0 o MK L oW n:_éS 5 0 360 6D RN M = 30, NP
iv - -
<;;§
Mechanical Properties: . « v v v v v o 4 ¢ o v o s s o . 53 «
Isotropic Graphite . « + v v v v o o v o v o . e 54
JOININE v v v e o e o e et e e e e e e e e 56
Graphite-to-Hastelloy'N Joints . . . . ... ... ... 57 |
Graphite-to-Graphite Joints . .:.'. .'.,.'.-. e « os . 60
Compatibility of Graphite with Mblten Salts . . ... ... 60
Rediation Effects on Graphite . . . . . .. ........ 6l
Nondestructive Testing of Tubing oo e e e e e e .'_64
Materials Development Program for Mblten-Salt |
Breeder Reactors . . . « v v v o v o v s s 0 o . Q:, e e e 65
“Hastelloy N PrOGF&Il . o v v v o o o v v ot v v oo n e e 65
Resistance to Irradiation Damagé'-.\. .;.}, . c .. - 65
Corrosion Program . « o & & & o & o & o o o o o o s o o 67
NIEELAINE « « ¢ v v e e e b e e e e e e e, 69
Joining DevelOPmENt . o v o 4 v v v e aie o e o e s .. 69
Inspection Developmeht e e e e e e e e e e e e e e e T4 7
Materials Development for Chemical Processing | -_ | . i;
Bquipment . . . . ¢ 00 0 0 s e e e s e e e e e 75 -
Graphite Program . . . . . . « ¢« ¢« « « « . e e e e e e 75 Y
Graphite Fabrication and Evaluation - . . . « . . « « ¢ 4 76
Irradiation Behavior . . . . . .. e e e e e e e 77
Graphite Joining . . . . . . . o ¢ o o0 e e e e e 79
Permeability Studles . . . . . . .+ o v o v v o o0 . 79
Corrosion and Compatibility of Graphite O (0
Graphite Inspection . . . . . . . . .+ o o o o o o 80
General Development and Project Assistance . . . . .. ... 8L
ACKNOVIEdGEENtS . o v o v o v e e e e e e e e e .. Bl
Appendix ... . . . ¢ o o & e e e e e e e e e e 83
{
.'¢§(»»ug*
4 J’j vl -
o
) B
MATERIALS DEVEIOPMENT FOR MOLTEN-SALT BREEDER REACTORS
H. E. McCoy, Jr., and J. R. Weir, Jr.
- ABSTRACT
We have described the materials development program
that we feel necessary to ensure the successful construction -
and operation of a molten-salt breeder reactor, The pro-
posed reactor is a two-region system utilizing a uranium-
bearing fluoride fuel salt and a thorium-bearing fluoride
blanket salt. A third lower melting fluoride salt will be
used as a coolant for transferring the heat from the fuel
and blanket salts to the supercritical steam. The primary
structural materials are graphite and modified Hastelloy N,
The individual fuel cells will be constructed of graphite
tubes. These tubes must withstand neutron doses of the order
of 1072 neutrons/cm and must have very low permeability: to
gases (because of 137Xe entrapment) and fused salts. These
requirements mean that we need a graphite that is slightly
. better than any currently available. We have described in
detail what graphites are available and their respective
properties. A line of action for obtaining improved grades
of graphite is proposed along with a test program for
evaluating these new products.
Modified Hastelloy N will be used in all parts of the
system.except the reactor core. Since standard Hastelloy N
is embrittled at elevated temperatures by neutron irradiation,
‘it has been necessary to modify the composition of the alloy
with a small addition of titanium., The program necessary for
fully developing this modified alloy as an. engineering material
is described in detall ; \ ,
An integral part of the proposed system is a JOlnt between
the tubular graphite fuel channels and the modified Hastelloy N.
‘Brazing alloys have been develoPed specifically for this job
“and a reasonable design for the joint has been made. The
1ntegr1ty of the goint must be demonstrated by engineering
_tests.
. Several areas requlre the development of suitable inspec-
tion techniques. These techniques are further complicated by
the fact that they must be adaptable to remote 1nspection
inside the Ieactor cell
_ Although numerous problems exist which will require Turther
development, none of these appear insolvable. Hence, we feel
that the materials development program can proceed at a rate
consistent with that proposed for the Molten-Salt Breeder Reactor.
14"[ilv"
INTRODUCTION
The proposed molten-salt‘breeder'reactorsllwiiljrequire some advances
in materiais technology. However, the'construction and operatioh of the
_Mbiten-Salt Reactor Experiment have given us iovaluable iasight concerning
what advances are necessary. We feel that we can make these advances on a
time schedule that is consistent with that pr0posed for the Mblten-Salt
. Breeder Reactor A
From & materials standpoint, the reactor 1s easily divided into two
sections: (l) the core and (2) the reactor veseelrand associated piping.
The requirements of the material for use within the core are (1) good
moderation, (2) low neutron absorption, (3) compatibility with the molten
salt~Hastelloy N system, (4) low permea.bility to both salt and fiseion ga.ses,
(5) fabricable into tubular shapes, (6) capable of being jolned to the rest
- of the system, and (7) capable of maintaining all the above. properties after
A
accumulated neutron doses of 1023 neutrons/cm . Graphite 1s the preferred
material for the core, and the Grade CGB graphite used in the MSRE satis-
fies most of the stated requirements. The main additional requirements.
Nh
®
are that we develop the technology for producing tubular shapes of a com-
parable material with slightly improved gas permeability and then demon—
strate that this material will retain its integrity to neutron doses of
1023 neutrons/cm®. Tubes of the desired quality can be produced in the
near future. .Available data on the radiation damage of graphite to doses'
of 2 to 3 X 1022 neutrons/cm? indicate that the material is capable-of the
anticipated doses. , : o
| The rest of the system — the core vessel, heataexchahgers, and piping -
- will see & considerably lower neutron flux. The requiremeats of.a‘material
~ for this application include (1) resistance to corrosion by fluoride salts,
(2) compatibility with'the core material (3) capable of(being fabricated
into complicated shapes by conventional processes such as rolling, forging,
and welding, (4) good mechanical strength and ductility at temperatures over
the expected service range of lOO to 1300°F, and (5) capable of maintaining-
¥
1p, R. Kasten, E. S. Bettis, and R. C. Robertson,~Design Studies of i~
1000-Mw(e) Molten-Salt Breeder Reactor, ORNL-3996 (August 1966) A g{
4 c -
oo,
) (n! .
“reasonable strength and ductility after eXposure to a neutron environment.
Hastelloy N satlsfies most of these requirements This alloy was developed
- at the Oak Ridge National Laboratory specifically for. use in molten-salt
lsystems.' HOWever, our experlences w1th this alloy in the MSRE indicate
~that 1t has at least two disadvsntages: 8 propensity_forxweld cracking
and severe reduction of high-temperature ductility after irradiation. The
- first problem can be solved by using vacuum-melted material, but slight
changes in the alloy comp051tion will be necessary to minimize the radia-
tion damage problem, We have found that a slightly modified alloy con- -
taining O 5wt % Ti has good weldability and reasonable resistance to
radiation damsge - _
This report presents the present stste of knowledge of these two
'materials, graphite and Hastelloy'N, as they affect an MSBR. The first
section discusses Hastelloy N and the second discusses graphlte The
final section briefly presents the program requlred to extend the develOp-
ment of these materials to_s stage where they may be used in the MSBER
Wnilke considerable development and testing must be accomplished to pro-
vide the aSSured.performance'necessary for a resctor_system, it appears
that adequate materials can'be'obtsined for a molten-salt breeder reactor.
STATUS OF THE DEVELOFMENT OF HASTELLOY N
JGeneral\PrOperties
'3 During the early stages of the Aircraft Nuclear Propulsion Program,
'.msny metals and’ alloys were: screened to determine their re81stance to.
';,f'molten fluorides. Primsrlly on' the. basis of these reSults, ‘the nickel—'
'r,molybdenum system was selected as the most: promising for additlonal study.
A molybdenum concentration range of 15 to 20% was selected since this
Vylelded s1ngle-phase alloys with their inherent metallurgical stability
—:varlous other alloying additiOns were studied in order to 1mprove the
| ';mechanical prOperties and cxidation resistance of the basic binary alloy.
The Hastelloy N alloy reSulted from this program and was used for the MSRE.
The chemical comp081t10n is 11sted in Table l
Hastelloy N is a nickel-base alloy that is solution strengthened with
| molybdenum and has an optimized chromium content to max1m1ze oxidation
Table 1. Chemical Composition Requirements for the
Nickel-Molybdenum-Chromium Alloy Hastelloy N
Element S L o Wfi'%(é) -
Nickel T . bal
Molybdemum - 15.00-18.00
Chromwm . 6.008.00
~ Iron [ - 5.00
Carbon o o _tn‘ - 0.04-0.08
Mangenese o SR _-'i;r: ©.L00
Silicon - , - ~ - 1.00
Tungsten o o Lo e 0.50 -
Aluminum + titenium o Q.50”
~ Copper B . S 0.35 -
Cobalt | | o 0.20
~ Phosphorus D — - 0.015
Sulfur - - | - 0.020
Boron . | o . 0.010
Others, total . o S 0.50
Single values are maximum percentages unless other-
wise specified
resistance and to minimize corrosion by fluoride salts. The chemistry |
has been controlled to preclude aging embrittlement. The aluminum, -
titanium, and carbon contents are limited to minimize severe fabrication
and corrosion problems, and the boron content is limited to prevent weld
,cracking. Iron is included to allow more choice of starting materials
for melting. The extreme examples of permissible combinations of elements
'allowed by the chemistry specification were studied, and in no case did.
any undesirable brittle phases develop. Carbides of the form Mé305 and
M¢C exist in the alloy and are stable to at least 1800°F.
The MSRE was constructed using conventional practices (comparable to
those used for a stainless steel system) and from material obtained from
commercial vendors. The major materials problem encountered was one of
weld cracking, which was eventually overcome by slight changes in melting
-
" L)‘
S )
&) o,
qt) (“;'
'__ '”practice and by strict quality control of the material 'Heats of material
subaect to weld cracklng were 1dentif1ed and thereby eliminated by means
. of a special weld—cracking test that was included as a part of the
| Specifications
Physical Properties
Several phy51cal properties of Hastelloy N are llsted in Table 2.
Specific heat, electrical re51stiv1ty, and thermal conductiv1ty data all
»show inflections with respect to temperature at l200°F This is thought
to be due to an order-disorder reaction, however, no changes in mechanical
v
pr0pert1es are detectable as a result of this reaction. -
Mechanical Properties
The composition and the fabrication procedure for Hastelloy N have been
optimized with resPect to. resistance to salt corrosion, ox1dation resistance,
and freedom from embrittling aging reactions. The strength of the alloy
is greater than the austenltic stainless steels and comparable with the
stronger alloys of the "Hastelloy type." |
‘Design data for this alloy were established by performing mechanical
prOperty tests on experimental heats of commercial size. Data from this
study were reviewed by the. ASME Boller and Pressure Vessel Code Committee
and Code approval wa.s obtained under Case 1315 for Unfired Pressure Vessel
construction and Case 1345 for Nuclear Vessel constructlon.l The recognized
-~ allowable stresses are tabulated 1n Table 3. The" commercial heats used
for MSRE construction exhibited strengths equal to or greater than the
- experimental heats...
"fTEn31le Properties3
Tensile tests were performed on the experimental heats and Spec1fica—
tlcns were thereby established for the commercial heats. Flgure l is a
2R 'W. Swindeman, The Mechanical Propertles of INOR-S ORNL-2780
(Jan. 10, 1961).
2. T. Venard, Ten511e and Creep Properties of INOR- 8 for the Molten-_
'_Salt Reactor Experiment ORNL—TM*1017 (February 1965)
Table 2. Ifhyaicnl Properties at Va:bims Temperatures |
Flectrical | ' Cosfficient of Thermsl Modulus of
Temperature Density Resiptivity . Thermal Conductivity Specific Heat Expansion Flasticity
(°F) (a/em®) (1b/1in.?) (uohm-cm) (v em™t °C”1) (Btu ™ nr™t °F°Y) (Btu Wt 7Y (°F)-2 . (1b/4n,2)
| _ % 10~8 x 108
75-85 g.93 0.320 120.5 ”
1300 : ' 126.0
‘340 ' 0.098
572 : : : 0.109 .
1000 ‘ _ _ 0 0,115
212-1752 , R , Lo . 7.0
752-1112 ‘ : o , ' C 8.4
1112-1832 ' ‘ Lo ' - 9.9
212-1832 S 8.6
300 0.12 6.94
75 0.14 8.21
825 0.16 9.25
985 0.18 10.40
1165 0.20 - 11,56
1475 - 0.24 13.87 o
55 ‘ 31.5
425 - 29,0
925 . . 27.0 -
1075 -~ 26.3
ns 26.0
1300 ! 2408 -
1475 23.7
1575 2.7
1750 20.7
. 1825 19.1
- 1925 A7
P Cs _ o ¢ Vo
O,
“C"
13 I
a’)
"Table 3. Msx1mum.Allowable Stresses for Hastelloy N Reported
~ Dby ASME Boiler and Pressure Vessel Code
Maximum Allowable Stress, psi
Temperature
(°F) | "~ Material Other Cmso
. : - than Bolting Boltrng
100 S 25,000 ' 10,000
200 | o 24,000 | o 9,300
300 | ' 23,000 8,600
400 o | - 21,000 ' 8,000
500 A - 20,000 7,700
600 o 20,000 7,500
700 EEE 19,000 | 7,200
800 | 18,000 7,000
900 18,000 - - 6,800
1000 - 17,000 | 6,600
1100 ' 13,000 | 6,000
1200 . - - 6,000 ' | 6,000
1300 o 3,500 3,500
- ) OfiNL-_-Dfi’G 64-4414R2
o ' TEMPERATURE (°C) - ' |
O 100 200 300 400 SO0 €600 700 800 900 1000
140 1T TT- T T 1771 1T T1 T
420
SCATTER BAND FOR-
EXPERIMENTAL HEATS
100
o
o
D
Q
. WEAT 5075 / -
‘ '4PARALLEL TO R. o.‘ : //
- ®NORMAL TO R.D. - - _ - %
HEAT 5081 - R | 8
e PARALLEL TO R.D. RREEN . e
vNORMAL. TO R.O..
H
O
TENSILE STRENGTH (1000 psi)
L o0 b
O 200 400 600 8OO 1000 1200 4400 1600 1800
TEMPERATURE. (°F) '
Fig. 1. Tensile Strength at Various Temperatures of Hastelloy N.
\
summary of the ultimate strengths at temperatures from ambient to 1800°
for both types of material. Similar data on the 0. 2% offset yield strength
are shown in Fig. 2. The values for fracture ductility are presented in
Fig. 3. In all cases, the values for the commercial heats were well within
the band obtained from the experimental heats. The values from both the
.longitudinal and transverse specimens are comparable, show1ng no anisotropy
effects. Metallographic data indicate that the heats with low carbon, and |
consequently large grain size, tend to exhibit the lower strengths,
Tensile tests of notched sPecimenS‘were performed using a'notch o
radius of 0.005 in. The notched-to-unnotched strength ratios varied from
1.07 to 1.38 at test temperatures from ambient to 1500°F o |
, ORNL-DWG 64-4415R2
' , TEMPERAT_URE {°C) _ , '
-0 100 200 300 400 S00 €00 700 800 900 {000
0 7 | | 11 T | I
60
S0
/SCATTER BAND FOR
/ EXPER!MENTAL HEATS
. é%fi/%
Z
20 ' e — 1 4.
HEAT 5075 |
' 4 PARALLEL/TO R.D.
¢ NORMAL TO R.D.
10 I HEAT S081
s PARALLEL TO R,D.
vNORMAL TO R.D.
0 1 I - : . '
‘0 200 400 600 8OO 1000 {200 4400 1600 4800
: TEMPERATURE °F) e
0.2% YIELD STRENGTH (1000 psi)
Fig. 2. Yield Strength Values for Hastelloy N.
»
“C”
"
“»
‘-J)
. " ORNL-DWG €4-4416R2
o : : TEMPERATURE ey o
O 100 200 - 300 400 500 600 700 800 900 1000
T 1 I I T 1 ol
: : __SCATTER BAND FOR |
EXPERIMENTAL‘ HEATS
- 70
60
\\\\\\\‘_‘
N
&
.
i i/%//// / /;
8.
\\\\\\
i
X
N
N
-~
\\
&\
\
o PARALLEL TO R. D
v NORMAL -TO- R.D. "
0 1 ‘[, — 1 '