-
Notifications
You must be signed in to change notification settings - Fork 10
/
ORNL-TM-6474.txt
6359 lines (4076 loc) · 162 KB
/
ORNL-TM-6474.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"
TR
a® o
£Fa cm.n
B M
T e &
- A . S Y i 2
vy Fomm " - f
- & [ oy & 2 :
Do o s T, 3
f— O3 7T e 3
V.
.
W
L.
1.
J.
ER‘JI!
.Vnr
e ki,
SRS
vf..(.@
o
i
el
Y
X
>
a% M.,.vfl
A S
,fi,?tw
S
S
T
2
i
Lol
o
i
:,‘\*1}. 9
o
v
L.;,f
Wy 3
ol T AR S R T R owey
0
i
2
2
VT
e
S 5
G WM%WM
= oy
e D
SEOy AT Y
eaiEl i nn
am e
mmr e e rrr————
ORNL/TM~6474
Dist. Categories UC-79b,-c
Contract No. W-7405-eng-26
METALS AND CERAMICS DIVISION
CHEMICAL TECHNOLOGY DIVISION
HEALTH AND ENVIRONMENTAL SAFETY DIVISION
ENVIRONMENTAL ASSESSMENT OF ALTERNATE FBR FUELS: RADIOLOGICAL
ASSESSMENT OF AIRBORNE RELEASES FROM
THORIUM MINING AND MILLING
V. J. Tennery ™ H. R. Meyer »%
E. S. Bomar \ J. E. Till #¢
W. D. Bond ~7 M. G. Yalcintas ¢
L. E. Morse ¢ *
Date Published: October 1978
NOTICE This document contains information of a preliminary nature.
1t is subject to revision or correction and therefore does not represent a
final report.
OAK RIDGE HATTONAL LABORATORY
Dak Ridge, Tennessee 37830
cperated by
UNION CARBIDE CORFORATION
for the
DEPARTMENT OF ENERGY
CONTENTS
LIST OF FIGURES . . & ¢ v ¢ o o 4 o o o s s o « s =
LIST OF TABLES » - - - * . * - - . . - - > . -
ABSTRACT & v v v ¢ o & o o « o o & o « o o o =
1.
2.
INTRODUCTION + & ¢ o & @ o o o o o o 2 o o o o
FACILITY SITING, METEOROLOGY, AND POPULATION
CHARACTERISTICS PERTAINING TO THORIUM ORE DEPOSITS
2.1 U.S. Thorium Deposits . . « . « ¢« « « + &
2.2 GSites Selected for Analysis . . . . . . .
2.3 Characteristics of Deposits in the Lemhi
Pass District o o« o « ¢ & ¢ o o o o « «
Population Distribution . . . . . . . . .
Meteorological Data . . . . . « . . « . .
References . ¢« ¢ o o o « o o o &+ o o« o &
-
NN
Ch U b~
DESCRIPTION OF MODEL MINE AND MILL . . . .
3.1 Facility Description . . . « ¢« « ¢« ¢ + &
3.2 Thorium Mining . . +« + & o ¢ ¢ o « o 4 &
3.3 Thorium Milling and Refining . . . . .
3.3.1 Introduction . . . . « . . . . .
The ore storage pile . . . . . .
Ore preparation « . « « +« + « .
Sulfuric acid leaching . . . . .
Countercurrent decantation . . .
Amine solvent extraction . . . .
Stripping « « ¢« o o 4o ¢ 6o e 4 s
Steam distillation . . . . . . .
Filtrationm . . . . . . . . . . .
0 Thorium refining . . . . . . . .
3.3.11 The tailings pond . . . . . . .
3.4 References .« o« o« o o 2 o o o o 4 o o o
» . . - - £
- . . »
w L wwiwiwwww
*
W W wwWwiwwww
H WO~V P WD
GENERATION OF SOURCE TERMS . . . .« + « & + .« .
4.1 Mining .« ¢ o« o ¢« ¢ 4 s e e s e a4 e e .
4,1.1 Radon-220 . . + . &« ¢« v s 4+ & o
4.1.2 Fugitive dust . . . . + + . . . .
4.2 MI1lIng . & ¢ 4 4 v e e e e e e e e e e s
4.2.1 Introduction . « + ¢ v 4 4 ¢ v 4 . . .
4.2.2 The ore stockpile . . . . . . . . . .
4.2.3 Dry crushing and sizing . . . . . . . .
4.2.4 Acid leaching of ore . . . . . . . .
4,2.5 Other mill operations . . . . . . . . .
4.2.6 Thorium refining . . . . . ¢« « + « . .
4.2.7 Source terms for the tailings impoundment
4,3 References .« v v 4 ¢ v v 4 e v 4w e 4 .
iii
*
Page
vi
oo~
10
11
11
16
20
20
23
23
23
26
26
26
27
27
27
28
28
28
29
31
32
32
32
32
34
34
36
38
38
39
39
40
47
5. RADIOLOGTCAL ASSESSMENT METHODOLOGY . . + « o« o « o & & «
5.1
5.2
Additional Assumplbions . + ¢« + + o ¢ « o 4 ¢ 4 0 0
References « v o« o o o o o o o o o s s « s s o o & o
6. ANALYSIS OF RADIOLOGICAL IMPACT . . . « +« + « « + & &
6.1
oo
0N
6.
6.
oy i
Maximum Individual Doses . . .« .« « « ¢ « ¢« ¢ « o & + &
Population DosSes .+ « + ¢« ¢ o ¢ ¢ o « o o o o+ 0 s e .
Dose Commitments Following Plant Shutdown . . . . . .
Impact of Mine~and Mill-Generated 220Rp on
Populations Outside the 50-mile Radius . . . . . . . .
DiSCUSSiOD - - - - . . - - . * - . - . . » - . . - . -
RefeTenCes v o o » o o o o o s o o s o o o o o &«
RECOMMENDATIONS FOR FUTURE WORK . . . . .+ « ¢ « « ¢« & o« « « &
ACKNOWLEDGMENTS . & v 4 ¢« o o o o o o &+ o s s o o o « o s s o &
Appendix 1. SUMMARIES OF METEOROLOGICAL DATA . . . . . . . .
Appendix 2. DIFFUSION EQUATION USED FOR THE ESTIMATION OF
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
RADON"'Z 20 EMISSIONS . . . . . . . . . . . . . . .
3. RADON-220 RELEASE FROM THE OPEN-PIT THORIUM
MINE . & ¢ & o o « o o o o o o o o o o s o o« o o
4, RADIOACTIVITY CONTAINED IN DUST GENERATED BY
MINING OPERATIONS . . . . « « o ¢« o v « o 4 .
5. ORIGIN CODE CALCULATIONS OF RADIONUCLIDES iIN
EQUILIBRIUM WITH THORIUM IN THE ORE AND IN THE
MILL TAILINGS . . .+ &« o ¢« ¢ o &+ o o o o+ &
6. MODEL TAILINGS IMPOUNDMENT . . . . + « +« « o« « + &
7. CALCULATION OF AREAS FOR DRY TATILINGS BEACH AND
POND DURING THE 20-YEAR OPERATION OF THE MILL .
8., EVAPORATION OF THE TAILING POND AFTER MILL CLOSING
AND EXPOSURE OF DRY TATILINGS SURFACE . . . . . . .
9. RADON-220 FLUX FROM THE DRY TAILINGS AND FROM THE
POND SURFACE . . v & ¢ v 4« 6 v & o 4 o o o o « o &
iv
53
54
56
56
58
60
64
66
68
69
70
Al-1
A2-1
A3-1
Ab4-1
A5-1
Ab-1
A7-1
Figure
2.1
2.2
3.1
3.3
3.4
3.5
5.1
6.1
A.6.1
LIST OF FIGURES
Thorium resources in the United States . .
Topographical map of Lemhi Pass district of
Idaho and Montana . . . o « + « o o o & + &
Identified vein deposits of thorium ore in the
vicinity of the Lemhi Pass . . . . . . . . .
Typical features of open-pit mine . . . . .
Artist's rendition of ore-treatment mill . .
Conceptual thorium milling. Flow diagram
Conceptual thorium milling. Flow diagram
Exposure pathways toman . . . . +« . . . . .
Thorium—232 decay chain . . . « . « + « .« .
Cross section of the natural wedge-shaped basin
22
22
23
24
25
50
63
A6-3
Table
2.1(a)
2.1(b)
2.2
2.3
3.1
4.1
b,2
4.3
b.b
4.5
4.6
4.7
4.8
4.9
LIST OF TABLES
Page
Vein thorium deposits — United States . . . . . « + « « . 6
Other thorium deposits -~ United States . . . . . « . . . 7
Population data for Lemhi Pass thorium resource site
region — 1970 census informatiomn . . . « . . . « .+ o . . 12
Population data for Wet Mountains thorium resource
site region — 1970 census information . . . . . . . . . . 12
Characteristics of the open-pit thorium mine and the
model thorium mill and refinery . . . . « « « ¢ « « + + & 21
Mass and volume flow rates for principal process streams
of the model mill and refinery . « ¢« ¢ o ¢ + « o« & « o . 25
Radioactivity contained in dust generated by wmining
OpPerations .+ « ¢ 4 ¢ ¢ e e 0 4 e e 4 e s e e e e e e e e 33
Estimated source terms for operation and closing of
the model nlill - . . . . - . - . - * - * . - * * - . - . 35
Values of concentrations of radionuclides in thorite
ore and in dry mill tailings that were employed in
calculation for 20-year mill operation . . . . . . . . . 35
Estimation of areas of the dry tailings beach and pond
during mill operation for the hypothetical Montana and
Colorado 1locations « « v v o o ¢ o « o« o o o & 0 e . e s 41
Estimation of areas of dry beach and pond as a function
of time after closing down mill operations at the
hypothetical Montana and Colorado locations . . . . . . . 42
Source terms for 220gg during will operating life and
during final evaporation of the pond and covering of
the dry tailings after the mill is closed . . . . . . . . 43
Wind velocities and particle size distribution used in
saltation model calculation . « . « « « ¢« o ¢ « + « « . 45
Calculated suspension rates as a function of wind
velocity, using the saltation model . . . . . . . . . . . 45
Suspension rates weighted for wind velocity
distribution - . . - . - . - * - . - . . - . - - - - . - 46
vi
Table Page
5.1 Dose conversion factors for total body, bone, and
lungs for radionuclides in the 232Th decay chain . . . . 52
6.1 Maximum individual 50-year dose commitment to total
body and various organs from radiocactivity released
to the atmosphere during one year of facility
operatiom . 4 v 4 i e h i s s e e e e e e e e e e e e 56
6.2 Radionuclide contributors to the dose commitment to
various organs for maximally exposed individual . . . . 57
6.3 Contribution of exposure pathways to dose commitment
to total body, bone, and lungs for maximally exposed
individual . . ¢ v L e e e s e s e e e e e s e e e e e s 58
6.4 Population dose commitment to total body and various
organs from radioactivity released to the atmosphere
during one year of facility operation . . . . . . . . . 39
6.5 Radionuclide contributions to the population dose
commitment to VATious OYELANS + « o ¢ » o o o s o s o s+ 59
6.6 Contribution of exposure pathways to population dose
commitment to total body, bone, and lungs . . . . . . . 60
6.7 Maximum individual 50-vyear dose commitments to total
body and various organs from radioactivity released
to the atmosphere during the first vear after facility
Shutdowll L ] » . - . ® o & - 3 o * > . . - » - a * . - a » 61
6.8 Radionuclide contributors to the dose commitments
to various organs for individuals exposed during the
first year after facility shutdown . . . . « « ¢« ¢« + « . 61
6.9 Contribution of exposure pathways to the dose
commitment to total body, bone, and lungs for
individuals exposed during the first year after
facility shutdown - . . * » * - - . » - - . . L - . . - 62
6.10 Population dose commitments to total body and wvarious
organs from radicactivity released to the atmosphere
during the first year after facility shutdown . . . . . 62
6.11 Radionuclide contributors to the population dose
commitment to various organs for exposures during
the first year after facility shutdown . . . . . . . . . 63
A.5.1 Calculated values of radionuclide activities and
masses in equilibrium with 1 g of thorium (by
ORIGEN COAE) v « v v o v v v v o o 4 & o v e e v v v o . A5-3
vii
Table Page
A.5.1 Calculated values of radionuclide activities and
masses in equilibrium with 1 g of thorium (by
ORIGEN code) v v ¢« o o o o « o o o o o o o o o o o o « = AS5-3
A.5.2 Activity of tailings left from the extraction of
1 g of thorium: 917% extraction {(from ORIGEN
code calculations) -+ « « + « s e o 4 4 e e e e 4 e s e e AS5-4
A.6.1 Relationship of triangular areas and sides to the
dam height (d.h) . . . . . . . . . . . . . . . . * . . . A6""4
A.6.2 Characteristics of model tailings pile . . + + + « + .+ . Ab~5
A.7.1 Constants used in Bond-Godbee equation and the
calculated steady-state volume cf the tailings
pOfld - . . . . . - . . . - . . . . . . . . . . » . . - . A7—5
A.7.2 Calculated values of the minimum water addition rate
required to keep tailings under water over the
20-year life of mill . . .« « ¢ &« v & & ¢ ¢« ¢ o 4 o . . A7-5
A.7.3 Change in volume of pond (V_) with time as a result
of evaporation . . . . . . . A7-6
A.7.4 Evaporation surface area of tailings pond (A.) and
values of AC used to calculate area of tailings
underneath the pond . ¢« ¢ v ¢ v « ¢ ¢ e« t e s e 0 . A7-6
A.7.5 Calculated values for the area of tailings covered
by water and of the dry tailings beach . . . . . . . . . A7-7
A.8.1 Volume of liquid in the tailings pond (V.) as a
function of elapsed time after closing the thorium
mill - . . . . . . . . - . . - . . - . . - . . - . . . . A8—3
viii
ENVIRONMENTAL ASSESSMENT OF ALTERNATE FBR FUELS: RADIOCLOGICAL
ASSESSMENT OF AIRBORNE RELEASES FROM THORIUM MINING AND MILLING*
V. J. Tennery't H., R. Meyer®
E. S. Bomar® J. E. Ti118/
W. D. Bond¥ , M. G. Yalcintas?
L. E. Morse
ABSTRACT
A radiological environmental assessment was performed for
airborne releases from a thorium mining and milling facility
based on site-specific analyses for known vein-type U.S. thorium
ore deposits, using proximate meterological data for the geo-
graphical region where these deposits are located. The assess-
ment was done for a conceptual open-pit thorium mine plus a mill
having a throughput rate of 1.5 Gg (1600 metric tons/day). The
thorium ore was assumed to have an average ThO, equivalent content
of 0.5%4. The mill facility consisted of a mill and refinery
whose product was reactor—-grade thorium nitrate tetrahydrate.
Several assumptions were necessary in order to conduct this
analysis due to scarcity of data specific to erosion and dusting
of thorium ore storage piles and a thorium mill-derived tailings
beach.
Radiological dose commitments were calculated for airborne
effluents from the mine and mill facility, using the AIRDOS-II
code. The 50-year dose commitment to the maximally exposed
individual and to the population, as shown by the 1970 census,
living within 50 miles of the operation site was estimated for
both Lemhi Pass, Idaho, and Wet Mountains, Colorado, sites.
Principal airborne radionuclides which contribute to the popu-
lation dose commitment for either site are 228Ra and 220Rrn plus
the daughters of 2ZPRrp. Total-body dose commitments to the
maximally exposed individual for one year of facility operation
for the Lemhi Pass and Wet Mountains sites are V2.4 and 3.5
millirems respectively. Population dose commitments to total
body for the Lemhi Pasz and Wet Mountains sites are 0.05 and 0.3
man-rem respectively. Tor both sites and both types of dose
commitment, inhalation and ingestion are the largest pathway con-
tributors to the dose. Several operations for thorium ore mining
and milling were identified during this assessment for which the
data base required for radionuclide source term generation was
%
Work performed under DOE/RRT 189a OH107/1488, "Environmental
Assessment of Advanced FBR Fuels."
+Metals and Ceramics Division.
&
Chemical Technology Division.
§Health and Safety Research Division.
Consultant.
either small or nonexistent. For operations where the data
base was judged insufficient for generation of at least a
first-approximation source term, data appropriate to the
similar operation for uranium mining or milling were used as
the basis for the source term. Areas where data needs are
greatest include (1) quantitative wvalues of emanation factors
and diffusion coefficients for %20Rn for thorium ore materials,
(2) fugitive dust generation rates from mine activities and
thorium ore piles, (3) release rates of 220Rpn from thorium
ores under various storage conditions, (4) release rates of
220Rn from thorium ores for various milling process treat-
ments, (5) properties of soils in mountainous locations of
vein-type thorium deposits to determine their suitability for
construction of tailings ponds and retention of radioactive
species contained in the mill tailings, and (6) site-specific
meteorvlogy appropriate to prime candidate sites for thorium
mines and mills.
1. INTRODUCTION
The thorium-—uranium nuclear fuel cycle is being studied in several
programs in the United States in order to better identify the nuclear
weapons proliferation resistance of this cycle compared with that of
the uranium-plutonium cycle. Another important feature of any fuel
cycle considered for commercialization is the radiological impact of the
cycle on the population. The impact derives from several sources,
including contributions from ore mining and milling, fuel fabricatioua,
reactor operation, transportation, fuel reprocessing, and fuel refabri-
cation,
This report describes the results of a radiological analysis of the
impact of thorium ore mining and milling from vein deposits at two
specific sites, one in the Lemhi Pass district of Idaho and Montana and
the other in the Wet Mouantains of Colorado. Mining of vein-type deposits
was analyzed because they are of the highest grade, and it is estimated
that as much as 407 of United States thorium reserves reside in such
deposits.
Compositional data for the known vein-type thorium ore deposits plus
the local topography of the region were employed in establishing details
of a model mine capable of providing 1.6 Gg (1600 metric tons) of ore
per day plus a mill of equivalent throughput capacity. This plant is
considered to be of reasonable size for such a mining endeavor.
This analysis differs in certain respects from a related and recently
published study of thorium mining and milling reported in ERDA 1541 con~
cerning the Light-~Water Breeder Reactor Program. In the current work,
recently improved assessment codes were employed and two site-specific
cases were analyzed. The entire mining operation was considered to be
open-pit type based on the geology of the known ore deposits at the sites.
Source terms are included based on dust from the mining, movement of ore
at the mine and mill, and ore crushing, plus the release of 220y from
the mine, ore pile, mill, and tailings pond.
The appropriate source terms‘were used along with population
density and meteorological data for the sites to estimate the population
dose commitment associated with the extraction and processing of the
thorium ore.
2, FACTLITY SITING, METEOROLOGY, AND POPULATION CHARACTERISTICS
PERTAINING TO THORIUM ORE DEPOSITS
2,1 U.S. Thorium Deposits
For the purposes of this report, it is assumed that the sources of
thorium to be considered are within the continental United States.
Thorium is found in several types of deposits in this country, including
(1) veins, (2) stream and beach placer deposits or placer deposits
incorporated in sedimentary rock, and (3) concentrations in igneous or
metamorphic rocks. The largest recoverable thorium reserves are in the
form of vein or placer deposits. Thorium dioxide resources in the
United States available at a cost of $11 to $22 per kg ($4 to $10 per
pound, 1969 dollars) are placed at approximately 600 Gg (600,000 metric
tons).?!
Monazite sands, which are primarily phosphates of the rare-earth
elements, are formed as a result of the weathering of rocks such as
granites. Running water carries the sands to locations remote from the
original rock formations to places where conditions permit the heavier
minerals to settle; this may occur in a river, or the sands may be
carried to the ocean and coastal locations. Wave action has resulted in
placer deposits of heavy minerals, such as ilmenite and wmonazite, along
some beaches on the Atlantic Coast of the United States. A few of these
deposits have been worked commercially to recover titanium-bearing
minerals with monazite as a secondary product. Large-scale working of
beach deposits in the future is unlikely, however, because of the high
populdtion density of the coastal region.
Figure 2.1 and Tables 2.1(a) and 2.1(b) present available information
concerning significant thorium resource sites in the contiguous United
States., Table 2.1(a) gives the locations, extent of sampling and observed
thorium content, physical dimension, and nearby populations for vein-
type deposits of thorium in the United States.' 1?2 Table 2.1(b)
identifies deposits of other types but which are predominately monazite
ores.13717,31-3% Ttrems A and B give the locations of placer deposits
of monazite sands: the thorium content of these deposits at Jacksonville,
ORNL-DWG 78-19R
KILOMETERS
; 0 500
} i
/ i i {
0 200 400
T~ MILES
+—_ !
i I
Fig. 2.1. Thorium resources in the United States.
Table 2.1{a}.
Vein thorium deposits — United States
Max
Max vein Thorium Population
Location County, state Latitude Longitude Num?er of vein length thickness content within 80 km Ref
(see map) (°N) (°W) samples (m) {m) (%) {1979)
i. Lemhi Pass Lemhi, iID 44,93 113.5 200+ 1.2 x 103 9 0.001-16.3 14,242 2-5
Beaver, MT
2. Diamond Lemhi, ID 45 114 9 1.7 x 102 7.5 0.02-1.71 7,364 3
Creek
3. Hall Mt. Boundary, 1D 48.99 116. 38 14 1 x 102 0.01-21 15,359 6
4, Powderhorn Gunnison, CO 38.25 107 200+ 1.1 x 103 5.5 0.01-4.3 32,192 7
5. Wet Mts. Custer, CO 38.25 105.35 400+ 1.5 x 163 i5 0.02-12.5 252,144 8,9
6. Laughlin Colfax, NM 36.75 104.25 16 2.4 x 102 5.1 0.05-0.82 27,615 2
Pk,
7. Capitan Lincoln, NM 33.5 105.78 12 46 2.4 0.01-1.12 47,668 10
Mts.
8. Gold Hill Grant, NM 33 109 2 12 0.05-0.72 39,900 2
9. Quartzite Yuma, AZ 33.75 114.25 2 15 2.4 0.027-0.27 22,613 2
10. Cotronwood Yavapai, AZ 34,75 112 1 30 i8 0.013-0.91 64,769 2
11. Monroe Seiver, UT 38. 58 112 1 7.6 15 0.18-0.29 19,868 2
Canyon
12. Mountain San Bernardino 35. 4% 115.5 18 4.9 x 102 3 0.02-4.9 30,321 11
Pass CA
13. Wausau Marathon, WI 45 89.5 20 4.6 x 102 0.5 338,408 12
Table 2.1(b).
Other thorium deposits — United States
Population
Location County, state Latitude Longitude Thorium content within 80 km Ref.
(see map) (°N) (°W) {ppm) (1970)
14. Conway Conway, NH 44,00 71.16 b4 29
15, Mineville Essex, NY 44,16 73.58 100-3800 30
16. Palmer Marquette, MI 46,5 87.5 50,000 31
17. Owl Creek Hot Spring, WY 43.48 165.50 134 30,292 13,14
18. Rowlins uplift Carbon, WY 41,78 107.13 146 13,201 13,14
19. Wind River Fremont, WY 43.5 109.5 366 31,648 13,14
20, Wind River Fremont, WY 43,5 109.6 66 31,648 13,14
21. Seminoe Natrona, WY 42,47 106.75 194-273 51,995 13,14
22, Deer Creek MT 45.2 112.5 30
23. Blue Mt. Greenlee, AZ 32.55 109.20 40 30,481 13,15
24, Dos Cabesas Cochise, AZ 32.2 109.42 19 30,098 13,15
25. Mineral Hill Lemhi, IB 45.6 114.9 13,15
26. Diamond Rim Gila, AZ 34,25 111.08 24 10,416 13,15
27. Little Big Horn Big Horn, WY 44,66 106.95
28. Bear Lodge Crook, WY 44,5 104.33 4002500 30
29. Idaho Idaho, ID 46 115 200 32
30. McCullough Mt. Clark, NV 36 116 55-283 145,059 13,15
31. Black Mts, Mohave, AZ 35.5 114.5 180-253 137,958 13,15
32. S. Peacock Mts. Mohave, AZ 35 114 37-153 137,958 13,15
33. Big Maria Mts. Riverside, CA 33.5 116 29-146 136,470 13,15
34, Marble Mts. San Bernardino, CA 35 116 75-148 136,470 13,15
35. 8t. Ffrancois Mts. St. Francois, MO 37.5 90 47 320,378 13,17
36, Idaho Batholith Boise, ID 44.0 115.90 100 32
37. Gallinas Lincoln, NM 34.15 105.63 33
3B. HWorcester Worcester, MA 42,25 71.75 300 30
A, Georgla Charlton, GA 32 81.6 <1000 34
. Florida Nassau, FL 30.2 81.3 <1000 34
C. California San Bernardino, CA 36 117 200-5000 30
D. Piedmont District VA, NC, SC, AL 32-38 78-87 [5.67%] 30
Florida; Folkston, Georgia; and on Hilton Head Island, South Carolina;3°
was estimated at 14 Gg (15,600 tons). The Folkston deposit has been
reported more recently, however, to have been exhausted.3® Basnaesite
deposits are being mined at Mountain Pass, California (item C). Two
extensive deposits are identified as item D, The western belt extends
for 1 Mu (600 miles) from eastern Virginia southwest to Alabama. It
ranges from 0.02 to 0.8 Mm (10 to 50 miles) wide with an average width
of about 0.03 Mm (20 miles). The eastern belt originates near Fredericks-
burg, Virginia, and continues for about 200 miles into North Carolina
with an average width of about 0.01 Mm (5 miles).
2.2 Sites Selected for Analysis
The most promising thorium deposits for large—scale exploitation
are thorite-bearing veins such as those located in Colorado, Idaho,
and Montana. As much as 407 of U.S. thorium reserves occur as vein
deposits.18
Reserves equal to about 100 Gg (100,000 metric tons) of
ThO, at $22 per kg ($10 per pound) or less (1969 dollars) are estimated
to be available in the Lemhi Pass district of Idaho and Montana,1 which
lies astride the Continental Divide about 16 km (10 miles) east of Tendoy,
Idaho. The Lemhi Pass is shown on the relief map19 in Fig. 2.2 between
the vertical coordinates UEO~-UEl and the horizontal coordinates 8-9.
The thorium resources of the Lemhi Pass district could supply the
requirements of a very large number of FBRs fueled with (Th, U)C and
ThC, since calculations by Caspersson et al.?0 show a core blanket
requirement of 83 to 117 Mg (83 to 117 metric tons) of thorium carbide
equivalent per 1200-MW(e) core, depending on the core and blanket
configuration. Additional vein deposits have been found in the Powder-
horn and Wet Mountains districts of Colorado.
The winters in the Lemhi Pass district are described as moderate,
and some of the deposits at the lower elevations can be worked vyear
round. In severe winters, operations may, however, be shut down for
several months.
——— =
-DWG 78-15182
: T T
. ORNL
“a
B! ‘flllifl;" T ’ A Y 'k /
Fig. 2.2. Topographical map of Lemhi Pass district of Idaho and
Montana. (Photograph of selected portions of relief maps titled Dillonm,
Montana, NL12-7, and Dubois, Idaho, NL12-10; Hubbard Co., Northbrook,
Illinois 60062.)
10
2.3 Characteristics of Deposits in the Lemhi Pass District
Information on the topography, general geology, and the nature
of the thorium-bearing deposits in the Lemhi Pass area is given in
Atomic Energy Commission reports by Sharp and Hetland and by Austin