-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
162 lines (126 loc) · 3.94 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
output: github_document
always_allow_html: true
editor_options:
markdown:
wrap: 72
chunk_output_type: console
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
message = FALSE,
warning = FALSE,
fig.retina = 2,
fig.align = 'center'
)
```
# unhcrwash
<!-- badges: start -->
[![License: CC BY
4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.14185117.svg)](https://zenodo.org/doi/10.5281/zenodo.14185117)
<!-- badges: end -->
The goal of unhcrwash is to make available data on WASH indicators in refugee camps and settlements.
## Installation
You can install the development version of unhcrwash from
[GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("openwashdata/unhcrwash")
```
```{r}
## Run the following code in console if you don't have the packages
## install.packages(c("dplyr", "knitr", "readr", "stringr", "gt", "kableExtra"))
library(dplyr)
library(knitr)
library(readr)
library(stringr)
library(gt)
library(kableExtra)
```
Alternatively, you can download the individual datasets as a CSV or XLSX
file from the table below.
```{r, echo=FALSE, message=FALSE, warning=FALSE}
extdata_path <- "https://github.com/openwashdata/unhcrwash/raw/main/inst/extdata/"
read_csv("data-raw/dictionary.csv") |>
distinct(file_name) |>
dplyr::mutate(file_name = str_remove(file_name, ".rda")) |>
dplyr::rename(dataset = file_name) |>
mutate(
CSV = paste0("[Download CSV](", extdata_path, dataset, ".csv)"),
XLSX = paste0("[Download XLSX](", extdata_path, dataset, ".xlsx)")
) |>
knitr::kable()
```
## Data
The package provides access to WASH indicators in refugee camps and settlements
```{r}
library(unhcrwash)
```
### unhcrwash
The dataset `unhcrwash` contains data about WASH indicators in refugee camps and settlements.
It has `r nrow(unhcrwash)` observations and `r ncol(unhcrwash)` variables
```{r}
unhcrwash |>
head(3) |>
gt::gt() |>
gt::as_raw_html()
```
For an overview of the variable names, see the following table.
```{r echo=FALSE, message=FALSE, warning=FALSE}
readr::read_csv("data-raw/dictionary.csv") |>
dplyr::filter(file_name == "unhcrwash.rda") |>
dplyr::select(variable_name:description) |>
knitr::kable() |>
kableExtra::kable_styling("striped") |>
kableExtra::scroll_box(height = "200px")
```
## Example
```{r}
library(unhcrwash)
# Average Water Availability by Country
unhcrwash |> dplyr::group_by(country) |>
dplyr::summarise(avg_water_avail = mean(liters_per_person_per_day, na.rm = TRUE)) |>
dplyr::arrange(desc(avg_water_avail)) |>
head(5) |>
gt::gt() |>
gt::as_raw_html()
```
```{r}
library(ggplot2)
# Toilet availability
unhcrwash |>
dplyr::mutate(year = lubridate::year(as.Date(start_date))) |> # Extract year as whole number
dplyr::filter(!is.na(year) & !is.na(persons_per_toilet)) |> # Remove missing values
dplyr::group_by(year) |>
dplyr::summarise(avg_persons_per_toilet = mean(persons_per_toilet, na.rm = TRUE)) |>
ggplot2::ggplot(aes(x = year, y = avg_persons_per_toilet)) +
ggplot2::geom_line() +
ggplot2::labs(title = "Average Persons per Toilet in Refugee Camps",
x = "Year",
y = "Average persons per toilet") +
ggplot2::theme_minimal()
```
```{r}
# Countries with highest refugee populations
unhcrwash |>
dplyr::group_by(country) |>
dplyr::summarise(total_population = sum(refugee_pop, na.rm = TRUE)) |>
dplyr::arrange(desc(total_population)) |>
head(5) |>
gt::gt() |>
gt::as_raw_html()
```
## License
Data are available as
[CC-BY](https://github.com/openwashdata/unhcrwash/blob/main/LICENSE.md).
## Citation
Please cite this package using:
```{r}
citation("unhcrwash")
```