-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmorebands.py
132 lines (118 loc) · 4.52 KB
/
morebands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# morebands.py
from __future__ import division,print_function
from numpy import *
from scipy import *
from pylab import *
from mpl_toolkits.mplot3d import Axes3D
from scipy import sparse
from scipy.linalg import expm
from scipy.sparse.linalg import eigsh
import numbers
from copy import deepcopy
import itertools
if 1: # Units. I'm wrapping this in a conditional so I can block it and collapse it in Notepad++/Geany
# MKS units:
hbar = 1.05457e-34
C = 299792458.0
eps0 = 8.85418782e-12
mu0 = 4.e-7*pi
eta0 = 377 # Impedance of free space
g = 9.81 # Earth's gravitational acceleration
M2 = 2*1.455e-25 # 2*Sr mass in kg
d00 = 461.e-9 # A typical length scale in meters (Sr transition wavelength)
d0 = d00/(2*pi) # NOTE: THIS IS THE RIGHT CHARACTERISTIC LENGTH FOR LATTICE RECOIL UNITS!
k0 = 1./d0 # Sr transition k-vector length
mu = 2.58e-29 # Sr 461 dipole strength in meter second Amperes
fSr = C/d0 # Sr 461 transition frequency in Hz = 6.503 e14
wSr = fSr*2*pi # Sr 461 transition angular frequency = 4.086 e15
f0 = hbar/(M2*d0**2) # Sr 461 characteristic frequency hbar/(2*m*d0^2) = 1.705 e3
w0 = f0*2*pi # Sr 461 characteristic angular frequency = 1.071 e4
U0 = hbar*f0 # Sr 461 characteristic energy = 1.798 e-31
E0 = U0/mu # Sr 461 characteristic electric field = 6.970 e-3
a0 = d0*f0**2 # Sr 461 characteristic acceleration = 1.340
Ug = g*d0*M2 # Sr 461 characteristic gravitational energy = 1.316 e-30 = gSr*U0
############## Sr 461 units:
wSr0 = wSr/w0 # Sr 461 frequency in 461 units = 3.814 e11
gSr = g/a0 # Gravitational acceleration in 461 units = .0295
############## Next are not "natural" but practical values
delta_typical = 5e12 # Typical (optimized) detuning for 461 nm transition (in Hz)
dtn0 = delta_typical/f0 # ... in 461 units = 2.93e9
Etyp = sqrt(2*dtn0*gSr) # Corresponding typical electric field = 2.07e5 in 461 units
if 1: # Defaults
# Default laser parameters:
sphi = pi/8 # Default angle for the lasers
sk1 = array([cos(sphi),sin(sphi)])
sk2 = array([cos(sphi),-sin(sphi)])
sk3 = array([-1.0,0.0])
sks = array([sk1,sk2,sk3]).T
sE1 = Etyp; sE2 = Etyp; sE3 = Etyp; sEs = array([sE1,sE2,sE3])
# Take a Hamiltonian H = p^2/2m + A0 cos(b0*x) + A1 cos(b1*x) + A2 cos((-b0-b1)*x)
# and an eigenmatrix v, and find the angle between v and Hv
def trans(m,lr=0,ud=0):
"""shift matrix m left/right by lr (+ is right) and up/down by ud (+ is up).
Values do not wrap around axes, and zeros are used where no value enters from m"""
M = zeros(m.shape,dtype=m.dtype)
if lr==0:
if ud==0:
M[:] = m[:]
elif ud>0:
M[:-ud,:] = m[ud:,:]
else:
M[-ud:,:] = m[:ud,:]
elif lr>0:
if ud==0:
M[:,lr:] = m[:,:-lr]
elif ud>0:
M[:-ud,lr:] = m[ud:,:-lr]
else:
M[-ud:,lr:] = m[:ud,:-lr]
else:
if ud==0:
M[:,:lr] = m[:,-lr:]
elif ud>0:
M[:-ud,:lr] = m[ud:,-lr:]
else:
M[-ud:,:lr] = m[:ud,-lr:]
return M
def operate(ham,v,q):
""" q is the quasimomentum of the MIDDLE value of eigenmatrix v """
b0,b1,b2 = [ham.b[:,i] for i in {0,1,2}]
A0,A1,A2 = [ham.A[i]/2. for i in {0,1,2}] # NOTE THE /2, which makes these amplitudes for the translation operators
N = v.shape[0]
n = (N-1)//2
m1,m0 = meshgrid(arange(-n,n+1),arange(-n,n+1))
px = m0*b0[0] + m1*b1[0] + q[0]
py = m0*b0[1] + m1*b1[1] + q[1]
P2 = px**2 + py**2
return P2*v + A0*(trans(v,ud=1)+trans(v,ud=-1)) + A1*(trans(v,lr=1)+trans(v,lr=-1)) + A2*(trans(v,1,-1)+trans(v,-1,1))
def norm(v):
return sqrt(sum(v.conj()*v))
def dot(v1,v2):
return sum(v1.conj()*v2)
def cosAngle(v1,v2):
return dot(v1,v2)/norm(v1)/norm(v2)
def eignorm(ham,v,q):
return norm(operate(ham,v,q))
def eigdot(ham,v,q):
return dot(v,operate(ham,v,q))
def eigCosAngle(ham,v,q):
return cosAngle(v,operate(ham,v,q))
def eij(n,i,j,dtype=complex):
"""Makes a unit matrix e with e_kl = delta_ij"""
E = zeros((n,n),dtype=dtype)
E[i,j]+=1
return E
def Hmatrix(ham,N,q):
"""Makes a N^2 by N^2 Hamiltonian matrix the brute force way, using 'operate' above."""
idxs = reshape(arange(N**2),(N,N),'F') # This shows how the flattening is done
H = zeros((N**2,N**2),dtype=complex)
for i in range(N**2):
il,jl = where(idxs==i) # Indices for the left matrix
il,jl = il[0],jl[0]
#vl = eij(N,il,jl) # Don't actually need this: we'll just use the indices directly
for j in range(N**2):
ir,jr = where(idxs==j) # Indices for the right matrix
ir,jr = ir[0],jr[0]
vr = eij(N,ir,jr)
H[i,j] = (operate(ham,vr,q))[il,jl] # This could equally well be accomplished with a dot product
return H