-
Notifications
You must be signed in to change notification settings - Fork 1
/
RL_controller_aslip_trajinput.py
468 lines (373 loc) · 16.6 KB
/
RL_controller_aslip_trajinput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
from cassie.cassiemujoco.cassieUDP import *
from cassie.cassiemujoco.cassiemujoco_ctypes import *
import time
import numpy as np
import torch
import pickle
import platform
from cassie.quaternion_function import *
#import signal
import atexit
import sys
import datetime
"""
We need to include the trajectory library for the right offset information, as well as the right phaselen and speed
"""
def getAllTrajectories(speeds):
trajectories = []
for i, speed in enumerate(speeds):
dirname = os.path.dirname(__file__)
traj_path = os.path.join(dirname, "cassie", "trajectory", "aslipTrajsTaskSpace", "walkCycle_{}.pkl".format(speed))
trajectories.append(CassieIKTrajectory(traj_path))
# print("Got all trajectories")
return trajectories
class CassieIKTrajectory:
def __init__(self, filepath):
with open(filepath, "rb") as f:
trajectory = pickle.load(f)
self.qpos = np.copy(trajectory["qpos"])
self.length = self.qpos.shape[0]
self.qvel = np.copy(trajectory["qvel"])
self.rpos = np.copy(trajectory["rpos"])
self.rvel = np.copy(trajectory["rvel"])
self.lpos = np.copy(trajectory["lpos"])
self.lvel = np.copy(trajectory["lvel"])
self.cpos = np.copy(trajectory["cpos"])
self.cvel = np.copy(trajectory["cvel"])
# simrate used to be 60
class TrajectoryInfo:
def __init__(self):
self.freq_adjust = 1
self.speeds = [x / 10 for x in range(0, 21)]
self.trajectories = getAllTrajectories(self.speeds)
self.num_speeds = len(self.trajectories)
self.time = 0 # number of time steps in current episode
self.phase = 0 # portion of the phase the robot is in
self.counter = 0 # number of phase cycles completed in episode
# NOTE: each trajectory in trajectories should have the same length
self.speed = self.speeds[5]
self.trajectory = self.trajectories[5]
# NOTE: a reference trajectory represents ONE phase cycle
# should be floor(len(traj) / simrate) - 1
# should be VERY cautious here because wrapping around trajectory
# badly can cause assymetrical/bad gaits
# self.phaselen = floor(self.trajectory.length / self.simrate) - 1
self.phaselen = self.trajectory.length - 1
# see include/cassiemujoco.h for meaning of these indices
self.pos_idx = [7, 8, 9, 14, 20, 21, 22, 23, 28, 34]
self.vel_idx = [6, 7, 8, 12, 18, 19, 20, 21, 25, 31]
# maybe make ref traj only send relevant idxs?
ref_pos, ref_vel = self.get_ref_state(self.phase)
self.offset = ref_pos[self.pos_idx]
self.phase_add = 1
# get the corresponding state from the reference trajectory for the current phase
def get_ref_state(self, phase=None):
if phase is None:
phase = self.phase
if phase > self.phaselen:
phase = 0
# pos = np.copy(self.trajectory.qpos[phase * self.simrate])
pos = np.copy(self.trajectory.qpos[phase])
# this is just setting the x to where it "should" be given the number
# of cycles
#pos[0] += (self.trajectory.qpos[-1, 0] - self.trajectory.qpos[0, 0]) * self.counter
pos[0] += (self.trajectory.qpos[-1, 0] - self.trajectory.qpos[0, 0]) * self.counter
# ^ should only matter for COM error calculation,
# gets dropped out of state variable for input reasons
# setting lateral distance target to 0?
# regardless of reference trajectory?
pos[1] = 0
# vel = np.copy(self.trajectory.qvel[phase * self.simrate])
vel = np.copy(self.trajectory.qvel[phase])
return pos, vel
def get_ref_ext_state(self, phase=None):
if phase is None:
phase = self.phase
if phase > self.phaselen:
phase = 0
rpos = np.copy(self.trajectory.rpos[phase])
rvel = np.copy(self.trajectory.rvel[phase])
lpos = np.copy(self.trajectory.lpos[phase])
lvel = np.copy(self.trajectory.lvel[phase])
cpos = np.copy(self.trajectory.cpos[phase])
cvel = np.copy(self.trajectory.cvel[phase])
return rpos, rvel, lpos, lvel, cpos, cvel
def update_info(self, new_speed):
self.speed = new_speed
# find closest speed in [0.0, 0.1, ... 3.0]. use this to find new trajectory
self.trajectory = self.trajectories[ (np.abs([speed_i - self.speed for speed_i in self.speeds])).argmin() ]
# new offset
ref_pos, ref_vel = self.get_ref_state(self.phase)
self.offset = ref_pos[self.pos_idx]
# phaselen
old_phaselen = self.phaselen
self.phaselen = self.trajectory.length - 1
# update phase
self.phase = int(self.phaselen * self.phase / old_phaselen)
return self.phaselen, self.offset
time_log = [] # time stamp
input_log = [] # network inputs
output_log = [] # network outputs
state_log = [] # cassie state
target_log = [] #PD target log
traj_log = [] # reference trajectory log
simrate = 60
PREFIX = "./"
# PREFIX = "/home/robot/Work/jdao_cassie-rl-testing/"
# PREFIX = "/home/robot/Desktop/Testing/jdao_cassie-rl-testing/" #Dylan's Prefix
if len(sys.argv) > 1:
filename = PREFIX + "logs/" + sys.argv[1]
else:
filename = PREFIX + "logs/" + datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d_%H:%M')
def log(sto="final"):
data = {"time": time_log, "output": output_log, "input": input_log, "state": state_log, "target": target_log, "trajectory": traj_log}
filep = open(filename + "_log" + str(sto) + ".pkl", "wb")
pickle.dump(data, filep)
filep.close()
atexit.register(log)
# Prevent latency issues by disabling multithreading in pytorch
torch.set_num_threads(1)
policy = torch.load("./trained_models/aslip_unified_10_v6.pt")
policy.eval()
max_speed = 2.0
min_speed = 0.0
max_y_speed = 0.0
min_y_speed = 0.0
# Load trajectories
traj = TrajectoryInfo()
# Initialize control structure with gains
P = np.array([100, 100, 88, 96, 50, 100, 100, 88, 96, 50])
D = np.array([10.0, 10.0, 8.0, 9.6, 5.0, 10.0, 10.0, 8.0, 9.6, 5.0])
u = pd_in_t()
for i in range(5):
u.leftLeg.motorPd.pGain[i] = P[i]
u.leftLeg.motorPd.dGain[i] = D[i]
u.rightLeg.motorPd.pGain[i] = P[i+5]
u.rightLeg.motorPd.dGain[i] = D[i+5]
act_idx = [7, 8, 9, 14, 20, 21, 22, 23, 28, 34]
pos_index = np.array([1, 2,3,4,5,6,7,8,9,14,15,16,20,21,22,23,28,29,30,34])
vel_index = np.array([0,1,2,3,4,5,6,7,8,12,13,14,18,19,20,21,25,26,27,31])
_, offset = traj.update_info(min_speed)
# offset = np.array([0.0045, 0.0, 0.4973, -1.1997, -1.5968, 0.0045, 0.0, 0.4973, -1.1997, -1.5968])
# Determine whether running in simulation or on the robot
if platform.node() == 'cassie':
cassie = CassieUdp(remote_addr='10.10.10.3', remote_port='25010',
local_addr='10.10.10.100', local_port='25011')
else:
cassie = CassieUdp() # local testing
# Connect to the simulator or robot
print('Connecting...')
y = None
while y is None:
cassie.send_pd(pd_in_t())
time.sleep(0.001)
y = cassie.recv_newest_pd()
received_data = True
print('Connected!\n')
# Record time
t = time.monotonic()
t0 = t
# Whether or not STO has been TOGGLED (i.e. it does not count the initial STO condition)
# STO = True means that STO is ON (i.e. robot is not running) and STO = False means that STO is
# OFF (i.e. robot *is* running)
sto = True
sto_count = 0
orient_add = 0
# We have multiple modes of operation
# 0: Normal operation, walking with policy
# 1: Start up, Standing Pose with variable height (no balance)
# 2: Stop Drop and hopefully not roll, Damping Mode with no P gain
operation_mode = 0
standing_height = 0.7
MAX_HEIGHT = 0.8
MIN_HEIGHT = 0.4
D_mult = 1 # Reaaaaaally bad stability problems if this is pushed higher as a multiplier
# Might be worth tuning by joint but something else if probably needed
SCHEDULE_MODE_ON = False
START_TIME, END_TIME = None, None
SPEED_SCHEDULE = [0.5, 0.8, 1.9, 0.4, 1.3, 0.5]
SPEED_HOLD_TIME = 4
SECONDS_TO_TEST = SPEED_HOLD_TIME * (len(SPEED_SCHEDULE) - 1)
while True:
# Wait until next cycle time
while time.monotonic() - t < 60/2000:
time.sleep(0.001)
t = time.monotonic()
tt = time.monotonic() - t0
# Get newest state
state = cassie.recv_newest_pd()
if state is None:
print('Missed a cycle')
continue
if platform.node() == 'cassie':
# Radio control
if abs(state.radio.channel[1]) > 0.2:
orient_add -= state.radio.channel[1] / 60.0
# Reset orientation on STO
if state.radio.channel[8] < 0:
orient_add = quaternion2euler(state.pelvis.orientation[:])[2]
# Save log files after STO toggle (skipping first STO)
if sto is False:
log(sto_count)
sto_count += 1
sto = True
# Clear out logs
time_log = [] # time stamp
input_log = [] # network inputs
output_log = [] # network outputs
state_log = [] # cassie state
target_log = [] #PD target log
else:
sto = False
# Switch the operation mode based on the toggle next to STO
if state.radio.channel[9] < -0.5: # towards operator means damping shutdown mode
operation_mode = 2 # 2
#D_mult = 5.5 + 4.5* state.radio.channel[7] # Tune with right side knob 1x-10x (went unstable really fast)
# Consider using this for some sort of p gain based
elif state.radio.channel[9] > 0.5: # away from the operator means speed schedule mode
operation_mode = 0 # 1
if not SCHEDULE_MODE_ON:
START_TIME = tt
SCHEDULE_MODE_ON = True
else: # Middle means normal walking
operation_mode = 0
SCHEDULE_MODE_ON = False
# curr_max = max_speed / 2# + (max_speed / 2)*state.radio.channel[4]
curr_max = max_speed
# speed_add = (max_speed / 2) * state.radio.channel[4]
speed_add = 0
if SCHEDULE_MODE_ON:
idx = int((tt-START_TIME) / SPEED_HOLD_TIME)
if idx > len(SPEED_SCHEDULE) - 1:
SCHEDULE_MODE_ON = False
traj.speed = max(min_speed, state.radio.channel[0] * curr_max + speed_add)
else:
traj.speed = SPEED_SCHEDULE[idx]
traj.speed = max(min_speed, traj.speed)
traj.speed = min(max_speed, traj.speed)
else:
traj.speed = max(min_speed, state.radio.channel[0] * curr_max + speed_add)
#traj.speed = min(max_speed, state.radio.channel[0] * curr_max + speed_add)
print("schedule: ", SCHEDULE_MODE_ON)
print("speed: ", traj.speed)
# phase_add = 1+state.radio.channel[5]
# env.y_speed = max(min_y_speed, -state.radio.channel[1] * max_y_speed)
# env.y_speed = min(max_y_speed, -state.radio.channel[1] * max_y_speed)
else:
# Automatically change orientation and speed
tt = time.monotonic() - t0
orient_add += math.sin(t / 8) / 400
#env.speed = 0.2
# speed = ((math.sin(tt / 2)) * max_speed)
# speed = ((math.sin(tt / 2)) * max_speed)
speed = 0.5
print("speed: ", speed)
#if env.phase % 14 == 0:
# env.speed = (random.randint(-1, 1)) / 2.0
# print(env.speed)
traj.speed = max(min_speed, speed)
traj.speed = min(max_speed, speed)
# env.y_speed = (math.sin(tt / 2)) * max_y_speed
# env.y_speed = max(min_y_speed, env.y_speed)
# env.y_speed = min(max_y_speed, env.y_speed)
#------------------------------- Normal Walking ---------------------------
if operation_mode == 0:
# Reassign because it might have been changed by the damping mode
for i in range(5):
u.leftLeg.motorPd.pGain[i] = P[i]
u.leftLeg.motorPd.dGain[i] = D[i]
u.rightLeg.motorPd.pGain[i] = P[i+5]
u.rightLeg.motorPd.dGain[i] = D[i+5]
traj.update_info(traj.speed)
clock = [np.sin(2 * np.pi * traj.phase * traj.freq_adjust / traj.phaselen), np.cos(2 * np.pi * traj.phase * traj.freq_adjust / traj.phaselen)]
quaternion = euler2quat(z=orient_add, y=0, x=0)
iquaternion = inverse_quaternion(quaternion)
new_orient = quaternion_product(iquaternion, state.pelvis.orientation[:])
if new_orient[0] < 0:
new_orient = -new_orient
new_translationalVelocity = rotate_by_quaternion(state.pelvis.translationalVelocity[:], iquaternion)
print('new_orientation: {}'.format(new_orient))
ref_pos, ref_vel = traj.get_ref_state(traj.phase)
ext_state = np.concatenate(traj.get_ref_ext_state(traj.phase))
robot_state = np.concatenate([
[state.pelvis.position[2] - state.terrain.height], # pelvis height
new_orient, # pelvis orientation
state.motor.position[:], # actuated joint positions
new_translationalVelocity[:], # pelvis translational velocity
state.pelvis.rotationalVelocity[:], # pelvis rotational velocity
state.motor.velocity[:], # actuated joint velocities
state.pelvis.translationalAcceleration[:], # pelvis translational acceleration
state.joint.position[:], # unactuated joint positions
state.joint.velocity[:] # unactuated joint velocities
])
RL_state = np.concatenate([robot_state, ext_state])
#pretending the height is always 1.0
# RL_state[0] = 1.0
actual_speed = state.pelvis.translationalVelocity[0]
print("target speed: {:.2f}\tactual speed: {:.2f}\tfreq: {}".format(traj.speed, actual_speed, traj.freq_adjust))
# Construct input vector
torch_state = torch.Tensor(RL_state)
# torch_state = shared_obs_stats.normalize(torch_state)
# Get action
action = policy.act(torch_state, True)
env_action = action.data.numpy()
# ref_action = ref_pos[act_idx]
target = env_action + traj.offset
# Send action
for i in range(5):
u.leftLeg.motorPd.pTarget[i] = target[i]
u.rightLeg.motorPd.pTarget[i] = target[i+5]
cassie.send_pd(u)
# Logging
# if sto == False:
# time_log.append(time.time())
# state_log.append(state)
# input_log.append(RL_state)
# output_log.append(env_action)
# target_log.append(target)
# traj_log.append(traj.offset)
time_log.append(time.time())
state_log.append(state)
input_log.append(RL_state)
output_log.append(env_action)
target_log.append(target)
traj_log.append(traj.offset)
#------------------------------- Start Up Standing ---------------------------
elif operation_mode == 1:
print('Startup Standing. Height = ' + str(standing_height))
#Do nothing
# Reassign with new multiplier on damping
for i in range(5):
u.leftLeg.motorPd.pGain[i] = 0.0
u.leftLeg.motorPd.dGain[i] = 0.0
u.rightLeg.motorPd.pGain[i] = 0.0
u.rightLeg.motorPd.dGain[i] = 0.0
# Send action
for i in range(5):
u.leftLeg.motorPd.pTarget[i] = 0.0
u.rightLeg.motorPd.pTarget[i] = 0.0
cassie.send_pd(u)
#------------------------------- Shutdown Damping ---------------------------
elif operation_mode == 2:
print('Shutdown Damping. Multiplier = ' + str(D_mult))
# Reassign with new multiplier on damping
for i in range(5):
u.leftLeg.motorPd.pGain[i] = 0.0
u.leftLeg.motorPd.dGain[i] = D_mult*D[i]
u.rightLeg.motorPd.pGain[i] = 0.0
u.rightLeg.motorPd.dGain[i] = D_mult*D[i+5]
# Send action
for i in range(5):
u.leftLeg.motorPd.pTarget[i] = 0.0
u.rightLeg.motorPd.pTarget[i] = 0.0
cassie.send_pd(u)
#---------------------------- Other, should not happen -----------------------
else:
print('Error, In bad operation_mode with value: ' + str(operation_mode))
# Measure delay
print('delay: {:6.1f} ms'.format((time.monotonic() - t) * 1000))
# Track phase
traj.phase += traj.phase_add
if traj.phase >= traj.phaselen:
traj.phase = 0
traj.counter += 1