-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodels.py
45 lines (40 loc) · 1.59 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPool2D, UpSampling2D
def autoencoder():
input_shape=(784,)
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=input_shape))
model.add(Dense(784, activation='sigmoid'))
return model
def deep_autoencoder():
input_shape=(784,)
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=input_shape))
model.add(Dense(64, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(784, activation='sigmoid'))
return model
def convolutional_autoencoder():
input_shape=(28,28,1)
n_channels = input_shape[-1]
model = Sequential()
model.add(Conv2D(32, (3,3), activation='relu', padding='same', input_shape=input_shape))
model.add(MaxPool2D(padding='same'))
model.add(Conv2D(16, (3,3), activation='relu', padding='same'))
model.add(MaxPool2D(padding='same'))
model.add(Conv2D(8, (3,3), activation='relu', padding='same'))
model.add(UpSampling2D())
model.add(Conv2D(16, (3,3), activation='relu', padding='same'))
model.add(UpSampling2D())
model.add(Conv2D(32, (3,3), activation='relu', padding='same'))
model.add(Conv2D(n_channels, (3,3), activation='sigmoid', padding='same'))
return model
def load_model(name):
if name=='autoencoder':
return autoencoder()
elif name=='deep_autoencoder':
return deep_autoencoder()
elif name=='convolutional_autoencoder':
return convolutional_autoencoder()
else:
raise ValueError('Unknown model name %s was given' % name)