diff --git a/book/mia.pdf b/book/mia.pdf index 5efb366..a7243d2 100644 Binary files a/book/mia.pdf and b/book/mia.pdf differ diff --git a/book/mia.tex b/book/mia.tex index 0bf561f..d584671 100644 --- a/book/mia.tex +++ b/book/mia.tex @@ -44,6 +44,13 @@ \vspace*{\fill} \newpage + +\vspace*{\fill} +\noindent +\copyright \ This work is licensed under CC BY 4.0 +% \vspace*{\fill} + + \thispagestyle{empty} @@ -683,7 +690,7 @@ \subsection{Exploiting separability} \fat{C} = \bldgr{\Phi}_1\transp \fat{T} \bldgr{\Phi}_2, $$ where $\fat{C}$ is a $M_1 \times M_2$ matrix such that $\mathrm{vec}( \fat{C} ) = \fat{c}$. -Similarly, it can be shown that $\bldgr{\Phi} \fat{w}$ can be more efficiently computed as $\bldgr{\Phi}_x \fat{W} \bldgr{\Phi}_y\transp$, with $\mathrm{vec}( \fat{W} ) = \fat{w}$. +Similarly, it can be shown that $\bldgr{\Phi} \fat{w}$ can be more efficiently computed as $\bldgr{\Phi}_1 \fat{W} \bldgr{\Phi}_2\transp$, with $\mathrm{vec}( \fat{W} ) = \fat{w}$. Therefore, the solution~\eqref{eq:coefficients}, which can be written as $$ \bldgr{\Phi}\transp @@ -1491,7 +1498,7 @@ \section{Landmark-based registration} However, this solution does not necessarily satisfy the second constraint of rotational matrices that $\det( \fat{R} ) = 1$. It is also possible\footnote{% Since $\det(\fat{A} \fat{B}) = \det(\fat{A}) \det(\fat{B})$, -we have that $\det(R) = \det(U) \det(V)$. +we have that $\det(\fat{R}) = \det(\fat{U}) \det(\fat{V})$. Furthermore, $\det(\fat{U}) \pm 1$ and $\det(\fat{V}) \pm 1$ since $\fat{U}\transp \fat{U} = \fat{I}$ and $\fat{V}\transp \fat{V} = \fat{I}$. } @@ -3975,12 +3982,15 @@ \section{Estimating the ground truth} \backmatter +\clearpage -\chaptermark{Bibliography} -\renewcommand{\sectionmark}[1]{\markright{#1}} -\sectionmark{Bibliography} - +% \chaptermark{Bibliography} +% \renewcommand{\sectionmark}[1]{\markright{#1}} +% \sectionmark{Bibliography} +\addcontentsline{toc}{chapter}{Bibliography} +% \sectionmark{References} +% \renewcommand{\sectionmark}[1]{\markright{#1}} \bibliographystyle{ieeetr} \bibliography{mia}