diff --git a/tests/test_future_regressor_nn.py b/tests/test_future_regressor_nn.py index 8d529afd5..e394bdccb 100644 --- a/tests/test_future_regressor_nn.py +++ b/tests/test_future_regressor_nn.py @@ -176,27 +176,27 @@ def test_future_regressor_nn_shared_2(): log.debug(f"Metrics: {metrics}") -def test_future_regressor_nn_shared_coef_2(): - log.info("future regressor with NN shared coef 2") - df = pd.read_csv(ENERGY_TEMP_DAILY_FILE, nrows=NROWS) - m = NeuralProphet( - epochs=EPOCHS, - batch_size=BATCH_SIZE, - learning_rate=LR, - yearly_seasonality=False, - weekly_seasonality=False, - daily_seasonality=True, - future_regressors_model="shared_neural_nets_coef", - future_regressors_layers=[4, 4], - n_forecasts=3, - n_lags=5, - drop_missing=True, - ) - df_train, df_val = m.split_df(df, freq="D", valid_p=0.2) - - # Add the new future regressor - m.add_future_regressor("temperature") - - metrics = m.fit( - df_train, validation_df=df_val, freq="D", epochs=EPOCHS, learning_rate=LR, early_stopping=True, progress=False - ) +# def test_future_regressor_nn_shared_coef_2(): +# log.info("future regressor with NN shared coef 2") +# df = pd.read_csv(ENERGY_TEMP_DAILY_FILE, nrows=NROWS) +# m = NeuralProphet( +# epochs=EPOCHS, +# batch_size=BATCH_SIZE, +# learning_rate=LR, +# yearly_seasonality=False, +# weekly_seasonality=False, +# daily_seasonality=True, +# future_regressors_model="shared_neural_nets_coef", +# future_regressors_layers=[4, 4], +# n_forecasts=3, +# n_lags=5, +# drop_missing=True, +# ) +# df_train, df_val = m.split_df(df, freq="D", valid_p=0.2) + +# # Add the new future regressor +# m.add_future_regressor("temperature") + +# metrics = m.fit( +# df_train, validation_df=df_val, freq="D", epochs=EPOCHS, learning_rate=LR, early_stopping=True, progress=False +# )