-
Notifications
You must be signed in to change notification settings - Fork 0
/
HIPredCreateModel.py
97 lines (77 loc) · 3.83 KB
/
HIPredCreateModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import pickle
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import auc, roc_curve, classification_report
from sklearn.preprocessing import StandardScaler, MinMaxScaler
import warnings
warnings.filterwarnings('ignore')
# Set background for the grid
sns.set_style('darkgrid', {"axes.facecolor": ".8"})
train = pd.read_csv('HI_Pred_Balanced_Train.csv')
test = pd.read_csv('HI_Pred_test.csv')
# Divide columns - numeric and categorical
num_feat = ['Age', 'Vintage']
cat_feat = ['Gender', 'Driving_License', 'Previously_Insured', 'Vehicle_Age_lt_1_Year', 'Vehicle_Age_gt_2_Years',
'Vehicle_Damage_Yes', 'Region_Code', 'Policy_Sales_Channel']
# Preprocessing begins
# Gender can be made as categorical - Female = 0 and Male = 1
train['Gender'] = train['Gender'].map({'Female': 0, 'Male': 1}).astype(int)
test['Gender'] = test['Gender'].map({'Female': 0, 'Male': 1}).astype(int)
# Get categorical variables - Vehicle age and Vehicle Damage; drop the first category as it is redundant
train = pd.get_dummies(train, drop_first=True)
test = pd.get_dummies(test, drop_first=True)
# Rename column names containing special characters '</>' and set their type as integer
train = train.rename(
columns={"Vehicle_Age_< 1 Year": "Vehicle_Age_lt_1_Year", "Vehicle_Age_> 2 Years": "Vehicle_Age_gt_2_Years"})
train['Vehicle_Age_lt_1_Year'] = train['Vehicle_Age_lt_1_Year'].astype('int')
train['Vehicle_Age_gt_2_Years'] = train['Vehicle_Age_gt_2_Years'].astype('int')
train['Vehicle_Damage_Yes'] = train['Vehicle_Damage_Yes'].astype('int')
test = test.rename(
columns={"Vehicle_Age_< 1 Year": "Vehicle_Age_lt_1_Year", "Vehicle_Age_> 2 Years": "Vehicle_Age_gt_2_Years"})
test['Vehicle_Age_lt_1_Year'] = test['Vehicle_Age_lt_1_Year'].astype('int')
test['Vehicle_Age_gt_2_Years'] = test['Vehicle_Age_gt_2_Years'].astype('int')
test['Vehicle_Damage_Yes'] = test['Vehicle_Damage_Yes'].astype('int')
# Drop ID column as it is not required
train = train.drop('id', axis=1)
test = test.drop('id', axis=1)
# Store all categorical columns as String
for column in cat_feat:
train[column] = train[column].astype('str')
test[column] = test[column].astype('str')
# Create the Data Model
from sklearn.model_selection import train_test_split, RandomizedSearchCV
# Get response values from Training data and then drop the column from the dataset
train_target = train['Response']
train = train.drop(['Response'], axis=1)
# Split the training data randomly into train and test subsets
x_train, x_test, y_train, y_test = train_test_split(train, train_target, random_state=0)
# Criterion - Gini : Range [0.0.5] - Tells the purity (Pure node - linked to single class)
# Entropy : Range[0,1]
random_search = {'criterion': ['entropy', 'gini'],
'max_depth': [2, 3, 4, 5, 6, 7, 10],
'min_samples_leaf': [4, 6, 8],
'min_samples_split': [5, 7, 10],
'n_estimators': [300]}
clf = RandomForestClassifier()
model = RandomizedSearchCV(estimator=clf, param_distributions=random_search, n_iter=10,
cv=4, verbose=1, random_state=101, n_jobs=-1)
model.fit(x_train, y_train)
# Testing the model now
y_pred = model.predict(x_test)
# Print classification report
print(classification_report(y_test, y_pred))
# Plot the ROC Curve
y_score = model.predict_proba(x_test)[:, 1]
fpr, tpr, _ = roc_curve(y_test, y_score)
plt.title('Random Forest ROC curve: Health Insurance')
plt.xlabel('FPR (Precision)')
plt.ylabel('TPR (Recall)')
plt.plot(fpr, tpr)
plt.plot((0, 1), ls='dashed', color='black')
plt.show()
print('Area under curve (AUC): ', auc(fpr, tpr))
# Save the model !!
filename = 'rf_bal_model.sav'
pickle.dump(model, open(filename, 'wb'))