forked from AIS-Bonn/temporal_latticenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ln.py
294 lines (238 loc) · 15.9 KB
/
train_ln.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python3.6
# debugging
#import tracemalloc
#from tracemalloc import Filter
#tracemalloc.start()
#import faulthandler # for debugging
import torch
import sys, os, argparse, time
from tqdm import tqdm
from dataloader.kitti_dataloader import *
from dataloader.parisLille_dataloader import *
from easypbr import *
from latticenet import ModelParams
from latticenet_py.lattice.lovasz_loss import LovaszSoftmax
from callbacks.callback import *
from callbacks.viewer_callback import *
from callbacks.visdom_callback import *
from callbacks.state_callback import *
from callbacks.wandb_callback import *
from callbacks.phase import *
from cfgParser import *
from pathlib import Path
from seq_lattice.models import *
class CloudReadingException(Exception):
pass
from datetime import datetime
#torch.manual_seed(0)
#torch.autograd.set_detect_anomaly(True)
torch.set_printoptions(edgeitems=3)
wandb_entity = "peerschuett"
experiment_name = "temporal_latticenet_tests"
# train_border and valid_border are integers, that define how many clouds are skipped, e.g. train_border = 6 means we start at the sixth cloud
def create_loader(dataset_name, config_parser, sequence_learning = False, shuffle = False, train_border = 0, valid_border = 0):
if(dataset_name=="semantickitti"):
train_dataset = SemanticKittiDataset(split = "train", config_parser = config_parser, sequence_learning = sequence_learning)
valid_dataset = SemanticKittiDataset(split = "valid", config_parser = config_parser, sequence_learning = sequence_learning)
elif(dataset_name=="parislille"):
train_dataset = ParisLille3DDataset(split = "train", config_parser = config_parser, sequence_learning = sequence_learning)
valid_dataset = ParisLille3DDataset(split = "valid", config_parser = config_parser, sequence_learning = sequence_learning)
else:
sys.exit("Dataset name not recognized. It is " + dataset_name)
train_sampler = list(range(len(train_dataset)))[train_border:] if train_border > 0 else None
valid_sampler = list(range(len(valid_dataset)))[valid_border:] if valid_border > 0 else None
#shuffle = False if train_border > 0 else shuffle
train_dataloader = torch.utils.data.DataLoader(train_dataset, num_workers = 8, batch_size=1, shuffle = shuffle, sampler = train_sampler)
valid_dataloader = torch.utils.data.DataLoader(valid_dataset, num_workers = 8, batch_size=1, shuffle = False, sampler = valid_sampler)
return train_dataloader, valid_dataloader, train_dataset, valid_dataset
def run(dataset_name = "semantickitti"):
cwd = os.getcwd()
if dataset_name == "semantickitti":
print("\n-------- Using SemanticKitti Dataset --------")
config_file=cwd+"/seq_config/lnn_train_semantic_kitti.cfg"
print("Config file: ", config_file)
elif(dataset_name=="parislille"):
sys.exit("Currently ParisLille3D isn't supported!")
print("\n-------- Using ParisLille3D Dataset --------")
config_file=cwd+"/seq_config/lnn_train_paris_lille.cfg"
else:
sys.exit("Dataset name not recognized. It is {}. Available options are semantickitti or parislille.".format(dataset_name) )
if not torch.cuda.is_available():
sys.exit("The GPU is not available!")
# Read the config file
config_parser = cfgParser(config_file)
model_params=ModelParams.create(config_file)
loader_params = config_parser.get_loader_vars()
label_mngr_params = config_parser.get_label_mngr_vars()
model_config = config_parser.get_model_vars()
train_config = config_parser.get_train_vars()
lattice_gpu_config = config_parser.get_lattice_gpu_vars()
loader_config = config_parser.get_loader_vars()
# Print some nice information
print("Lattice sigma: ", str(lattice_gpu_config["sigma_0"])[0:3])
print("Sequences: #scans: {}, cloud scope: {}".format((loader_config['frames_per_seq'] if model_config["sequence_learning"] else 1), loader_config['cloud_scope']))
print("Features: ", model_config["values_mode"])
if train_config["save_checkpoint"]:
Path(train_config["checkpoint_path"]).mkdir(parents=True, exist_ok=True)
print("The checkpoints will be saved to: ", str(train_config["checkpoint_path"]))
# initialize the LabelMngr and the viewer
m_ignore_index = label_mngr_params["unlabeled_idx"]
labels_file=str(label_mngr_params["labels_file"])
colorscheme_file=str(label_mngr_params["color_scheme_file"])
frequency_file=str(label_mngr_params["frequency_file_all"]) if loader_params["include_moving_classes"] else str(label_mngr_params["frequency_file"])
label_mngr=LabelMngr(labels_file, colorscheme_file, frequency_file, m_ignore_index )
if train_config["with_viewer"]:
view=Viewer.create(config_file)
# Initialize the networks model
lattice=Lattice.create(config_file, "lattice") # create Lattice
model = None
if not loader_params["include_moving_classes"] and (train_config["dataset_name"] == "semantickitti"):
model=LNN_SEQ(20, model_params, config_parser).to("cuda")
elif (train_config["dataset_name"] == "semantickitti"):
#print("Including moving classes - therefore 26 classes")
model=LNN_SEQ(26, model_params, config_parser).to("cuda")
elif not loader_params["include_moving_classes"] and (train_config["dataset_name"] == "parislille"):
model=LNN_SEQ(10, model_params, config_parser).to("cuda") # parislille has only 10 classes
elif (train_config["dataset_name"] == "parislille"):
model=LNN_SEQ(12, model_params, config_parser).to("cuda")
# Define the loss functions
loss_fn, loss=LovaszSoftmax(ignore_index=m_ignore_index), None
secondary_fn=torch.nn.NLLLoss(ignore_index=m_ignore_index) #combination of nll and dice https://arxiv.org/pdf/1809.10486.pdf
#create dataloaders for both phases
loader_train, loader_valid,_,_ = create_loader(train_config["dataset_name"], config_parser, model_config["sequence_learning"], loader_params["shuffle"],train_border=0, valid_border=0)
phases= [
Phase('train', loader_train, grad=True),
Phase('valid', loader_valid, grad=False)
]
# initialize all callbacks
cb_list = []
if(train_config["with_visdom"]):
cb_list.append(VisdomCallback(None))
if(train_config["with_viewer"]):
cb_list.append(ViewerCallback())
# # wandb.watch enables the tracking of gradients
if(train_config["with_wandb"]):
cb_list.append(WandBCallback(experiment_name,config_file,wandb_entity,model))
cb_list.append(StateCallback())
cb = CallbacksGroup(cb_list)
nr_batches_processed, nr_epochs, first_time = 0,0,True # set some parameters that track the progress
# Train/Validation loop
while True:
# which phase is currently relevant?
for phase in phases:
if (nr_epochs > train_config["training_epochs"]-1) and phase.grad:
return
cb.epoch_started(phase=phase)
cb.phase_started(phase=phase)
is_training = phase.grad
model.train(is_training)
torch.cuda.empty_cache()
pbar = tqdm(total=len(phase.loader.dataset))
loader_iter = phase.loader.__iter__()
for batch_idx, (positions_seq, values_seq, target_seq, path_seq, _) in enumerate(loader_iter):
assert positions_seq is not None, "positions_seq for batch_idx {} is None!".format(batch_idx)
for i in range(0,len(positions_seq)):
positions = positions_seq[i].squeeze(0).to("cuda")
values = values_seq[i].squeeze(0).to("cuda")
target = target_seq[i].squeeze(0).to("cuda")
assert positions.shape[0] == target.shape[0], "Position shape {} and target shape {} have to be the same in the first dimension!".format(positions.shape[0], target.shape[0])
#forward
with torch.set_grad_enabled(is_training):
early_return = (i != len(positions_seq)-1)
if i == len(positions_seq)-1:
cb.before_forward_pass(lattice=lattice) #sets the appropriate sigma for the lattice
pred_logsoftmax, pred_raw, lattice = model(lattice, positions, values, early_return, with_gradient = is_training) # lattice here is ls
#if its the first time we do a forward on the model we need to load the checkpoint
if first_time and i==len(positions_seq)-1:
first_time=False
# initialize optimizer
optimizer=torch.optim.AdamW(model.parameters(), lr=train_config["lr"], weight_decay=train_config["weight_decay"], amsgrad=True)
# initialize scheduler
if train_config["scheduler"] == "CosineAnnealingWarmRestarts":
restart_epochs = train_config["restart_epochs"]
print("Scheduler: CosineAnnealingWarmRestarts with restarts after {} epochs.".format(restart_epochs))
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=restart_epochs)
elif train_config["scheduler"] == "ReduceLROnPlateau":
print("Scheduler: ReduceLROnPlateau ")
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=10, verbose=True, factor=0.1)
else:
sys.exit("Scheduler has to be either ReduceLROnPlateau or CosineAnnealingWarmRestarts. I got {}".format(train_config["scheduler"]))
if train_config["load_checkpoint"]:
# now that all the parameters are created we can fill them with a model from a file
model_path = os.path.join(train_config["checkpoint_path"], train_config["load_checkpoint_model"])
print("Loading state dict: ", model_path)
# https://discuss.pytorch.org/t/how-to-load-part-of-pre-trained-model/1113/3 -> load all parts of the state dict that exist in the current model
model.load_state_dict(torch.load(model_path))
model.train(phase.grad)
model.reset_sequence()
lattice=Lattice.create(config_file, "lattice") #lattice has to be reset aswell
#need to rerun forward with the new parameters to get an accurate prediction
for k in range(0,len(positions_seq)):
early_return = (k != len(positions_seq)-1)
positions = positions_seq[k].squeeze(0).to("cuda")
values = values_seq[k].squeeze(0).to("cuda")
target = target_seq[k].squeeze(0).to("cuda")
pred_logsoftmax, pred_raw, lattice = model(lattice, positions, values, early_return, is_training)
# Calculate loss
if i == len(positions_seq)-1:
# we only want to calculate loss, IoU etc for the last cloud of the sequence
loss_dice = 0.5*loss_fn(pred_logsoftmax, target)
loss_ce = 0.5*secondary_fn(pred_logsoftmax, target)
loss = loss_dice + loss_ce
cloud = create_cloud(positions, target, path_seq[-1][0], label_mngr, pred_logsoftmax) # the viewer uses this cloud structure
cb.after_forward_pass(pred_softmax=pred_logsoftmax, target=target, cloud=cloud, loss=loss.item(), loss_dice=loss_dice.item(),
phase=phase, lr=optimizer.param_groups[0]["lr"], iteration = phase.iter_nr, ignore_index = m_ignore_index, nr_vertices = lattice.nr_lattice_vertices()) #visualizes the prediction
#backward
if is_training and (i == len(positions_seq)-1):
# CosineAnnealingWarmRestarts has to be changed after each iteration
if isinstance(scheduler, torch.optim.lr_scheduler.CosineAnnealingWarmRestarts):
scheduler.step(phase.epoch_nr + float(phase.samples_processed_this_epoch) / (len(phase.loader.dataset)) )
optimizer.zero_grad()
cb.before_backward_pass()
loss.backward()
cb.after_backward_pass()
optimizer.step()
# reset the hidden state and the lattice after each sequence
if (i == len(positions_seq)-1):
pbar.update(1)
model.reset_sequence()
lattice=Lattice.create(config_file, "lattice")
# End of epoch
if batch_idx == len(loader_iter)-1:
pbar.close()
# If we use ReduceLROnPlateau, we only do steps here
if not is_training: #we reduce the learning rate when the test iou plateus
if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
scheduler.step(phase.loss_acum_per_epoch) #for ReduceLROnPlateau
date_time = datetime.now().strftime("%d%m%Y_%H%M")
model_name = "{}_{}_{}_{}_sigma{}_type{}_frames{}_scope{}_epoch{}".format(date_time, "multi" if loader_config["include_moving_classes"] == True else "single", "Kitti" if dataset_name=="semantickitti" else "Paris", "Ref" if model_config["values_mode"] == "reflectance" else "xyz" ,str(lattice_gpu_config["sigma_0"])[0:3],"-".join(model_config["rnn_modules"]) if not loader_params["accumulate_clouds"] else "ACCUM",loader_params["frames_per_seq"], loader_params["cloud_scope"], nr_epochs)
if is_training and train_config["save_checkpoint"]:
check_PATH = str(train_config["checkpoint_path"]) + model_name + ".pt"
torch.save(model.state_dict(), check_PATH)
print("Saved checkpoint under: ", check_PATH)
cb.epoch_ended(phase=phase, model=model, save_checkpoint=train_config["save_checkpoint"], checkpoint_path=train_config["checkpoint_path"], name = model_name)
cb.phase_ended(phase=phase)
if train_config["with_viewer"]:
view.update()
nr_batches_processed+=1
if phase.grad:
nr_epochs += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train the network on a dataset.')
parser.add_argument('--dataset', type=str, nargs = "?", const = "semantickitti",
help='the dataset name, options are semantickitti OR parislille')
args = parser.parse_args()
if args.dataset:
run(args.dataset)
else: # when you do not give any arguments the parser just assumes you want semantickitti
run()
# This is what you would have, but the following is useful:
# # These are temporary, for debugging, so meh for programming style.
# import sys, trace
# # If there are segfaults, it's a good idea to always use stderr as it
# # always prints to the screen, so you should get as much output as
# # possible.
# sys.stdout = sys.stderr
# # Now trace execution:
# tracer = trace.Trace(trace=1, count=0, ignoredirs=["/usr", sys.prefix])
# tracer.run('main()')