forked from cmnolan/opencog-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
100 lines (93 loc) · 1.56 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#from opencog.atomspace import AtomSpace
#from attention.HebbianMining import HebbianMiningAgent
#
#h = HebbianMiningAgent()
#a = AtomSpace()
#
#h.run(a)
#a.print_list()
#from learning.bayesian_learning.network import ConditionalProbabilityTable
#
#a = ConditionalProbabilityTable()
#
#a[('A', True), ('B', False)] = 'hello'
#
#print a[('B', False), ('A', True)]
#a = {'A':True, 'B':False}
#b = {'B':False, 'A':True, a:'Kir'}
#print b[a]
#class A(object):
# def __init__(self):
# print 'in A'
#
#
#class B(A):
# def __init__(self):
# print 'in B'
#
#a = B()
#class A(object):
# ret = True
# def __lt__(self, other):
# print 'inside lt', str(self)
# return self.ret
#
# def __gt__(self, other):
# print 'inside gt', str(self)
# return self.ret
#class B(A):
# pass
#
#a, b = A(), B()
#
#if a < b > a:
# print "hi!"
#class A(object):
# def a(self):
# print 'A'
# return self
#class B(object):
# def a(self):
# print 'B'
# return self
# def b(self):
# print 'B.b'
#class C(A,B):
# pass
#
#C().a().b()
#class A(object):
# a = 'a'
# def __init__(self):
# self.a = 'b'
#
# def b(self):
# return type(self).a
#
#class B(A):
# a = 'b'
#
#a = A()
#b = B()
#print a.b()
#print b.b()
#class A(dict):
# loci = [0,1,2]
#
# @property
# def loci(self):
# return self.keys()
#
#a = A()
#print a.loci
#a['a'] = 123
#print a.loci
#a['b'] = 456
#print a.loci
#
#print A.loci
#type(a).new = 'new_var'
#print A.new
def a(a,(b,c)):
print a,b,c
a(1,(2,3))