-
Notifications
You must be signed in to change notification settings - Fork 0
/
pp_liteseg_base_stdc1_wce_0.01_1024x512.yml
71 lines (64 loc) · 1.57 KB
/
pp_liteseg_base_stdc1_wce_0.01_1024x512.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
batch_size: 4
iters: 50000 # ~ 200 epochs for 1670 training images
train_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
train_path: /home/ubuntu/dataset_paddleseg/train.txt
num_classes: 2
mode: train
transforms:
- type: Resize
target_size: [1024, 512]
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [1024, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.5
contrast_range: 0.5
saturation_range: 0.5
- type: Normalize
val_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
val_path: /home/ubuntu/dataset_paddleseg/val.txt
num_classes: 2
mode: val
transforms:
- type: Resize
target_size: [2048, 1024]
- type: Normalize
test_config:
aug_eval: True
scales: 1.0
loss:
types:
- type: CrossEntropyLoss
weight: [0.01, 0.99] # the ball pixels represent ~ 0.004 of the pixels on a 1024x512 image
- type: CrossEntropyLoss
weight: [0.01, 0.99]
- type: CrossEntropyLoss
weight: [0.01, 0.99]
coef: [1, 1, 1]
optimizer:
type: SGD
momentum: 0.9
weight_decay: 5.0e-4
lr_scheduler:
type: PolynomialDecay
warmup_iters: 1000
warmup_start_lr: 1.0e-5
learning_rate: 0.005
end_lr: 0
power: 0.9
model:
type: PPLiteSeg
num_classes: 2
backbone:
type: STDC1
pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
arm_out_chs: [32, 64, 128]
seg_head_inter_chs: [32, 64, 128]