-
Notifications
You must be signed in to change notification settings - Fork 0
/
section23.bak
133 lines (114 loc) · 3.59 KB
/
section23.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#lang sicp
; Symbolic data: work with arbitrary symbols as data
(define a 1)
(define b 2)
;(list a b)
;(list 'a 'b)
(define false #f)
(define true #t)
(define abc (list '(a b c)))
;(list '123)
;(list nil)
;(list '())
(define (memq symbol symbols)
(cond ((null? symbols) false)
((eq? symbol (car symbols)) symbols)
(else (memq symbol (cdr symbols)))))
;(memq 'apple '(x (apple sauce) y apple pear))
; 2.53
; (a b c)
; ((george))
; ((y1 y2))
; (y1 y2)
; #f
; #f
; (red shoes blue socks)
(define (list-equal? list1 list2)
(cond ((and (null? list1)
(null? list2)) true)
((or (null? list1)
(null? list2)) false)
((not (eq? (car list1)
(car list2))) false)
(else (list-equal? (cdr list1)
(cdr list2)))))
;(list-equal? '(this is a list) '(this is a list))
;(list-equal? '(this is a list) '(this (is a) list))
; 2.55
; when you quote a quote, "quote" is itself now part of the symbol.
; the first character in a quoted quote is '.
; thus, the first element, the car, is '
; taking some derivatives
; ax2 + bx + c should be derived to 2ax + b
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (make-expr-prefix op v1 v2)
(list op v1 v2))
(define (numbers? a b)
(and (number? a) (number? b)))
; sums, addition
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((numbers? a1 a2)
(+ a1 a2))
(else (make-expr-prefix '+ a1 a2))))
(define (sum? x) (and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (augend s) (caddr s))
; products multiplication
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((numbers? m1 m2) (* m1 m2))
(else (make-expr-prefix '* m1 m2))))
(define (product? x) (and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (multiplicand p) (caddr p))
(define (make-exponentiation base exponent)
(cond ((=number? base 1) 1)
((=number? exponent 1) base)
((=number? exponent 0) 1)
((numbers? base exponent)
(expt base exponent))
(else (make-expr-prefix '** base exponent))))
(define (exponentiation? x) (and (pair? x) (eq? (car x) '**)))
(define (base x) (cadr x))
(define (exponent x) (caddr x))
;(make-exponentiation 1 1)
;(make-exponentiation 2 1)
;(make-exponentiation 5 0)
;(make-exponentiation 4 3)
;(make-exponentiation 'b 1)
;(make-exponentiation 'b 2)
;(exponentiation? '(** x 1))
;(make-exponentiation 'a 3)
;(exponentiation? (make-exponentiation 'a 3))
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp) (if (same-variable? exp var) 1 0))
((sum? exp) (make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(let ((old-e (exponent exp))
(old-b (base exp)))
(make-product
(make-product old-e
(make-exponentiation old-b (make-sum old-e -1)))
(deriv old-b var))))
(else
(error "unknown expression type: DERIV" exp))))
;(deriv '(* (* x y) (+ x 3)) 'x)
;(deriv '(+ x 3) 'x)
;(deriv '(* x y) 'x)
(deriv '(** x 4) 'x)