-
Notifications
You must be signed in to change notification settings - Fork 0
/
countingsort_mhost.cu
619 lines (472 loc) · 18 KB
/
countingsort_mhost.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
// Course: High Performance Computing
// A.Y: 2021/22
// Lecturer: Francesco Moscato fmoscato@unisa.it
// Team:
// Alessio Pepe 0622701463 a.pepe108@studenti.unisa.it
// Teresa Tortorella 0622701507 t.tortorella3@studenti.unisa.it
// Paolo Mansi 0622701542 p.mansi5@studenti.unisa.it
// Copyright (C) 2021 - All Rights Reserved
// This file is part of Counting_Sort.
// Counting_Sort is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Counting_Sort is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Counting_Sort. If not, see <http://www.gnu.org/licenses/>.
/**
* @file counting_sort.c
* @author Alessio Pepe (a.pepe108@studenti.unisa.it)
* @author Paolo Mansi (p.mansi5@studenti.unisa.it)
* @author Teresa Tortorella (t.tortorella3@studenti.unisa.it)
* @version 1.0.0
* @date 2022-01-24
*
* @copyright Copyright (c) 2022
*
*/
#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <curand.h>
#include <curand_kernel.h>
#include <sys/time.h>
/**
* @brief Use start_time with an non used id to start measure time in that point of the code.
*
*/
#define STARTTIME(id) \
struct timeval start_time_##id, end_time_##id; \
gettimeofday(&start_time_##id, NULL);
/**
* @brief Use end_tipe with a previous used id to stop measure time in that point of the code.
* The value of time will be saved in x.
*
*/
#define ENDTIME(id, x) \
gettimeofday(&end_time_##id, NULL); \
x = ((end_time_##id.tv_sec - start_time_##id.tv_sec) * 1000000u + end_time_##id.tv_usec - start_time_##id.tv_usec) / 1.e6;
#define FIXED_ARRAY
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
texture <int, 1> pmfTextRef;
void cudaGetError()
{
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
printf("CUDA error: %s\n", cudaGetErrorString(err));
}
}
#define cudaCheck(status, err) \
if (status != cudaSuccess) { \
fprintf(stderr, "CUDA check failed: %s\n", err); \
cudaGetError(); \
exit(1); \
}
#define cudaStartTime(id) \
cudaEvent_t start##id, stop##id; \
cudaEventCreate(&start##id); \
cudaEventCreate(&stop##id); \
cudaEventRecord(start##id); \
#define cudaStopTime(id) \
cudaEventRecord(stop##id); \
cudaEventSynchronize(stop##id); \
#define cudaElapsedTime(id, x) \
cudaEventElapsedTime(&x, start##id, stop##id); \
cudaEventDestroy(start##id); \
cudaEventDestroy(stop##id); \
void init_rand_vector(int *A, int A_len, int min_value, int max_value)
{
#ifdef FIXED_ARRAY
srand(1256765);
#endif
for (unsigned int i = 0; i < A_len; i++)
{
A[i] = min_value + (rand() % (max_value - min_value + 1));
}
}
void printV(int *array, int len)
{
for (unsigned int i = 0; i < len; i++)
{
printf("%d ", array[i]);
}
printf("\n");
}
__global__ void max_min(int *d_max_A, int *d_min_A, int *d_data, int d_data_len)
{
extern __shared__ int arr[];
int *s_min = arr;
int *s_max = arr + blockDim.x;
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
// each thread loads one element from global to shared mem
s_min[tid] = d_data[i];
s_max[tid] = d_data[i];
__syncthreads();
// do reduction in shared mem
for (unsigned int s = blockDim.x/2; s > 0; s >>= 1)
{
if ((tid < s) && ((i + s) < d_data_len))
{
s_min[tid] = MIN(s_min[tid], s_min[tid + s]);
s_max[tid] = MAX(s_max[tid], s_max[tid + s]);
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0)
{
d_min_A[blockIdx.x] = s_min[0];
d_max_A[blockIdx.x] = s_max[0];
}
}
__global__ void max_min_red(int *d_max_A, int *d_min_A, int d_len)
{
extern __shared__ int arr[];
int *s_min = arr;
int *s_max = arr + blockDim.x;
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
// each thread loads one element from global to shared mem
s_min[tid] = d_min_A[i];
s_max[tid] = d_max_A[i];
__syncthreads();
// do reduction in shared mem
for (unsigned int s = blockDim.x/2; s > 0; s >>= 1)
{
if ((tid < s) && ((i + s) < d_len))
{
s_min[tid] = MIN(s_min[tid], s_min[tid + s]);
s_max[tid] = MAX(s_max[tid], s_max[tid + s]);
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0)
{
d_min_A[blockIdx.x] = s_min[0];
d_max_A[blockIdx.x] = s_max[0];
}
}
__global__ void pmf_count(int *d_data, int d_data_len, int *d_data_max, int *d_data_min, int *d_pmf_data)
{
// init a shared pmf array for each block
extern __shared__ int s_pmf[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
// set initial value to 0
int range = *d_data_max - *d_data_min + 1;
for (int offset = 0; offset < range; offset += blockDim.x)
{
if ((tid + offset) < range)
{
s_pmf[tid + offset] = 0;
}
}
// wait until all threads have completed the initialization process
__syncthreads();
// increment the local pdf array
if (i < d_data_len)
{
atomicAdd(&s_pmf[d_data[i] - *d_data_min], 1);
}
// wait until all threads have completed the counting process
__syncthreads();
// merge the various pdf array
for (int offset = 0; offset < range; offset += blockDim.x)
{
if ((tid + offset) < range)
{
atomicAdd(&d_pmf_data[tid + offset], s_pmf[tid + offset]);
}
}
}
__global__ void scan(int *d_pmf, int d_len)
{
extern __shared__ int scan_a[];
int i, j, tid;
tid = threadIdx.x;
j = blockIdx.x * (2 * blockDim.x) + threadIdx.x;
// Copy array in block
if (j < d_len)
{
scan_a[tid] = d_pmf[j];
}
if ((j + blockDim.x) < d_len)
{
scan_a[tid + blockDim.x] = d_pmf[j + blockDim.x];
}
__syncthreads();
// Scan
for (int stride = 1; stride <= blockDim.x; stride <<= 1)
{
i = (threadIdx.x + 1) * stride * 2 - 1;
if (i < 2 * blockDim.x)
{
scan_a[i] += scan_a[i - stride];
}
__syncthreads();
}
// Post scan
for (int stride = blockDim.x / 2; stride > 0; stride >>= 1)
{
i = (threadIdx.x + 1) * stride * 2 - 1;
if ((i + stride) < 2 * blockDim.x)
{
scan_a[i + stride] += scan_a[i];
}
__syncthreads();
}
// Copy partially cdf in the global memory
if (j < d_len)
{
d_pmf[j] = scan_a[tid];
}
if ((j + blockDim.x) < d_len)
{
d_pmf[j + blockDim.x] = scan_a[tid + blockDim.x];
}
}
__global__ void scan_red(int *d_pmf, int d_len, int stride)
{
// First block was already complete
if (blockIdx.x % 2 == 0)
{
return;
}
// Copy last element of the previous block on all block element.
int i = blockIdx.x * (stride * blockDim.x) + threadIdx.x;
int prec_sum = d_pmf[blockIdx.x * (stride * blockDim.x) - 1];
for (int j = 0; j < stride; j++)
{
if ((i + j * blockDim.x) < d_len)
{
d_pmf[i + j * blockDim.x] += prec_sum;
}
}
}
__global__ void populate(int *d_data, int *d_data_min, int *d_cdf, int d_cdf_len)
{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < d_cdf_len)
{
int start = i != 0 ? d_cdf[i-1] : 0;
for (int j = 0; j < d_cdf[i] - start; j++)
{
d_data[start + j] = *d_data_min + i;
}
}
}
__global__ void populate_text(int *d_data, int *d_data_min, int d_cdf_len)
{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < d_cdf_len)
{
int start = i != 0 ? tex1Dfetch(pmfTextRef, i-1) : 0;
for (int j = 0; j < tex1Dfetch(pmfTextRef, i) - start; j++)
{
d_data[start + j] = *d_data_min + i;
}
}
}
/**
* This GPU kernel takes an array of states, and an array of ints, and puts a random int into each
*/
__global__ void randoms(int* numbers, int len, int min, int max, int seed)
{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
// curand works like rand - except that it takes a state as a parameter
//curandState state;
if (i < len)
{
//curand_init(seed, i, 0, &state);
if (i % 3 == 0)
{
numbers[i] = min + (i * seed / blockDim.x) % (max - min + 1);
}
else if (i % 3 == 1)
{
numbers[i] = min + (i + seed / blockDim.x) % (max - min + 1);
}
else
{
numbers[i] = min + (seed / blockDim.x - i) % (max - min + 1);
}
}
}
void cuda_init_rand_vector(int gridSize, int blockSize, int *h_A, int h_len, int min, int max)
{
/* allocate an array of unsigned ints on the CPU and GPU */
int *d_A1;
cudaMalloc((void**) &d_A1, h_len * sizeof(int));
/* invoke the kernel to get some random numbers */
randoms <<<gridSize, blockSize>>> (d_A1, h_len, min, max, 2342);
/* copy the random numbers back */
cudaMemcpy(h_A, d_A1, h_len * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(d_A1);
}
// main
int main(int argc, char** argv) {
// ------------------------------------------------------
// Read parameter from argv
if (argc < 8)
{
printf("USAGE: %s len min max blockMinMAx blockPmf blockScan blockPopulate\n", argv[0]);
exit(1);
}
int min = atoi(argv[2]); // Just for generation
int max = atoi(argv[3]); // Just for generation
int h_len = atoi(argv[1]);
// Bench parameters
int blockMinMax = atoi(argv[4]);
int blockPmf = atoi(argv[5]);
int blockScan = atoi(argv[6]);
int blockPopulate = atoi(argv[7]);
// --------------- Random Array Generation --------------
int *h_A;
//h_A = (int *) malloc(h_len * sizeof(int));
cudaCheck( cudaMallocHost((void **) &h_A, h_len * sizeof(int)), "h_A allocation");
//init_rand_vector(h_A, h_len, min, max); // sequential init
cuda_init_rand_vector((int) ceilf((float) h_len / (float) blockMinMax), blockMinMax, h_A, h_len, min, max);
cudaGetError();
//printV(h_A, h_len); // Debug print
double t_algo;
STARTTIME(0);
cudaStartTime(0);
// -------------- Define block and grid size ------------
// The block size was the maximum (1024). Grid size was
// selected dinamically to cover all tha array.
dim3 blockSizeMinMax(blockMinMax);
dim3 gridSizeMinMax((int) ceilf((float) h_len / (float) blockSizeMinMax.x));
// ------------ Allocate space on cuda ------------------
// - Array
// - Array of local max and min
// - global max and min
int *d_A, *d_min_A, *d_max_A, *d_min, *d_max;
cudaCheck( cudaMalloc((void **)&d_A, h_len * sizeof(int)), "Allocation d_A" );
cudaCheck( cudaMalloc((void **)&d_min_A, gridSizeMinMax.x * sizeof(int)), "Allocation d_min_A" );
cudaCheck( cudaMalloc((void **)&d_max_A, gridSizeMinMax.x * sizeof(int)), "Allocation d_max_A" );
cudaCheck( cudaMalloc((void **)&d_min, sizeof(int)), "Allocation d_min" );
cudaCheck( cudaMalloc((void **)&d_max, sizeof(int)), "Allocation d_max" );
// ------------- Copy array to gpu ----------------------
cudaCheck( cudaMemcpy(d_A, h_A, h_len * sizeof(int), cudaMemcpyHostToDevice), "memcpy h_A to d_A");
// ------------- Max&Min Kernels ------------------------
cudaStartTime(1);
max_min <<<gridSizeMinMax, blockSizeMinMax, 2 * blockSizeMinMax.x * sizeof(int) >>> (d_max_A, d_min_A, d_A, h_len); // Now we have an array of gridSize.x local minimum
cudaGetError();
int old_grid_size;
dim3 redGridSize(gridSizeMinMax.x);
do
{
old_grid_size = redGridSize.x;
redGridSize.x = (int) ceilf((float) redGridSize.x / (float) gridSizeMinMax.x);
// printf("Running with %d, %d, %d\n", redGridSize.x, blockSizeMinMax.x, old_grid_size);
max_min_red <<<redGridSize, blockSizeMinMax, 2 * blockSizeMinMax.x * sizeof(int)>>> (d_max_A, d_min_A, old_grid_size);
cudaGetError();
}
while (redGridSize.x != 1);
cudaStopTime(1);
// ----------- DEBUG: Print max and min ---------------------
/*int *h_max_A, *h_min_A;
h_max_A = (int *) malloc( sizeof(int));
h_min_A = (int *) malloc( sizeof(int));
cudaCheck(cudaMemcpy((void *) h_min_A, (const void *)d_min_A, sizeof(int), cudaMemcpyDeviceToHost), "memcpy h_min_A");
cudaCheck(cudaMemcpy((void *) h_max_A, (const void *)d_max_A, sizeof(int), cudaMemcpyDeviceToHost), "memcpy h_max_A");
printf("Min: ");
printV(h_min_A, 1); //gridSize.x);
printf("\nMax: ");
printV(h_max_A, 1); //gridSize.x);
printf("\n");
free(h_max_A);
free(h_min_A);
// ----------------------------------------------------------*/
// -------------- Compute PMF --------------------------------
int h_max, h_min;
cudaCheck( cudaMemcpy((void *) &h_max, (const void *)d_max_A, sizeof(int), cudaMemcpyDeviceToHost), "memcpy d_max_A[0] to h_max");
cudaCheck( cudaMemcpy((void *) &h_min, (const void *)d_min_A, sizeof(int), cudaMemcpyDeviceToHost), "memcpy d_min_A[0] to h_min");
int range_size = (h_max - h_min + 1);
int *d_pmf;
cudaCheck( cudaMalloc((void **) &d_pmf, range_size * sizeof(int)), "Allocate d_pmf" );
cudaCheck( cudaMemset((void *) d_pmf, 0, range_size * sizeof(int)), "memcpy d_pmf" );
dim3 blockSizePmf(blockPmf);
dim3 gridSizePmf((int) ceilf((float) h_len / (float) blockSizePmf.x));
cudaStartTime(2);
pmf_count <<< gridSizePmf, blockSizePmf, range_size * sizeof(int) >>> (d_A, h_len, d_max_A, d_min_A, d_pmf);
cudaGetError();
cudaStopTime(2);
// ---------------- CDF calculate ------------------------
dim3 cdfBlockDim(blockScan);
dim3 cdfGridDim((int) ceilf((float) range_size / (float) cdfBlockDim.x * 2.f));
cudaStartTime(3);
scan <<< cdfGridDim, cdfBlockDim, 2 * cdfBlockDim.x * sizeof(int) >>> (d_pmf, range_size);
cudaGetError();
int new_gridDim = cdfGridDim.x;
int stride = 2;
while (new_gridDim != 1)
{
cdfGridDim.x = new_gridDim % 2 == 0 ? new_gridDim : new_gridDim - 1;
scan_red <<< cdfGridDim, cdfBlockDim >>> (d_pmf, range_size, stride);
cudaGetError();
new_gridDim = (int) ceilf((float) new_gridDim / 2.f);
stride *= 2;
}
cudaStopTime(3);
// Debug print
/*int *h_pmf;
h_pmf = (int *) malloc(range_size * sizeof(int));
cudaCheck(cudaMemcpy(h_pmf, d_pmf, range_size * sizeof(int), cudaMemcpyDeviceToHost), "memcpy d_pmf to h_pmf");
int k = 0;
while (k < range_size)
{
printV(h_pmf+k, 1024);
k+= 1024;
if (k%2048 == 0) printf("\n");
}
free(h_pmf); // */
// --------------- Populate array ------------------------
// To populate we use d_pdf in texture memory
cudaChannelFormatDesc pmfChRef = cudaCreateChannelDesc <int> ();
cudaCheck( cudaBindTexture(0, pmfTextRef, d_pmf, pmfChRef), "bindTexture d_pmf" );
dim3 populateBlockSize(blockPopulate);
dim3 populateGridSize((int) ceilf((float) range_size / (float) populateBlockSize.x));
cudaStartTime(4);
populate_text <<<populateGridSize, populateBlockSize>>> (d_A, d_min_A, /*d_pmf,*/ range_size);
cudaGetError();
cudaStopTime(4);
cudaCheck( cudaUnbindTexture(pmfTextRef), "unbind texture d_pmf" );
// --------------- Copy array to CPU ---------------------
cudaCheck( cudaMemcpy(h_A, d_A, h_len * sizeof(int), cudaMemcpyDeviceToHost), "memcpy d_A to h_A");
// ------------------- Free --------------------------
cudaCheck( cudaFree(d_A), "Free d_A" );
cudaCheck( cudaFree(d_min_A), "Free d_min_A" );
cudaCheck( cudaFree(d_max_A), "Free d_max_A" );
cudaCheck( cudaFree(d_min), "Free d_min" );
cudaCheck( cudaFree(d_max), "Free d_max" );
cudaCheck( cudaFree(d_pmf), "Free d_pmf_A" );
cudaStopTime(0);
ENDTIME(0, t_algo);
// ------------------- Test working properly ------------
int flag = 1;
for (unsigned int i = 1; flag && i < h_len; i++)
{
if (h_A[i-1] > h_A[i])
{
printf("0");
}
}
float t0, t1, t2, t3, t4;
cudaElapsedTime(0, t0);
cudaElapsedTime(1, t1);
cudaElapsedTime(2, t2);
cudaElapsedTime(3, t3);
cudaElapsedTime(4, t4);
printf("%d,%d,%d,%d,%d,%d,%d,%f,%f,%f,%f,%f,%f\n", h_len, range_size, blockMinMax, blockPmf, blockScan, blockPopulate, flag, t_algo, t0, t1, t2, t3, t4);
//free(h_A);
cudaCheck( cudaFreeHost(h_A), "free h_A" );
return 0;
}