-
Notifications
You must be signed in to change notification settings - Fork 450
/
Link.m
1025 lines (921 loc) · 39.2 KB
/
Link.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%LinkRobot manipulator Link class
%
% A Link object holds all information related to a robot joint and link such as
% kinematics parameters, rigid-body inertial parameters, motor and
% transmission parameters.
%
% Constructors::
% Link general constructor
% Prismatic construct a prismatic joint+link using standard DH
% PrismaticMDH construct a prismatic joint+link using modified DH
% Revolute construct a revolute joint+link using standard DH
% RevoluteMDH construct a revolute joint+link using modified DH
%
% Information/display methods::
% display print the link parameters in human readable form
% dyn display link dynamic parameters
% type joint type: 'R' or 'P'
%
% Conversion methods::
% char convert to string
%
% Operation methods::
% A link transform matrix
% friction friction force
% nofriction Link object with friction parameters set to zero%
%
% Testing methods::
% islimit test if joint exceeds soft limit
% isrevolute test if joint is revolute
% isprismatic test if joint is prismatic
% issym test if joint+link has symbolic parameters
%
% Overloaded operators::
% + concatenate links, result is a SerialLink object
%
% Properties (read/write)::
%
% theta kinematic: joint angle
% d kinematic: link offset
% a kinematic: link length
% alpha kinematic: link twist
% jointtype kinematic: 'R' if revolute, 'P' if prismatic
% mdh kinematic: 0 if standard D&H, else 1
% offset kinematic: joint variable offset
% qlim kinematic: joint variable limits [min max]
%-
% m dynamic: link mass
% r dynamic: link COG wrt link coordinate frame 3x1
% I dynamic: link inertia matrix, symmetric 3x3, about link COG.
% B dynamic: link viscous friction (motor referred)
% Tc dynamic: link Coulomb friction
%-
% G actuator: gear ratio
% Jm actuator: motor inertia (motor referred)
%
% Examples::
%
% L = Link([0 1.2 0.3 pi/2]);
% L = Link('revolute', 'd', 1.2, 'a', 0.3, 'alpha', pi/2);
% L = Revolute('d', 1.2, 'a', 0.3, 'alpha', pi/2);
%
% Notes::
% - This is a reference class object.
% - Link objects can be used in vectors and arrays.
% - Convenience subclasses are Revolute, Prismatic, RevoluteMDH and
% PrismaticMDH.
%
% References::
% - Robotics, Vision & Control, P. Corke, Springer 2011, Chap 7.
%
% See also Link, Revolute, Prismatic, SerialLink, RevoluteMDH, PrismaticMDH.
% Copyright (C) 1993-2017, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
classdef Link < matlab.mixin.Copyable
properties
% kinematic parameters
theta % kinematic: link angle
d % kinematic: link offset
alpha % kinematic: link twist
a % kinematic: link length
jointtype % revolute='R', prismatic='P' -- should be an enum
mdh % standard DH=0, MDH=1
offset % joint coordinate offset
name % joint coordinate name
flip % joint moves in opposite direction
% dynamic parameters
m % dynamic: link mass
r % dynamic: position of COM with respect to link frame (3x1)
I % dynamic: inertia of link with respect to COM (3x3)
Jm % dynamic: motor inertia
B % dynamic: motor viscous friction (1x1 or 2x1)
Tc % dynamic: motor Coulomb friction (1x2 or 2x1)
G % dynamic: gear ratio
qlim % joint coordinate limits (2x1)
end
methods
function l = Link(varargin)
%Link Create robot link object
%
% This the class constructor which has several call signatures.
%
% L = Link() is a Link object with default parameters.
%
% L = Link(LNK) is a Link object that is a deep copy of the link
% object LNK and has type Link, even if LNK is a subclass.
%
% L = Link(OPTIONS) is a link object with the kinematic and dynamic
% parameters specified by the key/value pairs.
%
% Options::
% 'theta',TH joint angle, if not specified joint is revolute
% 'd',D joint extension, if not specified joint is prismatic
% 'a',A joint offset (default 0)
% 'alpha',A joint twist (default 0)
% 'standard' defined using standard D&H parameters (default).
% 'modified' defined using modified D&H parameters.
% 'offset',O joint variable offset (default 0)
% 'qlim',L joint limit (default [])
% 'I',I link inertia matrix (3x1, 6x1 or 3x3)
% 'r',R link centre of gravity (3x1)
% 'm',M link mass (1x1)
% 'G',G motor gear ratio (default 1)
% 'B',B joint friction, motor referenced (default 0)
% 'Jm',J motor inertia, motor referenced (default 0)
% 'Tc',T Coulomb friction, motor referenced (1x1 or 2x1), (default [0 0])
% 'revolute' for a revolute joint (default)
% 'prismatic' for a prismatic joint 'p'
% 'standard' for standard D&H parameters (default).
% 'modified' for modified D&H parameters.
% 'sym' consider all parameter values as symbolic not numeric
%
% Notes::
% - It is an error to specify both 'theta' and 'd'
% - The joint variable, either theta or d, is provided as an argument to
% the A() method.
% - The link inertia matrix (3x3) is symmetric and can be specified by giving
% a 3x3 matrix, the diagonal elements [Ixx Iyy Izz], or the moments and products
% of inertia [Ixx Iyy Izz Ixy Iyz Ixz].
% - All friction quantities are referenced to the motor not the load.
% - Gear ratio is used only to convert motor referenced quantities such as
% friction and interia to the link frame.
%
% Old syntax::
% L = Link(DH, OPTIONS) is a link object using the specified kinematic
% convention and with parameters:
% - DH = [THETA D A ALPHA SIGMA OFFSET] where SIGMA=0 for a revolute and 1
% for a prismatic joint; and OFFSET is a constant displacement between the
% user joint variable and the value used by the kinematic model.
% - DH = [THETA D A ALPHA SIGMA] where OFFSET is zero.
% - DH = [THETA D A ALPHA], joint is assumed revolute and OFFSET is zero.
%
% Options::
%
% 'standard' for standard D&H parameters (default).
% 'modified' for modified D&H parameters.
% 'revolute' for a revolute joint, can be abbreviated to 'r' (default)
% 'prismatic' for a prismatic joint, can be abbreviated to 'p'
%
% Notes::
% - The parameter D is unused in a revolute joint, it is simply a placeholder
% in the vector and the value given is ignored.
% - The parameter THETA is unused in a prismatic joint, it is simply a placeholder
% in the vector and the value given is ignored.
%
% Examples::
% A standard Denavit-Hartenberg link
% L3 = Link('d', 0.15005, 'a', 0.0203, 'alpha', -pi/2);
% since 'theta' is not specified the joint is assumed to be revolute, and
% since the kinematic convention is not specified it is assumed 'standard'.
%
% Using the old syntax
% L3 = Link([ 0, 0.15005, 0.0203, -pi/2], 'standard');
% the flag 'standard' is not strictly necessary but adds clarity. Only 4 parameters
% are specified so sigma is assumed to be zero, ie. the joint is revolute.
%
% L3 = Link([ 0, 0.15005, 0.0203, -pi/2, 0], 'standard');
% the flag 'standard' is not strictly necessary but adds clarity. 5 parameters
% are specified and sigma is set to zero, ie. the joint is revolute.
%
% L3 = Link([ 0, 0.15005, 0.0203, -pi/2, 1], 'standard');
% the flag 'standard' is not strictly necessary but adds clarity. 5 parameters
% are specified and sigma is set to one, ie. the joint is prismatic.
%
% For a modified Denavit-Hartenberg revolute joint
% L3 = Link([ 0, 0.15005, 0.0203, -pi/2, 0], 'modified');
%
% Notes::
% - Link object is a reference object, a subclass of Handle object.
% - Link objects can be used in vectors and arrays.
% - The joint offset is a constant added to the joint angle variable before
% forward kinematics and subtracted after inverse kinematics. It is useful
% if you want the robot to adopt a 'sensible' pose for zero joint angle
% configuration.
% - The link dynamic (inertial and motor) parameters are all set to
% zero. These must be set by explicitly assigning the object
% properties: m, r, I, Jm, B, Tc.
% - The gear ratio is set to 1 by default, meaning that motor friction and
% inertia will be considered if they are non-zero.
%
% See also Revolute, Prismatic, RevoluteMDH, PrismaticMDH.
if nargin == 0
% create an 'empty' Link object
% this call signature is needed to support arrays of Links
%% kinematic parameters
l.alpha = 0;
l.a = 0;
l.theta = 0;
l.d = 0;
l.jointtype = 'R';
l.mdh = 0;
l.offset = 0;
l.flip = false;
l.qlim = [];
%% dynamic parameters
% these parameters must be set by the user if dynamics is used
l.m = 0;
l.r = [0 0 0];
l.I = zeros(3,3);
% dynamic params with default (zero friction)
l.Jm = 0;
l.G = 1;
l.B = 0;
l.Tc = [0 0];
elseif nargin == 1 && isa(varargin{1}, 'Link')
% clone the passed Link object
this = varargin{1};
for j=1:length(this)
l(j) = Link();
% Copy all non-hidden properties.
p = properties(this(j));
for i = 1:length(p)
l(j).(p{i}) = this(j).(p{i});
end
end
else
% Create a new Link based on parameters
% parse all possible options
opt.theta = [];
opt.a = 0;
opt.d = [];
opt.alpha = 0;
opt.G = 0;
opt.B = 0;
opt.Tc = [0 0];
opt.Jm = 0;
opt.I = zeros(3,3);
opt.m = 0;
opt.r = [0 0 0];
opt.offset = 0;
opt.qlim = [];
opt.type = {[], 'revolute', 'prismatic', 'fixed'};
opt.convention = {'standard', 'modified'};
opt.sym = false;
opt.flip = false;
[opt,args] = tb_optparse(opt, varargin);
% return a parameter as a number of symbol depending on
% the 'sym' option
if isempty(args)
% This is the new call format, where all parameters are
% given by key/value pairs
%
% eg. L3 = Link('d', 0.15005, 'a', 0.0203, 'alpha', -pi/2);
assert(isempty(opt.d) || isempty(opt.theta), 'RTB:Link:badarg', 'cannot specify ''d'' and ''theta''');
if opt.type
switch (opt.type)
case 'revolute'
l.jointtype = 'R';
assert(isempty(opt.theta), 'RTB:Link:badarg', 'cannot specify ''theta'' for revolute link');
if isempty(opt.d)
opt.d = 0;
end
case 'prismatic'
l.jointtype = 'P';
assert(isempty(opt.d), 'RTB:Link:badarg', 'cannot specify ''d'' for prismatic link');
if isempty(opt.theta)
opt.theta = 0;
end
end
end
if ~isempty(opt.theta)
% constant value of theta means it must be prismatic
l.theta = value( opt.theta, opt);
l.jointtype = 'P';
end
if ~isempty(opt.d)
% constant value of d means it must be revolute
l.d = value( opt.d, opt);
l.jointtype = 'R';
end
l.a = value( opt.a, opt);
l.alpha = value( opt.alpha, opt);
l.offset = value( opt.offset, opt);
l.flip = value( opt.flip, opt);
l.qlim = value( opt.qlim, opt);
l.m = value( opt.m, opt);
l.r = value( opt.r, opt);
l.I = value( opt.I, opt);
l.Jm = value( opt.Jm, opt);
l.G = value( opt.G, opt);
l.B = value( opt.B, opt);
l.Tc = value( opt.Tc, opt);
else
% This is the old call format, where all parameters are
% given by a vector containing kinematic-only, or
% kinematic plus dynamic parameters
%
% eg. L3 = Link([ 0, 0.15005, 0.0203, -pi/2, 0], 'standard');
dh = args{1};
assert(length(dh) >= 4, 'RTB:Link:badarg', 'must provide params (theta d a alpha)');
% set the kinematic parameters
l.theta = dh(1);
l.d = dh(2);
l.a = dh(3);
l.alpha = dh(4);
l.jointtype = 'R'; % default to revolute
l.offset = 0;
l.flip = false;
l.mdh = 0; % default to standard D&H
% optionally set sigma and offset
if length(dh) >= 5
if dh(5) == 1
l.jointtype = 'P';
end
end
if length(dh) == 6
l.offset = dh(6);
end
if length(dh) > 6
% legacy DYN matrix
if dh(5) > 0
l.jointtype = 'P';
else
l.jointtype = 'R';
end
l.mdh = 0; % default to standard D&H
l.offset = 0;
% it's a legacy DYN matrix
l.m = dh(6);
l.r = dh(7:9).'; % a column vector
v = dh(10:15);
l.I = [ v(1) v(4) v(6)
v(4) v(2) v(5)
v(6) v(5) v(3)];
if length(dh) > 15
l.Jm = dh(16);
end
if length(dh) > 16
l.G = dh(17);
else
l.G = 1;
end
if length(dh) > 17
l.B = dh(18);
else
l.B = 0.0;
end
if length(dh) > 18
l.Tc = dh(19:20);
else
l.Tc = [0 0];
end
l.qlim = [];
else
% we know nothing about the dynamics
l.m = [];
l.r = [];
l.I = [];
l.Jm = [];
l.G = 0;
l.B = 0;
l.Tc = [0 0];
l.qlim = [];
end
end
% set the kinematic convention to be used
if strcmp(opt.convention, 'modified')
l.mdh = 1;
else
l.mdh = 0;
end
end
function out = value(v, opt)
if opt.sym
out = sym(v);
else
out = v;
end
end
end % link()
function tau = friction(l, qd)
%Link.friction Joint friction force
%
% F = L.friction(QD) is the joint friction force/torque (1xN) for joint
% velocity QD (1xN). The friction model includes:
% - Viscous friction which is a linear function of velocity.
% - Coulomb friction which is proportional to sign(QD).
%
% Notes::
% - The friction value should be added to the motor output torque, it has a
% negative value when QD>0.
% - The returned friction value is referred to the output of the gearbox.
% - The friction parameters in the Link object are referred to the motor.
% - Motor viscous friction is scaled up by G^2.
% - Motor Coulomb friction is scaled up by G.
% - The appropriate Coulomb friction value to use in the non-symmetric case
% depends on the sign of the joint velocity, not the motor velocity.
% - The absolute value of the gear ratio is used. Negative gear ratios are
% tricky: the Puma560 has negative gear ratio for joints 1 and 3.
%
% See also Link.nofriction.
% viscous friction
tau = l.B * abs(l.G) * qd;
% Coulomb friction
if ~isa(qd, 'sym')
if qd > 0
tau = tau + l.Tc(1);
elseif qd < 0
tau = tau + l.Tc(2);
end
end
% scale up by gear ratio
tau = -abs(l.G) * tau; % friction opposes motion
end % friction()
function tau = friction2(l, qd)
% experimental code
qdm = qd / l.G;
taum = -l.B * qdm;
if qdm > 0
taum = taum - l.Tc(1);
elseif qdm < 0
taum = taum - l.Tc(2);
end
tau = taum * l.G;
end
function l2 = nofriction(l, only)
%Link.nofriction Remove friction
%
% LN = L.nofriction() is a link object with the same parameters as L except
% nonlinear (Coulomb) friction parameter is zero.
%
% LN = L.nofriction('all') as above except that viscous and Coulomb friction
% are set to zero.
%
% LN = L.nofriction('coulomb') as above except that Coulomb friction is set to zero.
%
% LN = L.nofriction('viscous') as above except that viscous friction is set to zero.
%
% Notes::
% - Forward dynamic simulation can be very slow with finite Coulomb friction.
%
% See also Link.friction, SerialLink.nofriction, SerialLink.fdyn.
l2 = copy(l);
if nargin == 1
only = 'coulomb';
end
switch only
case 'all'
l2.B = 0;
l2.Tc = [0 0];
case 'viscous'
l2.B = 0;
case 'coulomb'
l2.Tc = [0 0];
end
end
function v = RP(l)
warning('RTB:Link:deprecated', 'use the .type() method instead');
v = l.type();
end
function v = type(l)
%Link.type Joint type
%
% c = L.type() is a character 'R' or 'P' depending on whether joint is
% revolute or prismatic respectively. If L is a vector of Link objects
% return an array of characters in joint order.
%
% See also SerialLink.config.
v = '';
for ll=l
switch ll.jointtype
case 'R'
v = strcat(v, 'R');
case 'P'
v = strcat(v, 'P');
otherwise
error('RTB:Link:badval', 'bad value for link jointtype %d', ll.type);
end
end
end
function set.r(l, v)
%Link.r Set centre of gravity
%
% L.r = R sets the link centre of gravity (COG) to R (3-vector).
%
if isempty(v)
return;
end
assert(length(v) == 3, 'RTB:Link:badarg', 'COG must be a 3-vector');
l.r = v(:).';
end % set.r()
function set.Tc(l, v)
%Link.Tc Set Coulomb friction
%
% L.Tc = F sets Coulomb friction parameters to [F -F], for a symmetric
% Coulomb friction model.
%
% L.Tc = [FP FM] sets Coulomb friction to [FP FM], for an asymmetric
% Coulomb friction model. FP>0 and FM<0. FP is applied for a positive
% joint velocity and FM for a negative joint velocity.
%
% Notes::
% - The friction parameters are defined as being positive for a positive
% joint velocity, the friction force computed by Link.friction uses the
% negative of the friction parameter, that is, the force opposing motion of
% the joint.
%
% See also Link.friction.
if isempty(v)
return;
end
if isa(v,'sym') && ~isempty(symvar(v))
l.Tc = sym('Tc');
elseif isa(v,'sym') && isempty(symvar(v))
v = double(v);
end
if length(v) == 1 ~isa(v,'sym')
l.Tc = [v -v];
elseif length(v) == 2 && ~isa(v,'sym')
assert(v(1) >= v(2), 'RTB:Link:badarg', 'Coulomb friction is [Tc+ Tc-]');
l.Tc = v;
else
error('RTB:Link:badarg', 'Coulomb friction vector can have 1 (symmetric) or 2 (asymmetric) elements only')
end
end % set.Tc()
function set.I(l, v)
%Link.I Set link inertia
%
% L.I = [Ixx Iyy Izz] sets link inertia to a diagonal matrix.
%
% L.I = [Ixx Iyy Izz Ixy Iyz Ixz] sets link inertia to a symmetric matrix with
% specified inertia and product of intertia elements.
%
% L.I = M set Link inertia matrix to M (3x3) which must be symmetric.
if isempty(v)
return;
end
if all(size(v) == [3 3])
assert(isa(v, 'sym') || (norm(v-v') < eps), 'RTB:Link:badarg', 'inertia matrix must be symmetric');
l.I = v;
elseif length(v) == 3
l.I = diag(v);
elseif length(v) == 6
l.I = [ v(1) v(4) v(6)
v(4) v(2) v(5)
v(6) v(5) v(3) ];
else
error('RTB:Link:badarg', 'must set I to 3-vector, 6-vector or symmetric 3x3');
end
end % set.I()
function v = islimit(l, q)
%Link.islimit Test joint limits
%
% L.islimit(Q) is true (1) if Q is outside the soft limits set for this joint.
%
% Note::
% - The limits are not currently used by any Toolbox functions.
assert(~isempty(l.qlim), 'RTB:Link:badarg', 'no limits assigned to link')
v = (q > l.qlim(2)) - (q < l.qlim(1));
end % islimit()
function v = isrevolute(L)
%Link.isrevolute Test if joint is revolute
%
% L.isrevolute() is true (1) if joint is revolute.
%
% See also Link.isprismatic.
v = [L.jointtype] == 'R';
end
function v = isprismatic(L)
%Link.isprismatic Test if joint is prismatic
%
% L.isprismatic() is true (1) if joint is prismatic.
%
% See also Link.isrevolute.
v = ~L.isrevolute();
end
function T = A(L, q)
%Link.A Link transform matrix
%
% T = L.A(Q) is an SE3 object representing the transformation between link
% frames when the link variable Q which is either the Denavit-Hartenberg
% parameter THETA (revolute) or D (prismatic). For:
% - standard DH parameters, this is from the previous frame to the current.
% - modified DH parameters, this is from the current frame to the next.
%
% Notes::
% - For a revolute joint the THETA parameter of the link is ignored, and Q used instead.
% - For a prismatic joint the D parameter of the link is ignored, and Q used instead.
% - The link offset parameter is added to Q before computation of the transformation matrix.
%
% See also SerialLink.fkine.
if iscell(q)
q = q{1}; % get value of cell, happens for the symfun case
end
sa = sin(L.alpha); ca = cos(L.alpha);
if L.flip
q = -q + L.offset;
else
q = q + L.offset;
end
if L.isrevolute
% revolute
st = sin(q); ct = cos(q);
d = L.d;
else
% prismatic
st = sin(L.theta); ct = cos(L.theta);
d = q;
end
if L.mdh == 0
% standard DH
T = [ ct -st*ca st*sa L.a*ct
st ct*ca -ct*sa L.a*st
0 sa ca d
0 0 0 1];
else
% modified DH
T = [ ct -st 0 L.a
st*ca ct*ca -sa -sa*d
st*sa ct*sa ca ca*d
0 0 0 1];
end
T = SE3(T);
end % A()
function display(l)
%Link.display Display parameters
%
% L.display() displays the link parameters in compact single line format. If L is a
% vector of Link objects displays one line per element.
%
% Notes::
% - This method is invoked implicitly at the command line when the result
% of an expression is a Link object and the command has no trailing
% semicolon.
%
% See also Link.char, Link.dyn, SerialLink.showlink.
loose = strcmp( get(0, 'FormatSpacing'), 'loose');
if loose
disp(' ');
end
disp([inputname(1), ' = '])
disp( char(l) );
end % display()
function s = char(links, from_robot)
%Link.char Convert to string
%
% s = L.char() is a string showing link parameters in a compact single line format.
% If L is a vector of Link objects return a string with one line per Link.
%
% See also Link.display.
% display in the order theta d a alpha
if nargin < 2
from_robot = false;
end
s = '';
for j=1:length(links)
l = links(j);
if l.mdh == 0
conv = 'std';
else
conv = 'mod';
end
if length(links) == 1
qname = 'q';
else
qname = sprintf('q%d', j);
end
if from_robot
fmt = '%11g';
% invoked from SerialLink.char method, format for table
if l.isprismatic
% prismatic joint
js = sprintf('|%3d|%11s|%11s|%11s|%11s|%11s|', ...
j, ...
render(l.theta, fmt), ...
qname, ...
render(l.a, fmt), ...
render(l.alpha, fmt), ...
render(l.offset, fmt));
else
% revolute joint
js = sprintf('|%3d|%11s|%11s|%11s|%11s|%11s|', ...
j, ...
qname, ...
render(l.d, fmt), ...
render(l.a, fmt), ...
render(l.alpha, fmt), ...
render(l.offset, fmt));
end
else
if length(links) == 1
if l.isprismatic
% prismatic joint
js = sprintf('Prismatic(%s): theta=%s, d=%s, a=%s, alpha=%s, offset=%s', ...
conv, ...
render(l.theta,'%g'), ...
qname, ...
render(l.a,'%g'), ...
render(l.alpha,'%g'), ...
render(l.offset,'%g') );
else
% revolute
js = sprintf('Revolute(%s): theta=%s, d=%s, a=%s, alpha=%s, offset=%s', ...
conv, ...
qname, ...
render(l.d,'%g'), ...
render(l.a,'%g'), ...
render(l.alpha,'%g'), ...
render(l.offset,'%g') );
end
else
if l.isprismatic
% prismatic joint
js = sprintf('Prismatic(%s): theta=%s d=%s a=%s alpha=%s offset=%s', ...
conv, ...
render(l.theta), ...
qname, ...
render(l.a), ...
render(l.alpha), ...
render(l.offset) );
else
% revolute
js = sprintf('Revolute(%s): theta=%s d=%s a=%s alpha=%s offset=%s', ...
conv, ...
qname, ...
render(l.d), ...
render(l.a), ...
render(l.alpha), ...
render(l.offset) );
end
end
end
if isempty(s)
s = js;
else
s = char(s, js);
end
end
end % char()
function dyn(links)
%Link.dyn Show inertial properties of link
%
% L.dyn() displays the inertial properties of the link object in a multi-line
% format. The properties shown are mass, centre of mass, inertia, friction,
% gear ratio and motor properties.
%
% If L is a vector of Link objects show properties for each link.
%
% See also SerialLink.dyn.
for j=1:numel(links)
l = links(j);
if numel(links) > 1
fprintf('\nLink %d::', j);
end
fprintf('%s\n', l.char());
if ~isempty(l.m)
fprintf(' m = %s\n', render(l.m))
end
if ~isempty(l.r)
s = render(l.r);
fprintf(' r = %s %s %s\n', s{:});
end
if ~isempty(l.I)
s = render(l.I(1,:));
fprintf(' I = | %s %s %s |\n', s{:});
s = render(l.I(2,:));
fprintf(' | %s %s %s |\n', s{:});
s = render(l.I(3,:));
fprintf(' | %s %s %s |\n', s{:});
end
if ~isempty(l.Jm)
fprintf(' Jm = %s\n', render(l.Jm));
end
if ~isempty(l.B)
fprintf(' Bm = %s\n', render(l.B));
end
if ~isempty(l.Tc)
fprintf(' Tc = %s(+) %s(-)\n', ...
render(l.Tc(1)), render(l.Tc(2)));
end
if ~isempty(l.G)
fprintf(' G = %s\n', render(l.G));
end
if ~isempty(l.qlim)
fprintf(' qlim = %f to %f\n', l.qlim(1), l.qlim(2));
end
end
end % dyn()
% Make a copy of a handle object.
% http://www.mathworks.com/matlabcentral/newsreader/view_thread/257925
% function new = copy(this)
%
% for j=1:length(this)
% % Instantiate new object of the same class.
% %new(j) = feval(class(this(j)));
% new(j) = Link();
% % Copy all non-hidden properties.
% p = properties(this(j));
% for i = 1:length(p)
% new(j).(p{i}) = this(j).(p{i});
% end
% end
% end
function links = horzcat(varargin)
%Link.horzcat Concatenate link objects
%
% [L1 L2] is a vector that contains deep copies of the Link class objects
% L1 and L2.
%
% Notes::
% - The elements of the vector are all of type Link.
% - If the elements were of a subclass type they are convered to type Link.
% - Extends to arbitrary number of objects in list.
%
% See also Link.plus.
% convert all elements to Link type
l = cellfun(@Link, varargin, 'UniformOutput', 0);
% convert to vector, cell2mat won't do this for me
links = cat(2, l{:});
end
function links = vertcat(this, varargin)
links = this.horzcat(varargin{:});
end
function R = plus(L1, L2)
%Link.plus Concatenate link objects into a robot
%
% L1+L2 is a SerialLink object formed from deep copies of the Link class objects
% L1 and L2.
%
% Notes::
% - The elements can belong to any of the Link subclasses.
% - Extends to arbitrary number of objects, eg. L1+L2+L3+L4.
%
% See also SerialLink, SerialLink.plus, Link.horzcat.
assert( isa(L1, 'Link') && isa(L2, 'Link'), 'RTB:Link: second operand for + operator must be a Link class');
R = SerialLink([L1 L2]);
end
function res = issym(l)
%Link.issym Check if link is a symbolic model
%
% res = L.issym() is true if the Link L has any symbolic parameters.
%
% See also Link.sym.
res = any( cellfun(@(x) isa(l.(x), 'sym'), properties(l)) );
end
function l = sym(l)
%Link.sym Convert link parameters to symbolic type
%
% LS = L.sym is a Link object in which all the parameters are symbolic
% ('sym') type.
%
% See also Link.issym.
% sl = Link(l); % clone the link
if ~isempty(l.theta)
l.theta = sym(l.theta);
end
if ~isempty(l.d)
l.d = sym(l.d);
end
l.alpha = sym(l.alpha);
l.a = sym(l.a);
l.offset = sym(l.offset);
l.I = sym(l.I);
l.r = sym(l.r);
l.m = sym(l.m);
l.Jm = sym(l.Jm);
l.G = sym(l.G);
l.B = sym(l.B);
l.Tc = sym(l.Tc);
end
end % methods
end % class