-
Notifications
You must be signed in to change notification settings - Fork 0
/
SedTransport_1_1_1_2.m
551 lines (442 loc) · 20.6 KB
/
SedTransport_1_1_1_2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
clear; clc; close all;
%**************************************************************************
% Parameters needed for the sediment transport calculations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Part 1: Sediment Transport with Groen's Model
%% 1.1: Sensitivity of the Time Delay between Peak Concentrations to ...
%% Part 1.1.a: Fall Velocity of sediment
alpha=1e-4; % Erosion coefficent
Kv=1e-2; % Vertical eddy diffusivity (for vertical mixing)
% Sensitivity analysis Ws
WS=linspace(0.5e-3,2e-2,5);
DIFF_ws=[];
for i=1:5
Ws=WS(i);
%**************************************************************************
% Define time domain
%**************************************************************************
T=(12*60+25)*60; % We model only the M2 and M4 tide. Time is in seconds.
Tend=10*T; % Five tidal periods modeled -> for very fine sand and large erosion constants more tidal periods need to be solved
deltaT=300; % Time step of 5 minutes
t=0:deltaT:Tend;
Nt=length(t);
%**************************************************************************
% Prescribed sea surface elevations. It is assumed that d/dx zeta =0. M2
% and M4 are prescribed at the seaward boundary. So these are the sea surface heights in the entire
% basin at any moment in time.
%**************************************************************************
ampD1=0; % in part 1 and 2 D1=0. Depending on your estuary, you might want to prescribe D1 for part 3.
ampM2=1;
ampM4=0.2;
phaseD1=0;
phaseM2=0;
phaseM4=pi/2;
Z=ampD1*sin(pi*t/T + phaseD1)+ampM2*sin(2*pi*t/T + phaseM2)+ampM4*sin(4*pi*t/T + phaseM4); % Waterlevel prescribed as sine function.
dZdt=ampD1*1*pi/T*cos(pi*t/T+ phaseD1)+ampM2*2*pi/T*cos(2*pi*t/T+ phaseM2)+ampM4*4*pi/T*cos(4*pi*t/T + phaseM4); % Flow velocity will behave as a cosine function.
%**************************************************************************
% Spatial Domain and Grid
%**************************************************************************
L=1e4; % We model a simple basin with a length of ten km
dx=400; % Grid distance
x=0:dx:L; % x-coordinate. Seaward end is at x=L, landward end at x=0.
Nx=length(x);
%**************************************************************************
%
% x=0 (=Inlet) ...................... x=L (=landward side of basin)
%
% So x=positive in landward direction
%
% U>0 = Flood flow U<0 = Ebb flow
%
%**************************************************************************
%**************************************************************************
% Bed level in basin
%**************************************************************************
H=10-8e-4*x; % Bottom profile. Linear sloping bottom.
% 2 m deep near landward boundary, 10 m deep near inlet.
dHdx(1:Nx)=-8e-4;
%**************************************************************************
% After a call to hydromodel flow velocity at each position as a function of
% time is known
%**************************************************************************
U=HydroModel2(t,Z,dZdt,H,dHdx,x,dx);
%**************************************************************************
% Here you have to calculate the sediment concentrations with the Groen
% model. This is a Matlab function which has as input the flow velocity, the relevant
% parameters, and time. For each position in the basin do a call to this
% Groenmodel.
for px=1:Nx
[C(px,1:Nt)]=GroenModel(U(px,1:Nt),t,deltaT, T, Ws, alpha, Kv);
end
%Spot the correct section to consider for U_Max and C_Max
% figure
% yyaxis left
% plot(t,C(1,:))
% hold on
% yyaxis right
% plot(t,U(1,:))
% hold off
%Peak sediment concentration and time
C_Max=max(C(1,101:201));
t_C_Max=t(C(1,:)==C_Max);
%Peak flood flow and time
U_Max=max(U(1,101:201));
t_U_Max=t(U(1,:)==U_Max);
%Time difference between peaks
Diff=(t_C_Max-t_U_Max)/3600;
DIFF_ws=[DIFF_ws Diff];
end
figure
plot(WS,abs(DIFF_ws))
title('Sensitivity analysis of time difference between peak flow and peak sediment concentration for varying fall velocities (W_s)');
xlabel('W_{s} [m/s]');
ylabel('Time difference [hrs]');
grid on;
savefig('Matlab3_1_1_i');
%% Part 1.1.b: Eddy Diffusivity
Ws=1e-3; % Fall velocity of sediment
alpha=1e-4; % Erosion coefficent
% Sensitivity analysis Kv
KV=linspace(1e-3,1e-1,5);
DIFF_kv=[];
for i=1:5
Kv=KV(i);
%**************************************************************************
% Define time domain
%**************************************************************************
T=(12*60+25)*60; % We model only the M2 and M4 tide. Time is in seconds.
Tend=10*T; % Five tidal periods modeled -> for very fine sand and large erosion constants more tidal periods need to be solved
deltaT=300; % Time step of 5 minutes
t=0:deltaT:Tend;
Nt=length(t);
%**************************************************************************
% Prescribed sea surface elevations. It is assumed that d/dx zeta =0. M2
% and M4 are prescribed at the seaward boundary. So these are the sea surface heights in the entire
% basin at any moment in time.
%**************************************************************************
ampD1=0; % in part 1 and 2 D1=0. Depending on your estuary, you might want to prescribe D1 for part 3.
ampM2=1;
ampM4=0.2;
phaseD1=0;
phaseM2=0;
phaseM4=pi/2;
Z=ampD1*sin(pi*t/T + phaseD1)+ampM2*sin(2*pi*t/T + phaseM2)+ampM4*sin(4*pi*t/T + phaseM4); % Waterlevel prescribed as sine function.
dZdt=ampD1*1*pi/T*cos(pi*t/T+ phaseD1)+ampM2*2*pi/T*cos(2*pi*t/T+ phaseM2)+ampM4*4*pi/T*cos(4*pi*t/T + phaseM4); % Flow velocity will behave as a cosine function.
%**************************************************************************
% Spatial Domain and Grid
%**************************************************************************
L=1e4; % We model a simple basin with a length of ten km
dx=400; % Grid distance
x=0:dx:L; % x-coordinate. Seaward end is at x=L, landward end at x=0.
Nx=length(x);
%**************************************************************************
%
% x=0 (=Inlet) ...................... x=L (=landward side of basin)
%
% So x=positive in landward direction
%
% U>0 = Flood flow U<0 = Ebb flow
%
%**************************************************************************
%**************************************************************************
% Bed level in basin
%**************************************************************************
H=10-8e-4*x; % Bottom profile. Linear sloping bottom. 2 m deep near landward boundary, 10 m deep near inlet.
dHdx(1:Nx)=-8e-4;
%**************************************************************************
% After a call to hydromodel flow velocity at each position as a function of
% time is known
%**************************************************************************
U=HydroModel2(t,Z,dZdt,H,dHdx,x,dx);
%**************************************************************************
% Here you have to calculate the sediment concentrations with the Groen
% model. This is a Matlab function which has as input the flow velocity, the relevant
% parameters, and time. For each position in the basin do a call to this
% Groenmodel.
for px=1:Nx
[C(px,1:Nt)]=GroenModel(U(px,1:Nt),t,deltaT, T, Ws, alpha, Kv);
end
%Peak sediment concentration and time
C_Max=max(C(1,101:201));
t_C_Max=t(C(1,:)==C_Max);
%Peak flood flow and time
U_Max=max(U(1,101:201));
t_U_Max=t(U(1,:)==U_Max);
%Time difference between peaks
Diff=(t_C_Max-t_U_Max)/3600;
DIFF_kv=[DIFF_kv Diff];
end
figure
plot(KV,abs(DIFF_kv))
title('Sensitivity analysis of time difference between peak flow and peak sediment concentration for varying eddy diffusivities (K_v)');
xlabel('K_{v} [m^{2}/s]');
ylabel('Time difference [hrs]');
grid on;
savefig('Matlab3_1_1_ii');
%% 1.2: Sensitivity of the difference in peak sediment concentration at peak ebb and flood to ...
%% Part 1.2.a: Relative phase difference between M2 and M4
Ws=1e-3; % Fall velocity of sediment
alpha=1e-4; % Erosion coefficent
Kv=1e-2; % Vertical eddy diffusivity (for vertical mixing)
%**************************************************************************
% Define time domain
%**************************************************************************
T=(12*60+25)*60; % We model only the M2 and M4 tide. Time is in seconds.
Tend=10*T; % Five tidal periods modeled -> for very fine sand and large erosion constants more tidal periods need to be solved
deltaT=300; % Time step of 5 minutes
t=0:deltaT:Tend;
Nt=length(t);
%**************************************************************************
% Prescribed sea surface elevations. It is assumed that d/dx zeta =0. M2
% and M4 are prescribed at the seaward boundary. So these are the sea surface heights in the entire
% basin at any moment in time.
%**************************************************************************
ampD1=0; % in part 1 and 2 D1=0. Depending on your estuary, you might want to prescribe D1 for part 3.
ampM2=1;
ampM4=0.2;
phaseD1=0;
phaseM2=0;
%phaseM4=pi/2;
%sensitivity analysis phase difference
PhaseM4=(0:45:180)/180*pi;
Np=length(PhaseM4);
DIFF_phase=[];
for i=1:Np
phaseM4=PhaseM4(i);
Z=ampD1*sin(pi*t/T + phaseD1)+ampM2*sin(2*pi*t/T + phaseM2)+ampM4*sin(4*pi*t/T + phaseM4); % Waterlevel prescribed as sine function.
dZdt=ampD1*1*pi/T*cos(pi*t/T+ phaseD1)+ampM2*2*pi/T*cos(2*pi*t/T+ phaseM2)+ampM4*4*pi/T*cos(4*pi*t/T + phaseM4); % Flow velocity will behave as a cosine function.
%**************************************************************************
% Spatial Domain and Grid
%**************************************************************************
L=1e4; % We model a simple basin with a length of ten km
dx=400; % Grid distance
x=0:dx:L; % x-coordinate. Seaward end is at x=L, landward end at x=0.
Nx=length(x);
%**************************************************************************
%
% x=0 (=Inlet) ...................... x=L (=landward side of basin)
%
% So x=positive in landward direction
%
% U>0 = Flood flow U<0 = Ebb flow
%
%**************************************************************************
%**************************************************************************
% Bed level in basin
%**************************************************************************
H=10-8e-4*x; % Bottom profile. Linear sloping bottom. 2 m deep near landward boundary, 10 m deep near inlet.
dHdx(1:Nx)=-8e-4;
%**************************************************************************
% After a call to hydromodel flow velocity at each position as a function of
% time is known
%**************************************************************************
U=HydroModel2(t,Z,dZdt,H,dHdx,x,dx);
%**************************************************************************
% Here you have to calculate the sediment concentrations with the Groen
% model. This is a Matlab function which has as input the flow velocity, the relevant
% parameters, and time. For each position in the basin do a call to this
% Groenmodel.
for px=1:Nx
[C(px,1:Nt)]=GroenModel(U(px,1:Nt),t,deltaT, T, Ws, alpha, Kv);
end
%Tracking the behaviours and locating the peaks
% figure
% yyaxis left
% plot(t,C(1,:))
% hold on
% yyaxis right
% plot(t,U(1,:))
% hold off
%Peak sediment concentration at flood and ebb
C_Max=findpeaks(C(1,201:371));
%Difference between peaks
if length(C_Max)==1
Diff=abs(C_Max(1)-max(C(1,268:371)));
else
Diff=C_Max(1)-C_Max(2);
end
DIFF_phase=[DIFF_phase Diff];
end
figure
plot(PhaseM4,abs(DIFF_phase)*1000)
title('Sensitivity analysis of difference in peak sediment concentration between peak flow and peak ebb for varying relative phase differences between M2 and M4');
xlabel('Phase difference [rad]');
ylabel('Concentration difference [g/m^2]');
grid on;
savefig('Matlab3_1_2_i');
%% Part 1.2.b: Fall Velocity of the sediment
alpha=1e-4; % Erosion coefficent
Kv=1e-2; % Vertical eddy diffusivity (for vertical mixing)
% Sensitivity analysis Ws
WS=linspace(0.5e-3,2e-2,5);
DIFF_ws_ii=[];
for i=1:5
Ws=WS(i);
%**************************************************************************
% Define time domain
%**************************************************************************
T=(12*60+25)*60; % We model only the M2 and M4 tide. Time is in seconds.
Tend=10*T; % Five tidal periods modeled -> for very fine sand and large erosion constants more tidal periods need to be solved
deltaT=300; % Time step of 5 minutes
t=0:deltaT:Tend;
Nt=length(t);
%**************************************************************************
% Prescribed sea surface elevations. It is assumed that d/dx zeta =0. M2
% and M4 are prescribed at the seaward boundary. So these are the sea surface heights in the entire
% basin at any moment in time.
%**************************************************************************
ampD1=0; % in part 1 and 2 D1=0. Depending on your estuary, you might want to prescribe D1 for part 3.
ampM2=1;
ampM4=0.2;
phaseD1=0;
phaseM2=0;
phaseM4=pi/2;
Z=ampD1*sin(pi*t/T + phaseD1)+ampM2*sin(2*pi*t/T + phaseM2)+ampM4*sin(4*pi*t/T + phaseM4); % Waterlevel prescribed as sine function.
dZdt=ampD1*1*pi/T*cos(pi*t/T+ phaseD1)+ampM2*2*pi/T*cos(2*pi*t/T+ phaseM2)+ampM4*4*pi/T*cos(4*pi*t/T + phaseM4); % Flow velocity will behave as a cosine function.
%**************************************************************************
% Spatial Domain and Grid
%**************************************************************************
L=1e4; % We model a simple basin with a length of ten km
dx=400; % Grid distance
x=0:dx:L; % x-coordinate. Seaward end is at x=L, landward end at x=0.
Nx=length(x);
%**************************************************************************
%
% x=0 (=Inlet) ...................... x=L (=landward side of basin)
%
% So x=positive in landward direction
%
% U>0 = Flood flow U<0 = Ebb flow
%
%**************************************************************************
%**************************************************************************
% Bed level in basin
%**************************************************************************
H=10-8e-4*x; % Bottom profile. Linear sloping bottom. 2 m deep near landward boundary, 10 m deep near inlet.
dHdx(1:Nx)=-8e-4;
%**************************************************************************
% After a call to hydromodel flow velocity at each position as a function of
% time is known
%**************************************************************************
U=HydroModel2(t,Z,dZdt,H,dHdx,x,dx);
%**************************************************************************
% Here you have to calculate the sediment concentrations with the Groen
% model. This is a Matlab function which has as input the flow velocity, the relevant
% parameters, and time. For each position in the basin do a call to this
% Groenmodel.
for px=1:Nx
[C(px,1:Nt)]=GroenModel(U(px,1:Nt),t,deltaT, T, Ws, alpha, Kv);
end
%Tracking the behaviours and locating the peaks
% figure
% yyaxis left
% plot(t,C(1,:))
% hold on
% yyaxis right
% plot(t,U(1,:))
% hold off
%Peak sediment concentration at flood and ebb
C_Max=findpeaks(C(1,201:371));
%Difference between peaks
if length(C_Max)==1
Diff=abs(C_Max(1)-max(C(1,268:371)));
else
Diff=C_Max(1)-C_Max(2);
end
DIFF_ws_ii=[DIFF_ws_ii Diff];
end
figure
plot(WS,abs(DIFF_ws_ii)*1000)
title('Sensitivity analysis of difference in peak sediment concentration between peak flow and peak ebb for varying fall velocities (W_s)');
xlabel('W_{s} [m/s]');
ylabel('Concentration difference [g m^{-2}]');
grid on;
savefig('Matlab3_1_2_ii');
%% Part 1.2.c: Eddy Diffusivity
Ws=1e-3; % Fall velocity of sediment
alpha=1e-4; % Erosion coefficent
% Sensitivity analysis Kv
KV=linspace(1e-3,1e-1,5);
DIFF_kv_ii=[];
for i=1:5
Kv=KV(i);
%**************************************************************************
% Define time domain
%**************************************************************************
T=(12*60+25)*60; % We model only the M2 and M4 tide. Time is in seconds.
Tend=10*T; % Five tidal periods modeled -> for very fine sand and large erosion constants more tidal periods need to be solved
deltaT=300; % Time step of 5 minutes
t=0:deltaT:Tend;
Nt=length(t);
%**************************************************************************
% Prescribed sea surface elevations. It is assumed that d/dx zeta =0. M2
% and M4 are prescribed at the seaward boundary. So these are the sea surface heights in the entire
% basin at any moment in time.
%**************************************************************************
ampD1=0; % in part 1 and 2 D1=0. Depending on your estuary, you might want to prescribe D1 for part 3.
ampM2=1;
ampM4=0.2;
phaseD1=0;
phaseM2=0;
phaseM4=pi/2;
Z=ampD1*sin(pi*t/T + phaseD1)+ampM2*sin(2*pi*t/T + phaseM2)+ampM4*sin(4*pi*t/T + phaseM4); % Waterlevel prescribed as sine function.
dZdt=ampD1*1*pi/T*cos(pi*t/T+ phaseD1)+ampM2*2*pi/T*cos(2*pi*t/T+ phaseM2)+ampM4*4*pi/T*cos(4*pi*t/T + phaseM4); % Flow velocity will behave as a cosine function.
%**************************************************************************
% Spatial Domain and Grid
%**************************************************************************
L=1e4; % We model a simple basin with a length of ten km
dx=400; % Grid distance
x=0:dx:L; % x-coordinate. Seaward end is at x=L, landward end at x=0.
Nx=length(x);
%**************************************************************************
%
% x=0 (=Inlet) ...................... x=L (=landward side of basin)
%
% So x=positive in landward direction
%
% U>0 = Flood flow U<0 = Ebb flow
%
%**************************************************************************
%**************************************************************************
% Bed level in basin
%**************************************************************************
H=10-8e-4*x; % Bottom profile. Linear sloping bottom. 2 m deep near landward boundary, 10 m deep near inlet.
dHdx(1:Nx)=-8e-4;
%**************************************************************************
% After a call to hydromodel flow velocity at each position as a function of
% time is known
%**************************************************************************
U=HydroModel2(t,Z,dZdt,H,dHdx,x,dx);
%**************************************************************************
% Here you have to calculate the sediment concentrations with the Groen
% model. This is a Matlab function which has as input the flow velocity, the relevant
% parameters, and time. For each position in the basin do a call to this
% Groenmodel.
for px=1:Nx
[C(px,1:Nt)]=GroenModel(U(px,1:Nt),t,deltaT, T, Ws, alpha, Kv);
end
%Tracking the behaviours and locating the peaks
% figure
% yyaxis left
% plot(t,C(1,:))
% hold on
% yyaxis right
% plot(t,U(1,:))
% hold off
%Peak sediment concentration at flood and ebb
C_Max=findpeaks(C(1,201:371));
%Difference between peaks
if length(C_Max)==1
Diff=abs(C_Max(1)-max(C(1,268:371)));
else
Diff=C_Max(1)-C_Max(2);
end
DIFF_kv_ii=[DIFF_kv_ii Diff];
end
figure
plot(KV,abs(DIFF_kv_ii))
title('Sensitivity analysis of difference in peak sediment concentration between peak flow and peak ebb for varying eddy diffusivities (K_v)');
xlabel('K_{v} [m^{2}/s]');
ylabel('Concentration difference [kg m^{-2}]');
grid on;
savefig('Matlab3_1_2_iii');