-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEPAWTFT.tex
2015 lines (1858 loc) · 118 KB
/
EPAWTFT.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[aps,prb,reprint,showkeys,superscriptaddress]{revtex4-1}
\usepackage{subcaption}
\usepackage{bm,graphicx,tabularx,array,booktabs,dcolumn,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,siunitx}
\usepackage[version=4]{mhchem}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage[normalem]{ulem}
\definecolor{hughgreen}{RGB}{0, 128, 0}
\newcommand{\titou}[1]{\textcolor{red}{#1}}
\newcommand{\hugh}[1]{\textcolor{hughgreen}{#1}}
\newcommand{\hughDraft}[1]{\textcolor{orange}{#1}}
\newcommand{\trash}[1]{\textcolor{red}{\sout{#1}}}
\newcommand{\trashHB}[1]{\textcolor{hughgreen}{\sout{#1}}}
\newcommand{\antoine}[1]{\textcolor{cyan}{#1}}
\newcommand{\trashantoine}[1]{\textcolor{cyan}{\sout{#1}}}
\usepackage[
colorlinks=true,
citecolor=blue,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
breaklinks=true
]{hyperref}
\urlstyle{same}
\newcommand{\ctab}{\multicolumn{1}{c}{---}}
\newcommand{\latin}[1]{#1}
%\newcommand{\latin}[1]{\textit{#1}}
\newcommand{\ie}{\latin{i.e.}}
\newcommand{\eg}{\latin{e.g.}}
\newcommand{\etal}{\textit{et al.}}
\newcommand{\mc}{\multicolumn}
\newcommand{\fnm}{\footnotemark}
\newcommand{\fnt}{\footnotetext}
\newcommand{\mcc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\mr}{\multirow}
% operators
\newcommand{\bH}{\mathbf{H}}
\newcommand{\bV}{\mathbf{V}}
\newcommand{\bh}{\mathbf{h}}
\newcommand{\bQ}{\mathbf{Q}}
\newcommand{\bSig}{\mathbf{\Sigma}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\bp}{\mathbf{p}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\PT}{\mathcal{PT}}
\newcommand{\EPT}{E_{\PT}}
\newcommand{\laPT}{\lambda_{\PT}}
\newcommand{\EEP}{E_\text{EP}}
\newcommand{\laEP}{\lambda_\text{EP}}
\newcommand{\Ne}{N} % Number of electrons
\newcommand{\Nn}{M} % Number of nuclei
\newcommand{\hI}{\Hat{I}}
\newcommand{\hH}{\Hat{H}}
\newcommand{\hS}{\Hat{S}}
\newcommand{\hT}{\Hat{T}}
\newcommand{\hW}{\Hat{W}}
\newcommand{\hV}{\Hat{V}}
\newcommand{\hc}[2]{\Hat{c}_{#1}^{#2}}
\newcommand{\hn}[1]{\Hat{n}_{#1}}
\newcommand{\n}[1]{n_{#1}}
\newcommand{\Dv}{\Delta v}
\newcommand{\ra}{\rightarrow}
\newcommand{\up}{\uparrow}
\newcommand{\dw}{\downarrow}
% Center tabularx columns
\newcolumntype{Y}{>{\centering\arraybackslash}X}
% HF rotation angles
\newcommand{\ta}{\theta^{\,\alpha}}
\newcommand{\tb}{\theta^{\,\beta}}
\newcommand{\ts}{\theta^{\sigma}}
% Some constants
\renewcommand{\i}{\mathrm{i}} % Imaginary unit
\newcommand{\e}{\mathrm{e}} % Euler number
\newcommand{\rc}{r_{\text{c}}}
\newcommand{\lc}{\lambda_{\text{c}}}
\newcommand{\lp}{\lambda_{\text{p}}}
\newcommand{\lep}{\lambda_{\text{EP}}}
% Some energies
\newcommand{\Emp}{E_{\text{MP}}}
% Blackboard bold
\newcommand{\bbR}{\mathbb{R}}
\newcommand{\bbC}{\mathbb{C}}
% Making life easier
\newcommand{\Lup}{\mathcal{L}^{\uparrow}}
\newcommand{\Ldown}{\mathcal{L}^{\downarrow}}
\newcommand{\Lsi}{\mathcal{L}^{\sigma}}
\newcommand{\Rup}{\mathcal{R}^{\uparrow}}
\newcommand{\Rdown}{\mathcal{R}^{\downarrow}}
\newcommand{\Rsi}{\mathcal{R}^{\sigma}}
\newcommand{\vhf}{\Hat{v}_{\text{HF}}}
\newcommand{\whf}{\Psi_{\text{HF}}}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France.}
\newcommand{\UOX}{Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K.}
\begin{document}
\title{Perturbation Theory in the Complex Plane: Exceptional Points and Where to Find Them}
\author{Antoine \surname{Marie}}
\affiliation{\LCPQ}
\author{Hugh G.~A.~\surname{Burton}}
\email[Corresponding author: ]{hugh.burton@chem.ox.ac.uk}
\affiliation{\UOX}
\author{Pierre-Fran\c{c}ois \surname{Loos}}
\email[Corresponding author: ]{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\begin{abstract}
We explore the non-Hermitian extension of quantum chemistry in the complex plane and its link with perturbation theory.
We observe that the physics of a quantum system is intimately connected to the position of complex-valued energy singularities, known as exceptional points.
After presenting the fundamental concepts of non-Hermitian quantum chemistry in the complex plane, including the mean-field Hartree--Fock approximation and Rayleigh--Schr\"odinger perturbation theory, we provide a historical overview of the various research activities that have been performed on the physics of singularities.
In particular, we highlight seminal work on the convergence behaviour of perturbative series obtained within M{\o}ller--Plesset perturbation theory, and its links with quantum phase transitions.
We also discuss several resummation techniques (such as Pad\'e and quadratic approximants) that can improve the overall accuracy of the M{\o}ller--Plesset perturbative series in both convergent and divergent cases.
Each of these points is illustrated using the Hubbard dimer at half filling, which proves to be a versatile model for understanding the subtlety of analytically-continued perturbation theory in the complex plane.
\end{abstract}
\keywords{perturbation theory, complex plane, exceptional point, divergent series, resummation}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
\label{sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%
% SPIKE THE READER
Perturbation theory isn't usually considered in the complex plane.
Normally, it is applied using real numbers as one of very few available tools for
describing realistic quantum systems.
In particular, time-independent Rayleigh--Schr\"odinger perturbation theory\cite{RayleighBook,Schrodinger_1926}
has emerged as an instrument of choice among the vast array of methods developed for this purpose.%
\cite{SzaboBook,JensenBook,CramerBook,HelgakerBook,ParrBook,FetterBook,ReiningBook}
However, the properties of perturbation theory in the complex plane
are essential for understanding the quality of perturbative approximations on the real axis.
% Moller-Plesset
In electronic structure theory, the workhorse of time-independent perturbation theory is M\o{}ller--Plesset (MP)
theory,\cite{Moller_1934} which remains one of the most popular methods for computing the electron
correlation energy.\cite{Wigner_1934,Lowdin_1958}
This approach estimates the exact electronic energy by constructing a perturbative correction on top
of a mean-field Hartree--Fock (HF) approximation.\cite{SzaboBook}
The popularity of MP theory stems from its black-box nature, size-extensivity, and relatively low computational scaling,
making it easily applied in a broad range of molecular research.\cite{HelgakerBook}
However, it is now widely recognised that the series of MP approximations (defined for a given perturbation
order $n$ as MP$n$) can show erratic, slow, or divergent behaviour that limit its systematic improvability.%
\cite{Laidig_1985,Knowles_1985,Handy_1985,Gill_1986,Laidig_1987,Nobes_1987,Gill_1988,Gill_1988a,Lepetit_1988,Malrieu_2003}
As a result, practical applications typically employ only the lowest-order MP2 approach, while
the successive MP3, MP4, and MP5 (and higher order) terms are generally not considered to offer enough improvement
to justify their increased cost.
Turning the MP approximations into a convergent and
systematically improvable series largely remains an open challenge.
% COMPLEX PLANE
Our conventional view of electronic structure theory is centred around the Hermitian notion of quantised energy levels,
where the different electronic states of a molecule are discrete and energetically ordered.
The lowest energy state defines the ground electronic state, while higher energy states
represent electronic excited states.
However, an entirely different perspective on quantisation can be found by analytically continuing
quantum mechanics into the complex domain.
In this inherently non-Hermitian framework, the energy levels emerge as individual \textit{sheets} of a complex
multi-valued function and can be connected as one continuous \textit{Riemann surface}.\cite{BenderPTBook}
This connection is possible because the orderability of real numbers is lost when energies are extended to the
complex domain.
As a result, our quantised view of conventional quantum mechanics only arises from
restricting our domain to Hermitian approximations.
% NON-HERMITIAN HAMILTONIANS
Non-Hermitian Hamiltonians already have a long history in quantum chemistry and have been extensively used to
describe metastable resonance phenomena.\cite{MoiseyevBook}
Through the methods of complex-scaling\cite{Moiseyev_1998} and complex absorbing
potentials,\cite{Riss_1993,Ernzerhof_2006,Benda_2018} outgoing resonances can be stabilised as square-integrable
wave functions.
\titou{In these situations, the energy becomes complex-valued, with the real and imaginary components allowing
the resonance energy and lifetime to be computed respectively.}
We refer the interested reader to the excellent book by Moiseyev for a general overview. \cite{MoiseyevBook}
% EXCEPTIONAL POINTS
The Riemann surface for the electronic energy $E(\lambda)$ with a coupling parameter $\lambda$ can be
constructed by analytically continuing the function into the complex $\lambda$ domain.
In the process, the ground and excited states become smoothly connected and form a continuous complex-valued
energy surface.
\textit{Exceptional points} (EPs) can exist on this energy surface, corresponding to branch point
singularities where two (or more) states become exactly degenerate.%
\cite{MoiseyevBook,Heiss_1988,Heiss_1990,Heiss_1999,Berry_2011,Heiss_2012,Heiss_2016,Benda_2018}
While EPs can be considered as the non-Hermitian analogues of conical intersections,\cite{Yarkony_1996}
the behaviour of their eigenvalues near a degeneracy could not be more different.
Incredibly, following the eigenvalues around an EP leads to the interconversion of the degenerate states,
and multiple loops around the EP are required to recover the initial energy.\cite{MoiseyevBook,Heiss_2016,Benda_2018}
In contrast, encircling a conical intersection leaves the states unchanged.
Furthermore, while the eigenvectors remain orthogonal at a conical intersection, the eigenvectors at an EP
become identical and result in a \textit{self-orthogonal} state. \cite{MoiseyevBook}
An EP effectively creates a ``portal'' between ground and excited-states in the complex plane.%
\cite{Burton_2019,Burton_2019a}
This transition between states has been experimentally observed in electronics,
microwaves, mechanics, acoustics, atomic systems and optics.\cite{Bittner_2012,Chong_2011,Chtchelkatchev_2012,Doppler_2016,Guo_2009,Hang_2013,Liertzer_2012,Longhi_2010,Peng_2014, Peng_2014a,Regensburger_2012,Ruter_2010,Schindler_2011,Szameit_2011,Zhao_2010,Zheng_2013,Choi_2018,El-Ganainy_2018}
% MP THEORY IN THE COMPLEX PLANE
The MP energy correction can be considered as a function of the perturbation parameter $\lambda$.
When the domain of $\lambda$ is extended to the complex plane, EPs can also occur in the MP energy.
Although these EPs are generally complex-valued,
their positions are intimately related to the
convergence of the perturbation expansion on the real axis.%
\cite{BenderBook,Olsen_1996,Olsen_2000,Olsen_2019,Mihalka_2017a,Mihalka_2017b,Mihalka_2019}
Furthermore, the existence of an avoided crossing on the real axis is indicative of a nearby EP
in the complex plane.
Our aim in this article is to provide a comprehensive review of the fundamental relationship between EPs
and the convergence properties of the MP series.
In doing so, we will demonstrate how understanding the MP energy in the complex plane can
be harnessed to significantly improve estimates of the exact energy using only the lowest-order terms
in the MP series.
In Sec.~\ref{sec:EPs}, we introduce the key concepts such as Rayleigh--Schr\"odinger perturbation theory and the mean-field HF approximation, and discuss their non-Hermitian analytic continuation into the complex plane.
Section \ref{sec:MP} presents MP perturbation theory and we report a comprehensive historical overview of the research that
has been performed on the physics of MP singularities.
In Sec.~\ref{sec:Resummation}, we discuss several resummation techniques for improving the accuracy
of low-order MP approximations, including Pad\'e and quadratic approximants.
Finally, we draw our conclusions in Sec.~\ref{sec:ccl} and highlight our perspective on directions for
future research.
Throughout this review, we present illustrative and pedagogical examples based on the ubiquitous
Hubbard dimer, reinforcing the amazing versatility of this powerful simplistic model.
%%%%%%%%%%%%%%%%%%%%%%%
\section{Exceptional Points in Electronic Structure}
\label{sec:EPs}
%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Time-Independent Schr\"odinger Equation}
\label{sec:TDSE}
%%%%%%%%%%%%%%%%%%%%%%%
Within the Born-Oppenheimer approximation, the exact molecular Hamiltonian with $\Ne$ electrons and
$\Nn$ (clamped) nuclei is defined for a given nuclear framework as
\begin{equation}\label{eq:ExactHamiltonian}
\hH(\vb{R}) =
- \frac{1}{2} \sum_{i}^{\Ne} \grad_i^2
- \sum_{i}^{\Ne} \sum_{A}^{\Nn} \frac{Z_A}{\abs{\vb{r}_i-\vb{R}_A}}
+ \sum_{i<j}^{\Ne}\frac{1}{\abs{\vb{r}_i-\vb{r}_j}},
\end{equation}
where $\vb{r}_i$ defines the position of the $i$th electron, $\vb{R}_{A}$ and $Z_{A}$ are the position
and charge of the $A$th nucleus respectively, and $\vb{R} = (\vb{R}_{1}, \dots, \vb{R}_{\Nn})$ is a
collective vector for the nuclear positions.
The first term represents the kinetic energy of the electrons, while
the two following terms account for the electron-nucleus attraction and the electron-electron repulsion.
% EXACT SCHRODINGER EQUATION
The exact many-electron wave function at a given nuclear geometry $\Psi(\vb{R})$ corresponds
to the solution of the (time-independent) Schr\"{o}dinger equation
\begin{equation}
\hH(\vb{R})\, \Psi(\vb{R}) = E(\vb{R})\, \Psi(\vb{R}),
\label{eq:SchrEq}
\end{equation}
with the eigenvalues $E(\vb{R})$ providing the exact energies.
The energy $E(\vb{R})$ can be considered as a ``one-to-many'' function since each input nuclear geometry
yields several eigenvalues corresponding to the ground and excited states of the exact spectrum.
However, exact solutions to Eq.~\eqref{eq:SchrEq} are only possible in the simplest of systems, such as
the one-electron hydrogen atom and some specific two-electron systems with well-defined mathematical
properties.\cite{Taut_1993,Loos_2009b,Loos_2010e,Loos_2012}
In practice, approximations to the exact Schr\"{o}dinger equation must be introduced, including
perturbation theories and the Hartree--Fock approximation considered in this review.
In what follows, we will drop the parametric dependence on the nuclear geometry and,
unless otherwise stated, atomic units will be used throughout.
%===================================%
\subsection{Exceptional Points in the Hubbard Dimer}
\label{sec:example}
%===================================%
%%% FIG 1 %%%
\begin{figure*}[t]
\begin{subfigure}{0.49\textwidth}
\includegraphics[height=0.65\textwidth]{fig1a}
\subcaption{Real axis \label{subfig:FCI_real}}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\includegraphics[height=0.65\textwidth]{fig1b}
\subcaption{Complex plane \label{subfig:FCI_cplx}}
\end{subfigure}
\caption{%
Exact energies for the Hubbard dimer ($U=4t$) as functions of $\lambda$ on the real axis (\subref{subfig:FCI_real}) and in the complex plane (\subref{subfig:FCI_cplx}).
Only the \titou{real component of the} interacting closed-shell singlet \titou{energies} are shown in the complex plane,
becoming degenerate at the EP (black dot).
Following a contour around the EP (black solid) interchanges the states, while a second rotation (black dashed)
returns the states to their original energies.
\label{fig:FCI}}
\end{figure*}
To illustrate the concepts discussed throughout this article, we consider the symmetric Hubbard dimer at half filling, \ie, with two opposite-spin fermions.
Analytically solvable models are essential in theoretical chemistry and physics as their mathematical simplicity compared to realistic systems (e.g., atoms and molecules) allows new concepts and methods to be
easily tested while retaining the key physical phenomena.
Using the (localised) site basis, the Hilbert space of the Hubbard dimer comprises the four configurations
\begin{align*}
& \ket{\Lup \Ldown}, & & \ket{\Lup\Rdown}, & & \ket{\Rup\Ldown}, & & \ket{\Rup\Rdown},
\end{align*}
where $\Lsi$ ($\Rsi$) denotes an electron with spin $\sigma$ on the left (right) site.
The exact, or full configuration interaction (FCI), Hamiltonian is then
\begin{equation}
\label{eq:H_FCI}
\bH =
\begin{pmatrix}
U & - t & - t & 0 \\
- t & 0 & 0 & - t \\
- t & 0 & 0 & - t \\
0 & - t & - t & U \\
\end{pmatrix},
\end{equation}
where $t$ is the hopping parameter and $U$ is the on-site Coulomb repulsion.
We refer the interested reader to Refs.~\onlinecite{Carrascal_2015,Carrascal_2018} for more details about this system.
The parameter $U$ controls the strength of the electron correlation.
In the weak correlation regime (small $U$), the kinetic energy dominates and the electrons are delocalised over both sites.
In the large-$U$ (or strong correlation) regime, the electron repulsion term becomes dominant
and the electrons localise on opposite sites to minimise their Coulomb repulsion.
This phenomenon is often referred to as Wigner crystallisation. \cite{Wigner_1934}
To illustrate the formation of an EP, we scale the off-diagonal coupling strength by introducing the complex parameter $\lambda$ through the transformation $t \to \lambda t$ to give the parameterised Hamiltonian $\hH(\lambda)$.
When $\lambda$ is real, the Hamiltonian is Hermitian with the distinct (real-valued) (eigen)energies
\begin{subequations}
\begin{align}
E_{\mp} &= \frac{1}{2} \qty(U \mp \sqrt{ (4 \lambda t)^2 + U^2 } ),
\label{eq:singletE}
\\
E_{\text{T}} &= 0,
\\
E_{\text{S}} &= U.
\end{align}
\end{subequations}
While the open-shell triplet ($E_{\text{T}}$) and singlet ($E_{\text{S}}$) are independent of $\lambda$, the closed-shell singlet ground state ($E_{-}$) and doubly-excited state ($E_{+}$) couple strongly to form an avoided crossing at $\lambda=0$ (see Fig.~\ref{subfig:FCI_real}).
\titou{In contrast, when $\lambda$ is complex, the energies may become complex-valued, with the real components shown in
Fig.~\ref{subfig:FCI_cplx}.
Although the imaginary component of the energy is linked to resonance lifetimes elsewhere in non-Hermitian
quantum mechanics, \cite{MoiseyevBook} its physical interpretation in the current context is unclear.
Throughout this work, we will generally consider and plot only the real component of any complex-valued energies.
}
At non-zero values of $U$ and $t$, these closed-shell singlets can only become degenerate at a pair of complex conjugate points in the complex $\lambda$ plane
\begin{equation}
\lambda_{\text{EP}} = \pm \i \frac{U}{4t},
\end{equation}
with energy
\begin{equation}
\label{eq:E_EP}
E_\text{EP} = \frac{U}{2}.
\end{equation}
These $\lambda$ values correspond to so-called EPs and connect the ground and excited states in the complex plane.
\titou{Crucially, the ground- and excited-state wave functions at an EP become \emph{identical} rather than just degenerate.}
Furthermore, the energy surface becomes non-analytic at $\lambda_{\text{EP}}$ and a square-root singularity forms with two branch cuts running along the imaginary axis from $\lambda_{\text{EP}}$ to $\pm \i \infty$ (see Fig.~\ref{subfig:FCI_cplx}).
\titou{Along these branch cuts, the real components of the energies are equivalent and appear to give a seam
of intersection, but a strict degeneracy is avoided because the imaginary components are different.}
On the real $\lambda$ axis, these EPs lead to the singlet avoided crossing at $\lambda = \Re(\lambda_{\text{EP}})$.
The ``shape'' of this avoided crossing is related to the magnitude of $\Im(\lambda_{\text{EP}})$, with smaller values giving a ``sharper'' interaction.
In the limit $U/t \to 0$, the two EPs converge at $\lep = 0$ to create a conical intersection with
a gradient discontinuity on the real axis.
\titou{This gradient discontinuity defines a critical point in the ground-state energy,
where a sudden change occurs in the electronic wave function, and can be considered as a zero-temperature quantum phase transition.}
\cite{Heiss_1988,Heiss_2002,Borisov_2015,Sindelka_2017,CarrBook,Vojta_2003,SachdevBook,GilmoreBook}
Remarkably, the existence of these square-root singularities means that following a complex contour around an EP in the complex $\lambda$ plane will interconvert the closed-shell ground and excited states (see Fig.~\ref{subfig:FCI_cplx}).
This behaviour can be seen by expanding the radicand in Eq.~\eqref{eq:singletE} as a Taylor series around $\lambda_{\text{EP}}$ to give
\begin{equation}
E_{\pm} \approx E_{\text{EP}} \pm \sqrt{32t^2 \lambda_{\text{EP}}} \sqrt{\lambda - \lambda_{\text{EP}}}.
\end{equation}
Parametrising the complex contour as $\lambda(\theta) = \lambda_{\text{EP}} + R \exp(\i \theta)$ gives the continuous energy pathways
\begin{equation}
E_{\pm} \qty(\theta) \approx E_{\text{EP}} \pm \sqrt{32t^2 \lambda_{\text{EP}} R}\, \exp(\i \theta/2)
\end{equation}
such that $E_{\pm}(2\pi) = E_{\mp}(0)$ and $E_{\pm}(4\pi) = E_{\pm}(0)$.
As a result, completely encircling an EP leads to the interconversion of the two interacting states, while a second complete rotation returns the two states to their original energies.
Additionally, the wave functions can pick up a geometric phase in the process, and four complete loops are required to recover their starting forms.\cite{MoiseyevBook}
% LOCATING EPS
To locate EPs in practice, one must simultaneously solve
\begin{subequations}
\begin{align}
\label{eq:PolChar}
\det[\hH(\lambda) - E \hI] & = 0,
\\
\label{eq:DPolChar}
\pdv{E}\det[\hH(\lambda) - E \hI] & = 0,
\end{align}
\end{subequations}
where $\hI$ is the identity operator.\cite{Cejnar_2007}
Equation \eqref{eq:PolChar} is the well-known secular equation providing the (eigen)energies of the system.
If the energy is also a solution of Eq.~\eqref{eq:DPolChar}, then this energy value is at least two-fold degenerate.
These degeneracies can be conical intersections between two states with different symmetries
for real values of $\lambda$,\cite{Yarkony_1996} or EPs between two states with the
same symmetry for complex values of $\lambda$.
%============================================================%
\subsection{Rayleigh--Schr\"odinger Perturbation Theory}
%============================================================%
One of the most common routes to approximately solving the Schr\"odinger equation
is to introduce a perturbative expansion of the exact energy.
% SUMMARY OF RS-PT
Within Rayleigh--Schr\"odinger perturbation theory, the time-independent Schr\"odinger equation
is recast as
\begin{equation}
\hH(\lambda) \Psi(\lambda)
= \qty(\hH^{(0)} + \lambda \hV ) \Psi(\lambda)
= E(\lambda) \Psi(\lambda),
\label{eq:SchrEq-PT}
\end{equation}
where $\hH^{(0)}$ is a zeroth-order Hamiltonian and $\hV = \hH - \hH^{(0)}$ represents the perturbation operator.
Expanding the wave function and energy as power series in $\lambda$ as
\begin{subequations}
\begin{align}
\Psi(\lambda) &= \sum_{k=0}^{\infty} \lambda^{k}\,\Psi^{(k)},
\label{eq:psi_expansion}
\\
E(\lambda) &= \sum_{k=0}^{\infty} \lambda^{k}\,E^{(k)},
\label{eq:E_expansion}
\end{align}
\end{subequations}
solving the corresponding perturbation equations up to a given order $n$, and
setting $\lambda = 1$ then yields approximate solutions to Eq.~\eqref{eq:SchrEq}.
% MATHEMATICAL REPRESENTATION
Mathematically, Eq.~\eqref{eq:E_expansion} corresponds to a Taylor series expansion of the exact energy
around the reference system $\lambda~=~0$.
The energy of the target ``physical'' system is recovered at the point $\lambda = 1$.
However, like all series expansions, Eq.~\eqref{eq:E_expansion} has a radius of convergence $\rc$.
When $\rc < 1$, the Rayleigh--Schr\"{o}dinger expansion will diverge
for the physical system.
The value of $\rc$ can vary significantly between different systems and strongly depends on the particular decomposition
of the reference and perturbation Hamiltonians in Eq.~\eqref{eq:SchrEq-PT}.\cite{Mihalka_2017b}
%
% LAMBDA IN THE COMPLEX PLANE
From complex analysis, \cite{BenderBook} the radius of convergence for the energy can be obtained by looking for the
non-analytic singularities of $E(\lambda)$ in the complex $\lambda$ plane.
This property arises from the following theorem: \cite{Goodson_2011}
\begin{quote}
\it
``The Taylor series about a point $z_0$ of a function over the complex $z$ plane will converge at a value $z_1$
if the function is non-singular at all values of $z$ in the circular region centred at $z_0$ with radius $\abs{z_1-z_0}$.
If the function has a singular point $z_s$ such that $\abs{z_s-z_0} < \abs{z_1-z_0}$,
then the series will diverge when evaluated at $z_1$.''
\end{quote}
As a result, the radius of convergence for a function is equal to the distance from the origin of the closest singularity
in the complex plane, referred to as the ``dominant'' singularity.
This singularity may represent a pole of the function, or a branch point (\eg, square-root or logarithmic)
in a multi-valued function.
For example, the simple function
\begin{equation} \label{eq:DivExample}
f(x)=\frac{1}{1+x^4}.
\end{equation}
is smooth and infinitely differentiable for $x \in \mathbb{R}$, and one might expect that its Taylor series expansion would
converge in this domain.
However, this series diverges for $x \ge 1$.
This divergence occurs because $f(x)$ has four poles in the complex
($\e^{\i\pi/4}$, $\e^{-\i\pi/4}$, $\e^{\i3\pi/4}$, and $\e^{-\i3\pi/4}$) with a modulus equal to $1$, demonstrating
that complex singularities are essential to fully understand the series convergence on the real axis.\cite{BenderBook}
The radius of convergence for the perturbation series Eq.~\eqref{eq:E_expansion} is therefore dictated by the magnitude $r_c = \abs{\lambda_c}$ of the
singularity in $E(\lambda)$ that is closest to the origin.
Note that when $\abs{\lambda} = r_c$, one cannot \textit{a priori} predict if the series is convergent or not.
For example, the series $\sum_{k=1}^\infty \lambda^k/k$ diverges at $\lambda = 1$ but converges at $\lambda = -1$.
Like the exact system in Sec.~\ref{sec:example}, the perturbation energy $E(\lambda)$ represents
a ``one-to-many'' function with the output elements representing an approximation to both the ground and excited states.
The most common singularities on $E(\lambda)$ therefore correspond to non-analytic EPs in the complex
$\lambda$ plane where two states become degenerate.
\titou{Additional singularities can also arise at critical points of the energy.
A critical point corresponds to the intersection of two energy surfaces
where the eigenstates remain distinct but a gradient discontinuity occurs in
the ground-state energy.
In contrast, at a square-root branch point, both the energies and the associated wave functions
of the intersecting surfaces become identical.}
Later we will demonstrate how the choice of reference Hamiltonian controls the position of these EPs, and
ultimately determines the convergence properties of the perturbation series.
%===========================================%
\subsection{Hartree--Fock Theory}
\label{sec:HF}
%===========================================%
% SUMMARY OF HF
In the HF approximation, the many-electron wave function is approximated as a single Slater determinant $\whf(\vb{x}_1,\ldots,\vb{x}_\Ne)$, where $\vb{x} = (\sigma,\vb{r})$ is a composite vector gathering spin and spatial coordinates.
This Slater determinant is defined as an antisymmetric combination of $\Ne$ (real-valued) occupied one-electron spin-orbitals $\phi_p(\vb{x})$, which are, by definition, eigenfunctions of the one-electron Fock operator
\begin{equation}\label{eq:FockOp}
\Hat{f}(\vb{x}) \phi_p(\vb{x}) = \qty[ \Hat{h}(\vb{x}) + \vhf(\vb{x}) ] \phi_p(\vb{x}) = \epsilon_p \phi_p(\vb{x}).
\end{equation}
Here the (one-electron) core Hamiltonian is
\begin{equation}
\label{eq:Hcore}
\Hat{h}(\vb{x}) = -\frac{\grad^2}{2} + \sum_{A}^{\Nn} \frac{Z_A}{\abs{\vb{r}-\vb{R}_A}}
\end{equation}
and
\begin{equation}
\vhf(\vb{x}) = \sum_i^{\Ne} \qty[ \Hat{J}_i(\vb{x}) - \Hat{K}_i(\vb{x}) ]
\end{equation}
is the HF mean-field electron-electron potential with
\begin{subequations}
\begin{gather}
\label{eq:CoulOp}
\Hat{J}_i(\vb{x})\phi_j(\vb{x})=\qty(\int \phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_i(\vb{x}') \dd\vb{x}' ) \phi_j(\vb{x}),
\\
\label{eq:ExcOp}
\Hat{K}_i(\vb{x})\phi_j(\vb{x})=\qty(\int \phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_j(\vb{x}') \dd\vb{x}')\phi_i(\vb{x}),
\end{gather}
\end{subequations}
defining the Coulomb and exchange operators (respectively) in the spin-orbital basis.\cite{SzaboBook}
The HF energy is then defined as
\begin{equation}
\label{eq:E_HF}
E_\text{HF} = \frac{1}{2} \sum_i^{\Ne} \qty( h_i + f_i ),
\end{equation}
with the corresponding matrix elements
\begin{align}
h_i & = \mel{\phi_i}{\Hat{h}}{\phi_i},
&
f_i & = \mel{\phi_i}{\Hat{f}}{\phi_i}.
\end{align}
The optimal HF wave function is identified by using the variational principle to minimise the HF energy.
For any system with more than one electron, the resulting Slater determinant is not an eigenfunction of the exact Hamiltonian $\hH$.
However, it is by definition an eigenfunction of the approximate many-electron HF Hamiltonian constructed
from the one-electron Fock operators as
\begin{equation}\label{eq:HFHamiltonian}
\hH_{\text{HF}} = \sum_{i}^{\Ne} f(\vb{x}_i).
\end{equation}
From hereon, $i$ and $j$ denote occupied orbitals, $a$ and $b$ denote unoccupied (or virtual) orbitals, while $p$, $q$, $r$, and $s$ denote arbitrary orbitals.
% BRIEF FLAVOURS OF HF
In the most flexible variant of real HF theory (generalised HF) the one-electron orbitals can be complex-valued
and contain a mixture of spin-up and spin-down components.\cite{Mayer_1993,Jimenez-Hoyos_2011}
However, the application of HF theory with some level of constraint on the orbital structure is far more common.
Forcing the spatial part of the orbitals to be the same for spin-up and spin-down electrons leads to restricted HF (RHF) method,
while allowing different orbitals for different spins leads to the so-called unrestricted HF (UHF) approach.\cite{StuberPaldus}
The advantage of the UHF approximation is its ability to correctly describe strongly correlated systems,
such as antiferromagnetic phases\cite{Slater_1951} or the dissociation of the hydrogen dimer.\cite{Coulson_1949}
However, by allowing different orbitals for different spins, the UHF wave function is no longer required to be an eigenfunction of
the total spin operator $\hat{\mathcal{S}}^2$, leading to ``spin-contamination''.
%================================================================%
\subsection{Hartree--Fock in the Hubbard Dimer}
\label{sec:HF_hubbard}
%================================================================%
%%% FIG 2 %%%
% HF energies as a function of U/t
%%%%%%%%%%%%%%%%%
\begin{figure}
\includegraphics[width=\linewidth]{fig2}
\caption{\label{fig:HF_real}
RHF and UHF energies in the Hubbard dimer as a function of the correlation strength $U/t$.
The symmetry-broken UHF solution emerges at the coalescence point $U=2t$ (black dot), often known as the Coulson--Fischer point.}
\end{figure}
%%%%%%%%%%%%%%%%%
In the Hubbard dimer, the HF energy can be parametrised using two rotation angles $\ta$ and $\tb$ as
\begin{equation}
\label{eq:EHF}
E_\text{HF}(\ta, \tb) = -t\, \qty( \sin \ta + \sin \tb ) + \frac{U}{2} \qty( 1 + \cos \ta \cos \tb ),
\end{equation}
where we have introduced \titou{occupied $\phi_1^{\sigma}$} and \titou{unoccupied $\phi_2^{\sigma}$} molecular orbitals for
the spin-$\sigma$ electrons as
\begin{subequations}
\begin{align}
\label{eq:psi1}
\titou{\phi_1^{\sigma}} & = \hphantom{-} \cos(\frac{\ts}{2}) \Lsi + \sin(\frac{\ts}{2}) \Rsi,
\\
\label{eq:psi2}
\titou{\phi_2^{\sigma}} & = - \sin(\frac{\ts}{2}) \Lsi + \cos(\frac{\ts}{2}) \Rsi
\end{align}
\label{eq:RHF_orbs}
\end{subequations}
\titou{Equations \eqref{eq:EHF}, \eqref{eq:psi1}, and \eqref{eq:psi2} are valid for both RHF and UHF.}
In the weak correlation regime $0 \le U \le 2t$, the angles which minimise the HF energy,
\ie, $\pdv*{E_\text{HF}}{\ts} = 0$, are
\begin{equation}
\ta_\text{RHF} = \tb_\text{RHF} = \pi/2,
\end{equation}
giving the molecular orbitals
\begin{align}
\titou{\phi_{1,\text{RHF}}^{\sigma}} & = \frac{\Lsi + \Rsi}{\sqrt{2}},
&
\titou{\phi_{2,\text{RHF}}^{\sigma}} & = \frac{\Lsi - \Rsi}{\sqrt{2}},
\end{align}
and the ground-state RHF energy (Fig.~\ref{fig:HF_real})
\begin{equation}
E_\text{RHF} \equiv E_\text{HF}(\ta_\text{RHF}, \tb_\text{RHF}) = -2t + \frac{U}{2}.
\end{equation}
\titou{Here, the molecular orbitals respectively transform
according to the $\Sigma_\text{g}^{+}$ and $\Sigma_\text{u}^{+}$ irreducible representations of
the $D_{\infty \text{h}}$ point group that represents the symmetric Hubbard dimer.
We can therefore consider these as symmetry-pure molecular orbitals.}
However, in the strongly correlated regime $U>2t$, the closed-shell orbital restriction prevents RHF from
modelling the correct physics with the two electrons on opposite sites.
%%% FIG 3 %%%
% Analytic Continuation of HF
%%%%%%%%%%%%%%%%%
\begin{figure*}[t]
\begin{subfigure}{0.49\textwidth}
\includegraphics[height=0.65\textwidth,trim={0pt 0pt 0pt -35pt},clip]{fig3a}
\subcaption{\label{subfig:UHF_cplx_angle}}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\includegraphics[height=0.65\textwidth]{fig3b}
\subcaption{\label{subfig:UHF_cplx_energy}}
\end{subfigure}
\caption{%
(\subref{subfig:UHF_cplx_angle}) Real component of the UHF angle $\ta_{\text{UHF}}$ for $\lambda \in \bbC$ in the Hubbard dimer for $U/t = 2$.
Symmetry-broken solutions correspond to individual sheets and become equivalent at
the \textit{quasi}-EP $\lambda_{\text{c}}$ (black dot).
The RHF solution is independent of $\lambda$, giving the constant plane at $\pi/2$.
(\subref{subfig:UHF_cplx_energy}) The corresponding HF energy surfaces show a non-analytic
point at the \textit{quasi}-EP.
\label{fig:HF_cplx}}
\end{figure*}
%%%%%%%%%%%%%%%%%
As the on-site repulsion is increased from 0, the HF approximation reaches a critical value at $U=2t$ where an alternative
UHF solution appears with a lower energy than the RHF one.
Note that the RHF wave function remains a genuine solution of the HF equations for $U \ge 2t$, but corresponds to a saddle point
of the HF energy rather than a minimum.
This critical point is analogous to the infamous Coulson--Fischer point identified in the hydrogen dimer.\cite{Coulson_1949}
For $U \ge 2t$, the optimal orbital rotation angles for the UHF orbitals become
\begin{subequations}
\begin{align}
\ta_\text{UHF} & = \arctan (-\frac{2t}{\sqrt{U^2 - 4t^2}}),
\label{eq:ta_uhf}
\\
\tb_\text{UHF} & = \arctan (+\frac{2t}{\sqrt{U^2 - 4t^2}}),
\label{eq:tb_uhf}
\end{align}
\end{subequations}
with the corresponding UHF ground-state energy (Fig.~\ref{fig:HF_real})
\begin{equation}
E_\text{UHF} \equiv E_\text{HF}(\ta_\text{UHF}, \tb_\text{UHF}) = - \frac{2t^2}{U}.
\end{equation}
\titou{The molecular orbitals of the lower-energy UHF solution do not transform as an irreducible
representation of the $D_{\infty \text{h}}$ point group and therefore break spatial symmetry.
Allowing different orbitals for the different spins also means that the
overall wave function is no longer an eigenfunction of the $\cS^2$ operator and can be considered to break spin symmetry.
This combined spatial and spin symmetry-breaking occurs for all $U \ge 2t$.}
Furthermore, time-reversal symmetry dictates that this UHF wave function must be degenerate with its spin-flipped counterpart, obtained
by swapping $\ta_{\text{UHF}}$ and $\tb_{\text{UHF}}$ in Eqs.~\eqref{eq:ta_uhf} and \eqref{eq:tb_uhf}.
This type of symmetry breaking is also called a spin-density wave in the physics community as the system
``oscillates'' between the two symmetry-broken configurations. \cite{GiulianiBook}
Spatial symmetry breaking can also occur in RHF theory when a charge-density wave is formed from an oscillation
between the two closed-shell configurations with both electrons localised on one site or the other.\cite{StuberPaldus,Fukutome_1981}
%===============================================%
\subsection{Self-Consistency as a Perturbation}
%===============================================%
% INTRODUCE PARAMETRISED FOCK HAMILTONIAN
The inherent non-linearity in the Fock eigenvalue problem arises from self-consistency
in the HF approximation, and is usually solved through an iterative approach.\cite{Roothaan_1951,Hall_1951}
Alternatively, the non-linear terms arising from the Coulomb and exchange operators can
be considered as a perturbation from the core Hamiltonian \eqref{eq:Hcore} by introducing the
transformation $U \to \lambda\, U$, giving the parametrised Fock operator
\begin{equation}
\Hat{f}(\vb{x} ; \lambda) = \Hat{h}(\vb{x}) + \lambda\, \vhf(\vb{x}).
\end{equation}
The orbitals in the reference problem $\lambda=0$ correspond to the symmetry-pure eigenfunctions of the one-electron core
Hamiltonian, while self-consistent solutions at $\lambda = 1$ represent the orbitals of the true HF solution.
% INTRODUCE COMPLEX ANALYTIC-CONTINUATION
For real $\lambda$, the self-consistent HF energies at given (real) $U$ and $t$ values
in the Hubbard dimer directly mirror the energies shown in Fig.~\ref{fig:HF_real},
with coalesence points at
\begin{equation}
\lambda_{\text{c}} = \pm \frac{2t}{U}.
\label{eq:scaled_fock}
\end{equation}
In contrast, when $\lambda$ becomes complex, the HF equations become non-Hermitian and
each HF solution can be analytically continued for all $\lambda$ values using
the holomorphic HF approach.\cite{Hiscock_2014,Burton_2016,Burton_2018}
Remarkably, the coalescence point in this analytic continuation emerges as a
\textit{quasi}-EP on the real $\lambda$ axis (Fig.~\ref{fig:HF_cplx}), where
the different HF solutions become equivalent but not self-orthogonal.\cite{Burton_2019}
By analogy with perturbation theory, the regime where this \textit{quasi}-EP occurs
within $\lambda_{\text{c}} \le 1$ can be interpreted as an indication that
the symmetry-pure reference orbitals no longer provide a qualitatively
accurate representation for the true HF ground state at $\lambda = 1$.
For example, in the Hubbard dimer with $U > 2t$, one finds $\lambda_{\text{c}} < 1$ and the symmetry-pure orbitals
do not provide a good representation of the HF ground state.
In contrast, $U < 2t$ yields $\lambda_{\text{c}} > 1$ and corresponds to
the regime where the HF ground state is correctly represented by symmetry-pure orbitals.
% COMPLEX ADIABATIC CONNECTION
We have recently shown that the complex scaled Fock operator \eqref{eq:scaled_fock}
also allows states of different symmetries to be interconverted by following a well-defined
contour in the complex $\lambda$-plane.\cite{Burton_2019}
In particular, by slowly varying $\lambda$ in a similar (yet different) manner
to an adiabatic connection in density-functional theory,\cite{Langreth_1975,Gunnarsson_1976,Zhang_2004}
a ground-state wave function can be ``morphed'' into an excited-state wave function
via a stationary path of HF solutions.
This novel approach to identifying excited-state wave functions demonstrates the fundamental
role of \textit{quasi}-EPs in determining the behaviour of the HF approximation.
Furthermore, the complex-scaled Fock operator can be used routinely to construct analytic
continuations of HF solutions beyond the points where real HF solutions
coalesce and vanish.\cite{Burton_2019b}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{M{\o}ller--Plesset Perturbation Theory in the Complex Plane}
\label{sec:MP}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%=====================================================%
\subsection{Background Theory}
%=====================================================%
In electronic structure, the HF Hamiltonian \eqref{eq:HFHamiltonian} is often used as the zeroth-order Hamiltonian
to define M\o{}ller--Plesset (MP) perturbation theory.\cite{Moller_1934}
This approach can recover a large proportion of the electron correlation energy,\cite{Lowdin_1955a,Lowdin_1955b,Lowdin_1955c}
and provides the foundation for numerous post-HF approximations.
With the MP partitioning, the parametrised perturbation Hamiltonian becomes
\begin{multline}\label{eq:MPHamiltonian}
\hH(\lambda) =
\sum_{i}^{N} \qty[ - \frac{\grad_i^2}{2} - \sum_{A}^{M} \frac{Z_A}{\abs{\vb{r}_i-\vb{R}_A}} ]
\\
+ (1-\lambda) \sum_{i}^{N} \vhf(\vb{x}_i)
+ \lambda\sum_{i<j}^{N}\frac{1}{\abs{\vb{r}_i-\vb{r}_j}}.
\end{multline}
Any set of orbitals can be used to define the HF Hamiltonian, although either the RHF or UHF orbitals are usually chosen to
define the RMP or UMP series respectively.
The MP energy at a given order $n$ (\ie, MP$n$) is then defined as
\begin{equation}
E_{\text{MP}n}= \sum_{k=0}^n E_{\text{MP}}^{(k)},
\end{equation}
where $E_{\text{MP}}^{(k)}$ is the $k$th-order MP correction and
\begin{equation}
E_{\text{MP1}} = E_{\text{MP}}^{(0)} + E_{\text{MP}}^{(1)} = E_\text{HF}.
\end{equation}
The second-order MP2 energy correction is given by
\begin{equation}\label{eq:EMP2}
E_{\text{MP}}^{(2)} = \frac{1}{4} \sum_{ij} \sum_{ab} \frac{\abs{\mel{ij}{}{ab}}^2}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b},
\end{equation}
where $\mel{pq}{}{rs} = \braket{pq}{rs} - \braket{pq}{sr}$ are the anti-symmetrised two-electron integrals
in the molecular spin-orbital basis\cite{Gill_1994}
\begin{equation}
\braket{pq}{rs}
= \iint \dd\vb{x}_1\dd\vb{x}_2
\frac{\phi^{*}_p(\vb{x}_1)\phi^{*}_q(\vb{x}_2)\phi^{\vphantom{*}}_r(\vb{x}_1)\phi^{\vphantom{*}}_s(\vb{x}_2)}%
{\abs{\vb{r}_1 - \vb{r}_2}}.
\end{equation}
While most practical calculations generally consider only the MP2 or MP3 approximations, higher order terms can
be computed to understand the convergence of the MP$n$ series.\cite{Handy_1985}
\textit{A priori}, there is no guarantee that this series will provide the smooth convergence that is desirable for a
systematically improvable theory.
In fact, when the reference HF wave function is a poor approximation to the exact wave function,
for example in multi-configurational systems, MP theory can yield highly oscillatory,
slowly convergent, or catastrophically divergent results.\cite{Gill_1986,Gill_1988,Handy_1985,Lepetit_1988,Leininger_2000,Malrieu_2003}
Furthermore, the convergence properties of the MP series can depend strongly on the choice of restricted or
unrestricted reference orbitals.
Although practically convenient for electronic structure calculations, the MP partitioning is not
the only possibility and alternative partitionings have been considered \cite{Surjan_2004} including:
i) the Epstein-Nesbet (EN) partitioning which consists in taking the diagonal elements of $\hH$ as the zeroth-order Hamiltonian, \cite{Nesbet_1955,Epstein_1926}
ii) the weak correlation partitioning in which the one-electron part is consider as the unperturbed Hamiltonian $\hH^{(0)}$ and the two-electron part is the perturbation operator $\hV$, and
iii) the strong coupling partitioning where the two operators are inverted compared to the weak correlation partitioning. \cite{Seidl_2018,Daas_2020}
While an in-depth comparison of these different approaches can offer insight into
their relative strengths and weaknesses for various situations, we will restrict our current discussion
to the convergence properties of the MP expansion.
%=====================================================%
\subsection{Early Studies of M{\o}ller--Plesset Convergence} % in Molecular Systems}
%=====================================================%
% GENERAL DESIRE FOR WELL-BEHAVED CONVERGENCE AND LOW-ORDER TERMS
Among the most desirable properties of any electronic structure technique is the existence of
a systematic route to increasingly accurate energies.
In the context of MP theory, one would like a monotonic convergence of the perturbation
series towards the exact energy such that the accuracy increases as each term in the series is added.
If such well-behaved convergence can be established, then our ability to compute individual
terms in the series becomes the only barrier to computing the exact correlation in a finite basis set.
Unfortunately, the computational scaling of each term in the MP series increases with the perturbation
order, and practical calculations must rely on fast convergence
to obtain high-accuracy results using only the lowest order terms.
% INITIAL POSITIVITY AROUND THE CONVERGENCE PROPERTIES AND EARLY WORK SCOPE
MP theory was first introduced to quantum chemistry through the pioneering
works of Bartlett \etal\ in the context of many-body perturbation theory,\cite{Bartlett_1975}
and Pople and co-workers in the context of determinantal expansions.\cite{Pople_1976,Pople_1978}
Early implementations were restricted to the fourth-order MP4 approach that was considered
to offer state-of-the-art quantitative accuracy.\cite{Pople_1978,Krishnan_1980}
However, it was quickly realised that the MP series often demonstrated very slow, oscillatory,
or erratic convergence, with the UMP series showing particularly slow convergence.\cite{Laidig_1985,Knowles_1985,Handy_1985}
For example, RMP5 is worse than RMP4 for predicting the homolytic barrier fission of \ce{He2^2+} using a minimal basis set,
while the UMP series monotonically converges but becomes increasingly slow beyond UMP5.\cite{Gill_1986}
The first examples of divergent MP series were observed in the \ce{N2} and \ce{F2}
diatomics, where low-order RMP and UMP expansions give qualitatively wrong binding curves.\cite{Laidig_1987}
% SLOW UMP CONVERGENCE AND SPIN CONTAMINATION
The divergence of RMP expansions for stretched bonds can be easily understood from two perspectives.\cite{Gill_1988a}
Firstly, the exact wave function becomes increasingly multi-configurational as the bond is stretched, and the
RHF wave function no longer provides a qualitatively correct reference for the perturbation expansion.
Secondly, the energy gap between the \titou{occupied and unoccupied} orbitals associated with the stretch becomes
increasingly small at larger bond lengths, leading to a divergence, for example, in the MP2 correction \eqref{eq:EMP2}.
In contrast, the origin of slow UMP convergence is less obvious as the reference UHF energy remains
qualitatively correct at large bond lengths and the orbital degeneracy is avoided.
Furthermore, this slow convergence can also be observed in molecules with a UHF ground state at the equilibrium
geometry (\eg, \ce{CN-}), suggesting a more fundamental link with spin-contamination
in the reference wave function.\cite{Nobes_1987}
Using the UHF framework allows the singlet ground state wave function to mix with triplet wave functions,
leading to spin contamination where the wave function is no longer an eigenfunction of the $\Hat{\cS}^2$ operator.
The link between slow UMP convergence and this spin-contamination was first systematically investigated
by Gill \etal\ using the minimal basis \ce{H2} model.\cite{Gill_1988}
In this work, the authors
identified that the slow UMP convergence arises from its failure to correctly predict the amplitude of the
low-lying double excitation.
This erroneous description of the double excitation amplitude has the same origin as the spin-contamination in the reference
UHF wave function, creating the first direct link between spin-contamination and slow UMP convergence.\cite{Gill_1988}
%
% LEPETIT CHAT
Lepetit \etal\ later analysed the difference between perturbation convergence using the UMP
and EN partitionings. \cite{Lepetit_1988}
They argued that the slow UMP convergence for stretched molecules arises from
(i) the fact that the MP denominator (see Eq.~\ref{eq:EMP2})
tends to a constant value instead of vanishing, and (ii) the slow convergence of contributions from the
singly-excited configurations that strongly couple to the doubly-excited configurations and first
appear at fourth-order.\cite{Lepetit_1988}
Drawing these ideas together, we believe that slow UMP convergence occurs because the single excitations must focus on removing
spin-contamination from the reference wave function, limiting their ability to fine-tune the amplitudes of the higher
excitations that capture the correlation energy.
% SPIN-PROJECTION SCHEMES
A number of spin-projected extensions have been derived to reduce spin-contamination in the wave function
and overcome the slow UMP convergence.
Early versions of these theories, introduced by Schlegel \cite{Schlegel_1986, Schlegel_1988} or
Knowles and Handy,\cite{Knowles_1988a,Knowles_1988b} exploited the ``projection-after-variation'' philosophy,
where the spin-projection is applied directly to the UMP expansion.
These methods succeeded in accelerating the convergence of the projected MP series and were
considered as highly effective methods for capturing the electron correlation at low computational cost.\cite{Knowles_1988b}
However, the use of projection-after-variation leads to gradient discontinuities in the vicinity of the UHF symmetry-breaking point,
and can result in spurious minima along a molecular binding curve.\cite{Schlegel_1986,Knowles_1988a}
More recent formulations of spin-projected perturbations theories have considered the
``variation-after-projection'' framework using alternative definitions of the reference
Hamiltonian.\cite{Tsuchimochi_2014,Tsuchimochi_2019}
These methods yield more accurate spin-pure energies without
gradient discontinuities or spurious minima.
%==========================================%
\subsection{Spin-Contamination in the Hubbard Dimer}
\label{sec:spin_cont}
%==========================================%
%%% FIG 4 %%%
\begin{figure*}
\begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig4a}
\subcaption{\label{subfig:RMP_3.5} $U/t = 3.5$}
\end{subfigure}
%
\begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig4b}
\subcaption{\label{subfig:RMP_cvg}}
\end{subfigure}
%
\begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig4c}
\subcaption{\label{subfig:RMP_4.5} $U/t = 4.5$}
\end{subfigure}
\caption{
Convergence of the RMP series as a function of the perturbation order $n$ for the Hubbard dimer at $U/t = 3.5$ (where $r_c > 1$) and $4.5$ (where $r_c < 1$).
The Riemann surfaces associated with the exact energies of the RMP Hamiltonian \eqref{eq:H_RMP} are also represented for these two values of $U/t$ as functions of complex $\lambda$.
\label{fig:RMP}}
\end{figure*}
The behaviour of the RMP and UMP series observed in \ce{H2} can also be illustrated by considering
the analytic Hubbard dimer with a complex-valued perturbation strength.
In this system, the stretching of the \ce{H\bond{-}H} bond is directly mirrored by an increase in the ratio $U/t$.
Using the ground-state RHF reference orbitals leads to the parametrised RMP Hamiltonian
\begin{widetext}
\begin{equation}
\label{eq:H_RMP}
\bH_\text{RMP}\qty(\lambda) =
\begin{pmatrix}
-2t + U - \lambda U/2 & 0 & 0 & \lambda U/2 \\
0 & U - \lambda U/2 & \lambda U/2 & 0 \\
0 & \lambda U/2 & U - \lambda U/2 & 0 \\
\lambda U/2 & 0 & 0 & 2t + U - \lambda U/2 \\
\end{pmatrix},
\end{equation}
\end{widetext}
which yields the ground-state energy
\begin{equation}
\label{eq:E0MP}
E_{-}(\lambda) = U - \frac{\lambda U}{2} - \frac{1}{2} \sqrt{(4t)^2 + \lambda ^2 U^2}.
\end{equation}
From this expression, the EPs can be identified as $\lep = \pm \i 4t / U$,
giving the radius of convergence
\begin{equation}
\rc = \abs{\frac{4t}{U}}.
\end{equation}
Remarkably, these EPs are identical to the exact EPs discussed in Sec.~\ref{sec:example}.
The Taylor expansion of the RMP energy can then be evaluated to obtain the $k$th-order MP correction
\begin{equation}
E_\text{RMP}^{(k)} = U \delta_{0,k} - \frac{1}{2} \frac{U^k}{(4t)^{k-1}} \mqty( 1/2 \\ k/2).
\end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RADIUS OF CONVERGENCE PLOTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The RMP series is convergent \titou{at $\lambda = 1$} for $U = 3.5\,t$ with $\rc > 1$, as illustrated for the individual terms at each
perturbation order in Fig.~\ref{subfig:RMP_cvg}.
In contrast, for $U = 4.5t$ one finds $\rc < 1$, and the RMP series becomes divergent \titou{at $\lambda = 1$}.
The corresponding Riemann surfaces for $U = 3.5\,t$ and $4.5\,t$ are shown in Figs.~\ref{subfig:RMP_3.5} and
\ref{subfig:RMP_4.5}, respectively, with the single EP at $\lep$ (black dot).
\titou{We illustrate the surface $\abs{\lambda} = 1$ using a vertical cylinder of unit radius to provide
a visual aid for determining if the series will converge at the physical case $\lambda =1$.}
For the divergent case, $\lep$ lies inside this \titou{unit} cylinder, while in the convergent case $\lep$ lies
outside this cylinder.
In both cases, the EP connects the ground state with the doubly-excited state, and thus the convergence behaviour
for the two states using the ground-state RHF orbitals is identical.
\titou{Note that, when $\lep$ lies \emph{on} the unit cylinder, we cannot \textit{a priori} determine
whether the perturbation series will converge or not.}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RADIUS OF CONVERGENCE PLOTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% FIG 5 %%%
\begin{figure}[htb]
\includegraphics[width=\linewidth]{fig5}
\caption{
Radius of convergence $r_c$ for the RMP ground state (red), the UMP ground state (blue), and the UMP excited state (orange)
series of the Hubbard dimer as functions of the ratio $U/t$.
\label{fig:RadConv}}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% FIG 6 %%%
\begin{figure*}
\begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig6a}
\subcaption{\label{subfig:UMP_3} $U/t = 3$}
\end{subfigure}
%
\begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig6b}
\subcaption{\label{subfig:UMP_cvg}}
\end{subfigure}
%
\begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig6c}
\subcaption{\label{subfig:UMP_7} $U/t = 7$}
\end{subfigure} \caption{
Convergence of the UMP series as a function of the perturbation order $n$ for the Hubbard dimer at $U/t = 3$ and $7$.
The Riemann surfaces associated with the exact energies of the UMP Hamiltonian \eqref{eq:H_UMP} are also represented for these two values of $U/t$ as functions of $\lambda$.
\label{fig:UMP}}
\end{figure*}
The behaviour of the UMP series is more subtle than the RMP series as the spin-contamination in the wave function
introduces additional coupling between the singly- and doubly-excited configurations.
Using the ground-state UHF reference orbitals in the Hubbard dimer yields the parametrised UMP Hamiltonian
\begin{widetext}
\begin{equation}
\label{eq:H_UMP}
\bH_\text{UMP}\qty(\lambda) =
\begin{pmatrix}
-2t^2 \lambda/U & 0 & 0 & 2t^2 \lambda/U \\
0 & U - 2t^2 \lambda/U & 2t^2\lambda/U & 2t \sqrt{U^2 - (2t)^2} \lambda/U \\
0 & 2t^2\lambda/U & U - 2t^2 \lambda/U & -2t \sqrt{U^2 - (2t)^2} \lambda/U \\
2t^2 \lambda/U & 2t \sqrt{U^2 - (2t)^2} \lambda/U & -2t \sqrt{U^2 - (2t)^2} \lambda/U & 2U(1-\lambda) + 6t^2\lambda/U \\
\end{pmatrix}.
\end{equation}
\end{widetext}
While a closed-form expression for the ground-state energy exists, it is cumbersome and we eschew reporting it.
Instead, the radius of convergence of the UMP series can be obtained numerically as a function of $U/t$, as shown
in Fig.~\ref{fig:RadConv}.
These numerical values reveal that the UMP ground-state series has $\rc > 1$ for all $U/t$ and always converges.
However, in the strong correlation limit (large $U/t$), this radius of convergence tends to unity, indicating that
the convergence of the corresponding UMP series becomes increasingly slow.
Furthermore, the doubly-excited state using the ground-state UHF orbitals has $\rc < 1$ for almost any value
of $U/t$, reaching the limiting value of $1/2$ for $U/t \to \infty$. Hence, the
excited-state UMP series will always diverge.
% DISCUSSION OF UMP RIEMANN SURFACES
The convergence behaviour can be further elucidated by considering the full structure of the UMP energies