-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.tex
482 lines (325 loc) · 12.9 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
\documentclass[xcolor=x11names,compress]{beamer}
%% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{graphicx}
\usepackage{mathpazo}
\usepackage[english]{babel}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{xcolor}
\usepackage{siunitx}
\usepackage{graphicx}
\usepackage{physics}
\usepackage{multimedia}
\usepackage[absolute,overlay]{textpos}
\usepackage{ragged2e}
\usepackage{amssymb}
\usepackage[version=4]{mhchem}
\usepackage[style=verbose,backend=bibtex]{biblatex}
\bibliography{SlideToulouse}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Beamer Layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\useoutertheme[subsection=false,shadow]{miniframes}
\useinnertheme{default}
\setbeamerfont{title like}{shape=\scshape}
\setbeamerfont{frametitle}{shape=\scshape}
\setbeamerfont{framesubtitle}{size=\normalsize}
\setbeamerfont{caption}{size=\scriptsize}
\setbeamercolor*{lower separation line head}{bg=DeepSkyBlue4}
\setbeamercolor*{normal text}{fg=black,bg=white}
\setbeamercolor*{alerted text}{fg=red}
\setbeamercolor*{example text}{fg=black}
\setbeamercolor*{structure}{fg=black}
\setbeamercolor*{palette tertiary}{fg=black,bg=black!10}
\setbeamercolor*{palette quaternary}{fg=black,bg=black!10}
\setbeamercolor{caption name}{fg=DeepSkyBlue4}
\setbeamercolor{title}{fg=DeepSkyBlue4}
\setbeamercolor{itemize item}{fg=DeepSkyBlue4}
\setbeamercolor{frametitle}{fg=DeepSkyBlue4}
\renewcommand{\(}{\begin{columns}}
\renewcommand{\)}{\end{columns}}
\newcommand{\<}[1]{\begin{column}{#1}}
\renewcommand{\>}{\end{column}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[frame number]
\setbeamertemplate{caption}[numbered]
\setbeamertemplate{section in toc}[ball]
\setbeamertemplate{itemize items}[circle]
\beamerboxesdeclarecolorscheme{clair}{Coral4}{Ivory2}
\beamerboxesdeclarecolorscheme{foncé}{DarkSeaGreen4}{Ivory2}
\title[Title]{Perturbation theories in the complex plane}
\author[]{Antoine \textsc{Marie}}
\setbeamersize{text margin left=5mm}
\setbeamersize{text margin right=5mm}
\institute{Supervised by Pierre-François \textsc{LOOS}}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[plain]
\date{30th June 2020}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Why do we use perturbation theories in computational chemistry?}
\pause[1]
The Hartree-Fock theory is \textcolor{Green4}{computationally cheap} and can be applied even to \textcolor{Green4}{large systems}.
But this method is missing the \textcolor{red}{correlation energy}...
\vspace{0.5cm}
\pause[2]
$\rightarrow$ We need methods to get this correlation energy!
\vspace{0.5cm}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{\centering A general method}
In physics perturbation theory is often a good way to improve the obtained results with an approximated Hamiltonian.
\end{beamerboxesrounded}
\end{frame}
\section{\textsc{Strange behaviors of the MP series}}
\begin{frame}{The Møller-Plesset perturbation theory}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Partitioning of the Hamiltonian}
\begin{equation}
H = H_0 + \lambda V
\end{equation}
\end{beamerboxesrounded}
\begin{itemize}
\centering
\item $H_0$: Unperturbed Hamiltonian
\item $V$: Perturbation operator
\end{itemize}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering The Fock operator}
\begin{equation}
F = \sum\limits_{i=1}^{n} f(i) \hspace{0.3cm} ; \hspace{0.3cm} f(i) = h(i) + \sum\limits_{i=1}^{n/2} \left[2J_j(i) - K_j(i)\right]
\end{equation}
\end{beamerboxesrounded}
\begin{itemize}
\centering
\item $f(i)$: Fock operator
\item $h(i)$: One electron Hamiltonian
\item $J_j(i)$: Coulomb operator
\item $K_j(i)$: Exchange operator
\end{itemize}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{}
\centering
Full Configuration Interaction gives access to high-order terms of the perturbation series !
\end{beamerboxesrounded}
\end{frame}
\begin{frame}{Deceptive or slow convergences\footcite{gill_deceptive_1986}}
\begin{figure}
\centering
\includegraphics[width=0.45\textwidth]{gill1986.png}
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} at MPn/STO-3G level ($n = 1$--$20$).}
\label{fig:my_label}
\end{figure}
\end{frame}
\begin{frame}{Multi-reference and spin contamination\footcite{gill_why_1988}}
\begin{table}
\centering
\begin{tabular}{c c c c c c c}
\hline
$r$ & UHF & UMP2 & UMP3 & UMP4 & $\expval{S^2}$ \\
\hline
0.75 & 0.0\% & 63.8\% & 87.4\% & 95.9\% & 0.00\\
1.35 & 0.0\% & 15.2\% & 26.1\% & 34.9\% & 0.49\\
2.00 & 0.0\% & 01.0\% & 01.8\% & 02.6\% & 0.95\\
2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\
\hline
\end{tabular}
\caption{\centering Percentage of electron correlation energy recovered and $\expval{S^2}$ for the \ce{H2} molecule as a function of bond length (r,\si{\angstrom}) in the STO-3G basis set.}
\label{tab:my_label}
\end{table}
\end{frame}
\begin{frame}{Divergent cases}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png}
\caption{The energy corrections for HF at stretched geometry in the cc-pVDZ basis. \footcite{olsen_divergence_2000}}
\label{fig:my_label}
\end{figure}
\end{frame}
\section{The complex plane}
\begin{frame}{A simple example}
\begin{columns}
\column{0.48\textwidth}
\begin{beamerboxesrounded}[scheme=foncé]{An example function}
\begin{equation*}
\frac{1}{1 + x^4}
\end{equation*}
\end{beamerboxesrounded}
\vspace{1cm}
\begin{itemize}
\item Smooth for $x \in \mathbb{R}$
\item Infinitely differentiable in $\mathbb{R}$
\end{itemize}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{exemplesingu.pdf}
\caption{Plot of $1/(1+x^4)$}
\label{fig:my_label}
\end{figure}
\end{columns}
But the Taylor expansion of this function does not converge for $x\geq1$...
\vspace{0.3cm}
\centering Why ?
\end{frame}
\begin{frame}{And if we look in the complex plane?}
\begin{columns}
\column{0.48\textwidth}
\centering The function has 4 singularities in the complex plane!
\vspace{1cm}
$x = e^{i\pi/4}, e^{-i\pi/4}, e^{i3\pi/4}, e^{-i3\pi/4}$
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{possingu.pdf}
\caption{\centering Singularities of the function $1/(1+x^4)$}
\label{fig:my_label}
\end{figure}
\end{columns}
The \textcolor{red}{radius of convergence} of the Taylor expansion of a function is equal to the distance of the \textcolor{red}{closest singularity} to the origin in the \textcolor{red}{complex plane}.
\end{frame}
\begin{frame}{Extending chemistry in the complex plane}
\begin{beamerboxesrounded}[scheme=foncé]{\centering $\lambda$ a complex variable}
\begin{equation*}
H(\lambda) = H_0 + \lambda V
\end{equation*}
\end{beamerboxesrounded}
\begin{columns}
\column{0.48\textwidth}
\begin{itemize}
\item $n$ Riemann sheets
\vspace{0.3cm}
\item Exceptional points interconnecting the sheets
\vspace{0.3cm}
\item No ordering property in the complex plane
\vspace{0.3cm}
\item An avoided crossing on the real axis corresponds to two exceptionnal points in the complex plane.
\end{itemize}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{riemannsheet.png}
\label{fig:my_label}
\end{figure}
\end{columns}
\end{frame}
\section{Classifying the singularity}
\begin{frame}{Which features of the system localize the singularities?}
\begin{itemize}
\item Partitioning of the Hamiltonian: Møller-Plesset, Epstein-Nesbet, \ldots
\item Zeroth-order reference: weak or strong correlation.
\item Finite or complete basis set.
\item Localized or delocalized basis functions.
\end{itemize}
\end{frame}
\begin{frame}{A two-state model\footcite{olsen_divergence_2000}}
\begin{columns}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{avoidedcrossing.pdf}
\caption{Example of an avoided crossing.}
\label{fig:my_label}
\end{figure}
\column{0.48\textwidth}
\begin{beamerboxesrounded}[scheme=foncé]{A 2x2 matrix}
\centering \small{$\mqty(\alpha & \delta \\ \delta & \beta) =$}
\vspace{0.15cm}
\small{$\mqty(\alpha + \alpha_s & 0 \\ 0 & \beta + \beta_s ) + \mqty(- \alpha_s & \delta \\ \delta & - \beta_s)$}
\end{beamerboxesrounded}
\vspace{1cm}
\end{columns}
\end{frame}
\begin{frame}{Two-state model\footcite{olsen_divergence_2000}}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{figure-fig14.png}
\caption{\centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.}
\label{fig:my_label}
\end{figure}
\end{frame}
\begin{frame}{The Møller-Plesset Hamiltonian}
\begin{equation}
H(\lambda)=H_0 + \lambda (H_\text{phys} - H_0)
\end{equation}
\begin{equation}
H_\text{phys}=\sum\limits_{j=1}^{n}\left[ -\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}+\sum\limits_{j<l}^{n}\frac{1}{|\vb{r}_j-\vb{r}_l|}\right]
\end{equation}
\begin{equation}
H_0=\sum\limits_{j=1}^{n}\left[ -\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}+V_j^{(scf)}\right]
\end{equation}
\begin{equation*}
H(\lambda)=\sum\limits_{j=1}^{n}\left[-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|} + (1-\lambda)V_j^{(scf)}+\lambda\sum\limits_{j<l}^{n}\frac{1}{|\vb{r}_j-\vb{r}_l|} \right]
\end{equation*}
\end{frame}
\begin{frame}{Existence of a critical point\footcite{stillinger_mollerplesset_2000}}
For $\lambda<0$:
\begin{equation*}
H(\lambda)=\sum\limits_{j=1}^{n}\left[ \underbrace{-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j<l}^{n}\frac{1}{|\vb{r}_j-\vb{r}_l|}}_{\textcolor{blue}{Attractive}} \right]
\end{equation*}
\end{frame}
\begin{frame}{Critical point in a finite basis set}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Exact energy $E(z)$}
$E(z)$ has a critical point on the negative real axis and $E(z)$ is continue for real values below $z_{crit}$.
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering In a finite basis set}
The singularities occur in complex conjugate pairs with non-zero imaginary parts and the energies are discrete.
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[3]
\centering \Large{How is this connected???}
\end{frame}
\begin{frame}{Singularities $\alpha$ and $\beta$ \footcite{sergeev_singularities_2006}}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Observation}
We can separate singularities in two parts.
\end{beamerboxesrounded}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\alpha$}
\begin{itemize}
\item Large avoided crossing
\item Non-zero imaginary part
\item Interaction with a low-lying doubly excited states
\end{itemize}
\end{beamerboxesrounded}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\beta$}
\begin{itemize}
\item Sharp avoided crossing
\item Very small imaginary part
\item Interaction with a diffuse function
\end{itemize}
\end{beamerboxesrounded}
\end{frame}
\begin{frame}{Modeling the critical point}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Stillinger}
\begin{quote}
\textit{"One might expect that $E_{FCI}(z) $ would try to model a continuum at $z_c$ with a grouping of discrete but closely spaced eigenstates that undergo sharp avoided crossing with the ground states."}
\end{quote}
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Sergeev et al.}
Proof of the existence of this group of sharp avoided crossings for Ne, He and HF when the basis set contains diffuse functions.
\end{beamerboxesrounded}
\end{frame}
\section{Conclusion}
\begin{frame}{Conclusion}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Møller-Plesset perturbation theory}
By understanding how the singularities are localized in the complex plane we hope that it will gives us a deep understanding of the strengths and weaknesses of the Møller-Plesset method to get the correlation energy.
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Spherium: a theoretical playground}
We will use the spherium model (two opposite-spin electrons restricted to remain on a surface of a sphere of radius $R$) to investigate the effects of symmetry breaking on singularities.
\end{beamerboxesrounded}
\end{frame}
\end{document}