-
Notifications
You must be signed in to change notification settings - Fork 20
/
predict_utils.py
533 lines (454 loc) · 20.3 KB
/
predict_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
######################################################################################88
import sys
import os
from os.path import exists
import pickle
from collections import OrderedDict
from sys import exit
import numpy as np
import pandas as pd
import tensorflow as tf
import train_utils
import random
from timeit import default_timer as timer
import haiku as hk
from alphafold.common import residue_constants
from alphafold.common import protein
from alphafold.data import pipeline
from alphafold.data import templates
from alphafold.model import data
from alphafold.model import config
from alphafold.model import model
# super-simple, stripped down pdb reader
# not good with messy pdbs
def load_pdb_coords(
pdbfile,
allow_chainbreaks=False,
allow_skipped_lines=False,
verbose=False,
):
''' returns: chains, all_resids, all_coords, all_name1s
'''
chains = []
all_resids = {}
all_coords = {}
all_name1s = {}
if verbose:
print('reading:', pdbfile)
skipped_lines = False
with open(pdbfile,'r') as data:
for line in data:
if (line[:6] in ['ATOM ','HETATM'] and line[17:20] != 'HOH' and
line[16] in ' A1'):
if ( line[17:20] in residue_constants.restype_3to1
or line[17:20] == 'MSE'): # 2022-03-31 change to include MSE
name1 = ('M' if line[17:20] == 'MSE' else
residue_constants.restype_3to1[line[17:20]])
resid = line[22:27]
chain = line[21]
if chain not in all_resids:
all_resids[chain] = []
all_coords[chain] = {}
all_name1s[chain] = {}
chains.append(chain)
if line.startswith('HETATM'):
print('WARNING: HETATM', pdbfile, line[:-1])
atom = line[12:16].split()[0]
if resid not in all_resids[chain]:
all_resids[chain].append(resid)
all_coords[chain][resid] = {}
all_name1s[chain][resid] = name1
all_coords[chain][resid][atom] = np.array(
[float(line[30:38]), float(line[38:46]), float(line[46:54])])
else:
print('skip ATOM line:', line[:-1], pdbfile)
skipped_lines = True
# check for chainbreaks
maxdis = 1.75
for chain in chains:
for res1, res2 in zip(all_resids[chain][:-1], all_resids[chain][1:]):
coords1 = all_coords[chain][res1]
coords2 = all_coords[chain][res2]
if 'C' in coords1 and 'N' in coords2:
dis = np.sqrt(np.sum(np.square(coords1['C']-coords2['N'])))
if dis>maxdis:
print('WARNING chainbreak:', chain, res1, res2, dis, pdbfile)
if not allow_chainbreaks:
print('STOP: chainbreaks', pdbfile)
print('DONE')
exit()
if skipped_lines and not allow_skipped_lines:
print('STOP: skipped lines:', pdbfile)
print('DONE')
exit()
return chains, all_resids, all_coords, all_name1s
def fill_afold_coords(
chain_order,
all_resids,
all_coords,
):
''' returns: all_positions, all_positions_mask
these are 'atom37' coords (not 'atom14' coords)
'''
assert residue_constants.atom_type_num == 37 #HACK/SANITY
crs = [(chain,resid) for chain in chain_order for resid in all_resids[chain]]
num_res = len(crs)
all_positions = np.zeros([num_res, residue_constants.atom_type_num, 3])
all_positions_mask = np.zeros([num_res, residue_constants.atom_type_num],
dtype=np.int64)
for res_index, (chain,resid) in enumerate(crs):
pos = np.zeros([residue_constants.atom_type_num, 3], dtype=np.float32)
mask = np.zeros([residue_constants.atom_type_num], dtype=np.float32)
for atom_name, xyz in all_coords[chain][resid].items():
x,y,z = xyz
if atom_name in residue_constants.atom_order.keys():
pos[residue_constants.atom_order[atom_name]] = [x, y, z]
mask[residue_constants.atom_order[atom_name]] = 1.0
elif atom_name != 'NV': # PRO NV OK to skip
# this is just debugging/verbose output:
name = atom_name[:]
while name[0] in '123':
name = name[1:]
if name[0] != 'H':
print('unrecognized atom:', atom_name, chain, resid)
# elif atom_name.upper() == 'SE' and res.get_resname() == 'MSE':
# # Put the coordinates of the selenium atom in the sulphur column.
# pos[residue_constants.atom_order['SD']] = [x, y, z]
# mask[residue_constants.atom_order['SD']] = 1.0
all_positions[res_index] = pos
all_positions_mask[res_index] = mask
return all_positions, all_positions_mask
def run_alphafold_prediction(
query_sequence: str,
msa: list,
deletion_matrix: list,
chainbreak_sequence: str,
template_features: dict,
model_runners: dict,
out_prefix: str,
crop_size=None,
dump_pdbs=True,
dump_metrics=True,
):
'''msa should be a list. If single seq is provided, it should be a list of str.
returns a dictionary with keys= model_name, values= dictionary
indexed by metric_tag
'''
# gather features for running with only template information
feature_dict = {
**pipeline.make_sequence_features(sequence=query_sequence,
description="none",
num_res=len(query_sequence)),
**pipeline.make_msa_features(msas=[msa],
deletion_matrices=[deletion_matrix]),
**template_features
}
# add big enough number to residue index to indicate chain breaks
# Ls: number of residues in each chain
# Ls = [ len(split) for split in chainbreak_sequence.split('/') ]
Ls = [ len(split) for split in chainbreak_sequence.split('/') ]
idx_res = feature_dict['residue_index']
L_prev = 0
for L_i in Ls[:-1]:
idx_res[L_prev+L_i:] += 200
L_prev += L_i
feature_dict['residue_index'] = idx_res
all_metrics = predict_structure(
out_prefix, feature_dict, model_runners, crop_size=crop_size,
dump_pdbs=dump_pdbs, dump_metrics=dump_metrics,
)
#np.save('{}_plddt.npy'.format(out_prefix), plddts['model_1'])
return all_metrics
def predict_structure(
prefix,
feature_dict,
model_runners,
random_seed=0,
crop_size=None,
dump_pdbs=True,
dump_metrics=True,
):
"""Predicts structure using AlphaFold for the given sequence.
returns a dictionary with keys= model_name, values= dictionary
indexed by metric_tag
"""
# Run the models.
#plddts = []
unrelaxed_pdb_lines = []
relaxed_pdb_lines = []
model_names = []
metric_tags = 'plddt ptm predicted_aligned_error'.split()
all_metrics = {} # eventual return value
metrics = {} # stupid duplication
for model_name, model_runner in model_runners.items():
start = timer()
print(f"running {model_name}")
processed_feature_dict = model_runner.process_features(
feature_dict, random_seed=random_seed)
prediction_result = model_runner.predict(processed_feature_dict)
unrelaxed_protein = protein.from_prediction(
processed_feature_dict, prediction_result)
unrelaxed_pdb_lines.append(protein.to_pdb(unrelaxed_protein))
model_names.append(model_name)
all_metrics[model_name] = {}
for tag in metric_tags:
result = prediction_result.get(tag, None)
metrics.setdefault(tag, []).append(result)
if result is not None:
all_metrics[model_name][tag] = result
print(f"{model_name} pLDDT: {np.mean(prediction_result['plddt'])} "
f"Time: {timer() - start}")
# rerank models based on predicted lddt
plddts = metrics['plddt']
lddt_rank = np.mean(plddts,-1).argsort()[::-1]
#plddts_ranked = {}
for n, r in enumerate(lddt_rank):
print(f"model_{n+1} {np.mean(plddts[r])}")
if dump_pdbs:
unrelaxed_pdb_path = f'{prefix}_model_{n+1}_{model_names[r]}.pdb'
with open(unrelaxed_pdb_path, 'w') as f: f.write(unrelaxed_pdb_lines[r])
#plddts_ranked[f"model_{n+1}"] = plddts[r]
if dump_metrics:
metrics_prefix = f'{prefix}_model_{n+1}_{model_names[r]}'
for tag in metric_tags:
m = metrics[tag][r]
if m is not None:
np.save(f'{metrics_prefix}_{tag}.npy', m)
return all_metrics
def load_model_runners(
model_names,
crop_size,
data_dir,
num_recycle = 3,
num_ensemble = 1,
model_params_files = None,
resample_msa_in_recycling = True,
small_msas = True,
):
if model_params_files is None:
model_params_files = [None]*len(model_names)
assert len(model_names) == len(model_params_files)
model_runners = OrderedDict()
for model_name, model_params_file in zip(model_names, model_params_files):
print('config:', model_name)
af_model_name = (model_name[:model_name.index('_ft')] if '_ft' in model_name
else model_name)
model_config = config.model_config(af_model_name)
# since this is not set automatically based on nres in this vers of alphafold
model_config.data.eval.crop_size = crop_size
model_config.data.eval.num_ensemble = num_ensemble
model_config.data.common.num_recycle = num_recycle
model_config.model.num_recycle = num_recycle
if small_msas:
print('load_model_runners:: small_msas==True setting small',
'max_extra_msa and max_msa_clusters')
model_config.data.common.max_extra_msa = 1 #############
model_config.data.eval.max_msa_clusters = 5 ###############
if not resample_msa_in_recycling:
model_config.data.common.resample_msa_in_recycling = False
model_config.model.resample_msa_in_recycling = False
if model_params_file != 'classic' and model_params_file is not None:
print('loading', model_name, 'params from file:', model_params_file)
with open(model_params_file, 'rb') as f:
model_params = pickle.load(f)
model_params, other_params = hk.data_structures.partition(
lambda m, n, p: m[:9] == "alphafold", model_params)
print('ignoring other_params:', other_params)
else:
assert '_ft' not in model_name
model_params = data.get_model_haiku_params(
model_name=model_name, data_dir=data_dir)
model_runners[model_name] = model.RunModel(
model_config, model_params)
return model_runners
def create_single_template_features(
target_sequence,
template_pdbfile,
target_to_template_alignment,
template_name, # goes into template_domain_names, .encode()'ed
allow_chainbreaks=True,
allow_skipped_lines=True,
expected_identities=None,
expected_template_len=None,
):
num_res = len(target_sequence)
chains_tmp, all_resids_tmp, all_coords_tmp, all_name1s_tmp = load_pdb_coords(
template_pdbfile, allow_chainbreaks=allow_chainbreaks,
allow_skipped_lines=allow_skipped_lines,
)
crs_tmp = [(c,r) for c in chains_tmp for r in all_resids_tmp[c]]
num_res_tmp = len(crs_tmp)
template_full_sequence = ''.join(all_name1s_tmp[c][r] for c,r in crs_tmp)
if expected_template_len:
assert len(template_full_sequence) == expected_template_len
all_positions_tmp, all_positions_mask_tmp = fill_afold_coords(
chains_tmp, all_resids_tmp, all_coords_tmp)
identities = sum(target_sequence[i] == template_full_sequence[j]
for i,j in target_to_template_alignment.items())
if expected_identities:
assert identities == expected_identities
all_positions = np.zeros([num_res, residue_constants.atom_type_num, 3])
all_positions_mask = np.zeros([num_res, residue_constants.atom_type_num],
dtype=np.int64)
template_alseq = ['-']*num_res
for i,j in target_to_template_alignment.items(): # i=target, j=template
template_alseq[i] = template_full_sequence[j]
all_positions[i] = all_positions_tmp[j]
all_positions_mask[i] = all_positions_mask_tmp[j]
template_sequence = ''.join(template_alseq)
assert len(template_sequence) == len(target_sequence)
assert identities == sum(a==b for a,b in zip(template_sequence, target_sequence))
template_aatype = residue_constants.sequence_to_onehot(
template_sequence, residue_constants.HHBLITS_AA_TO_ID)
template_features = {
'template_all_atom_positions': all_positions,
'template_all_atom_masks': all_positions_mask,
'template_sequence': template_sequence.encode(),
'template_aatype': template_aatype,
'template_domain_names': template_name.encode(),
'template_sum_probs': [identities],
}
return template_features
def compile_template_features(template_features_list):
all_template_features = {}
for name, dtype in templates.TEMPLATE_FEATURES.items():
all_template_features[name] = np.stack(
[f[name] for f in template_features_list], axis=0).astype(dtype)
return all_template_features
def create_batch_for_training(
target_chainseq, # has '/' between chains
target_trim_positions, # 0-indexed wrt full target sequence
templates_alignfile, # tsv file with cols given below, alignments to templates
native_pdbfile,
native_align, # dict (trg_pos, nat_pos), 0-indexed, wrt full target sequence
crop_size, # sanity
model_runner, # for feature processing
native_identities=None, # for sanity checking
native_len=None, # for sanity checking
debug=False,
verbose=False,
random_seed=None, # if None, randomize
):
''' alignfile cols are:
template_pdbfile
target_to_template_alignstring
identities
target_len
template_len
'''
assert len(target_trim_positions) <= crop_size
assert None not in target_trim_positions
if verbose:
print('create_batch_for_training:', target_chainseq, target_trim_positions,
templates_alignfile,
native_pdbfile, native_align, crop_size, native_identities,
native_len)
target_trim_positions = sorted(set(target_trim_positions)) # sanity
full_pos_to_trim_pos = {pos:i for i,pos in enumerate(target_trim_positions)}
target_full_sequence = target_chainseq.replace('/','')
target_sequence = ''.join(target_full_sequence[x] for x in target_trim_positions)
target_cs = target_chainseq.split('/')
residue_index = np.arange(len(target_full_sequence))
for ch in range(1,len(target_cs)):
chain_begin = sum(len(x) for x in target_cs[:ch])
residue_index[chain_begin:] += 200
#print('chain_lens:', [len(x) for x in target_cs])
#print('full residue_index:', residue_index)
trim_residue_index = residue_index[target_trim_positions]
#print('trim_residue_index:', trim_residue_index)
# templates stuff
template_features_list = []
templates_df = pd.read_table(templates_alignfile)
for l in templates_df.itertuples():
align_full = {int(x.split(':')[0]):int(x.split(':')[1])
for x in l.target_to_template_alignstring.split(';')}
if debug:
create_single_template_features(
target_full_sequence, l.template_pdbfile, align_full, f'temp{l.Index}',
expected_identities = l.identities,
expected_template_len = l.template_len)
align = {full_pos_to_trim_pos[x]:y for x,y in align_full.items()
if x in target_trim_positions}
features = create_single_template_features(
target_sequence, l.template_pdbfile, align, f'temp{l.Index}',
expected_template_len = l.template_len)
template_features_list.append(features)
all_template_features = compile_template_features(template_features_list)
msa = [target_sequence]
deletions = [[0]*len(target_sequence)]
feature_dict = {
**pipeline.make_sequence_features(
sequence=target_sequence, description="none", num_res=len(target_sequence)),
**pipeline.make_msa_features(msas=[msa], deletion_matrices=[deletions]),
**all_template_features,
}
if verbose:
print('features_after_creation:', ' '.join(feature_dict.keys()))
old_ri = feature_dict['residue_index']
feature_dict['residue_index'] = trim_residue_index.astype(old_ri.dtype)
if random_seed is None:
random_seed = np.random.randint(0,999999)
with tf.device('cpu:0'):
processed_feature_dict = model_runner.process_features(
feature_dict, random_seed=random_seed)
if verbose:
print('features_after_initial_processing:',
' '.join(processed_feature_dict.keys()))
# get native coords
if debug:
native_features = create_single_template_features(
target_full_sequence, native_pdbfile, native_align, 'dummy',
expected_identities=native_identities,
expected_template_len=native_len)
native_align_trimmed = {full_pos_to_trim_pos[x]:y for x,y in native_align.items()
if x in target_trim_positions}
native_features = create_single_template_features(
target_sequence, native_pdbfile, native_align_trimmed, 'dummy',
expected_template_len=native_len)
L = processed_feature_dict['aatype'].shape[1]
assert L == crop_size
L0 = len(target_trim_positions)
atom_positions = np.concatenate([
native_features['template_all_atom_positions'],
np.zeros([L-L0, 37, 3])], 0)
atom_mask = np.concatenate([
native_features['template_all_atom_masks'],
np.zeros([L-L0, 37])], 0)
aatype = processed_feature_dict['aatype'][0]
#print('old aatype:', aatype)
aatype = np.concatenate([
processed_feature_dict['aatype'][0][:L0],
20*np.ones([L-L0])],0).astype(np.int32)
#print('new aatype:', aatype)
pseudo_beta, pseudo_beta_mask = train_utils.pseudo_beta_fn_np(
aatype, atom_positions, atom_mask)
protein_dict = {'aatype': aatype,
'all_atom_positions': atom_positions,
'all_atom_mask': atom_mask}
protein_dict = train_utils.make_atom14_positions(protein_dict)
del protein_dict['aatype']
for key_, value_ in protein_dict.items():
protein_dict[key_] = np.array(value_)[None,]
processed_feature_dict['pseudo_beta'] = np.array(pseudo_beta)[None,]
processed_feature_dict['pseudo_beta_mask'] = np.array(pseudo_beta_mask)[None,]
processed_feature_dict['all_atom_mask'] = np.array(atom_mask)[None,]
processed_feature_dict['resolution'] = np.array(1.0)[None,]
processed_feature_dict.update(protein_dict)
n, ca, c = [residue_constants.atom_order[a] for a in ('N', 'CA', 'C')]
rot, trans = train_utils.make_transform_from_reference_np(
n_xyz =processed_feature_dict['all_atom_positions'][0, :, n , :],
ca_xyz=processed_feature_dict['all_atom_positions'][0, :, ca, :],
c_xyz =processed_feature_dict['all_atom_positions'][0, :, c , :])
processed_feature_dict['backbone_translation'] = trans[None,]
processed_feature_dict['backbone_rotation'] = rot[None,]
#processed_feature_dict['backbone_affine_mask'] = np.concatenate(
# [np.ones([1,L0]), np.zeros([1,L-L0])], 1)
# this code borrowed from modules.py:2013
# Backbone affine mask: whether the residue has C, CA, N
processed_feature_dict['backbone_affine_mask'] = (
processed_feature_dict['all_atom_mask'][0, :, n ] *
processed_feature_dict['all_atom_mask'][0, :, ca] *
processed_feature_dict['all_atom_mask'][0, :, c ])[None,]
if verbose:
print('features_at_end:', ' '.join(processed_feature_dict.keys()))
return processed_feature_dict