-
Notifications
You must be signed in to change notification settings - Fork 8
/
train_fc.py
104 lines (86 loc) · 3.28 KB
/
train_fc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# -*- coding: utf-8 -*-
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Dropout
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras.optimizers import Adam
import tensorflow.keras.backend as K
from gpu_helpers import init_all_gpu
init_all_gpu()
batch_size = 128
num_classes = 10
epochs = 12
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#x_train = x_train[:128]
#y_train = y_train[:128]
"""from PIL import Image
for i in range(3):
img = Image.fromarray(x_test[i], 'L')
img = img.resize((896, 896), Image.NEAREST)
img.show()
print("Bild #" + str(i) + " - Klasse: " + str(y_test[i]))"""
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)
model = Sequential()
from tensorflow.keras.layers import Conv2D, MaxPooling2D
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=categorical_crossentropy,
optimizer=Adam(),
metrics=['accuracy'])
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test)
)
from pandas import DataFrame
df_loss = DataFrame(data={
'Epoche': history.epoch * 2,
'Legende': ['Loss auf Trainingsdaten'] * len(history.epoch) + ['Loss auf Testdaten'] * len(history.epoch),
'Loss': history.history['loss'] + history.history['val_loss']
})
df_accuracy = DataFrame(data={
'Epoche': history.epoch * 2,
'Legende': ['Accuracy auf Trainingsdaten'] * len(history.epoch) + ['Accuracy auf Testdaten'] * len(history.epoch),
'Accuracy': history.history['accuracy'] + history.history['val_accuracy']
})
import altair as alt
chart_loss = alt.Chart(df_loss).mark_line().encode(
x='Epoche', y='Loss', color='Legende')
chart_accuracy = alt.Chart(df_accuracy).mark_line().encode(
x='Epoche', y='Accuracy', color='Legende')
chart = chart_loss + chart_accuracy
chart.resolve_scale(y='independent')
chart.save('chart.html')
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])