diff --git a/docs/pinecone-quickstart.ipynb b/docs/pinecone-quickstart.ipynb index 899f691f..d5bfa7b2 100644 --- a/docs/pinecone-quickstart.ipynb +++ b/docs/pinecone-quickstart.ipynb @@ -30,28 +30,15 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 5, "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "4SudLike98WL", - "outputId": "f14a6133-7deb-40e3-968b-533c2e8f57ba" + "id": "4SudLike98WL" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/215.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━\u001b[0m \u001b[32m143.4/215.5 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m215.5/215.5 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h" - ] - } - ], + "outputs": [], "source": [ "!pip install -qU \\\n", - " pinecone-client==4.1.0 \\\n", - " pinecone-notebooks==0.1.1" + " pinecone \\\n", + " pinecone-notebooks" ] }, { @@ -60,21 +47,18 @@ "id": "WoDXUiIkD1U7" }, "source": [ - "## Sign up or log in\n", + "## Get an API key\n", + "\n", + "You need an API key to make calls to your Pinecone project.\n", "\n", - "Sign up for a [free Pinecone account](https://www.pinecone.io/pricing/) and get an API key. Put your key in `PINECONE_API_KEY` below when initializing a new client instance:" + "Use the widget below to generate a key. If you don't have a Pinecone account, the widget will sign you up for the free Starter plan." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 247 - }, - "id": "89S8G8oP61-t", - "outputId": "998abdfd-c528-4500-ff45-8344b6818e0a" + "id": "89S8G8oP61-t" }, "outputs": [], "source": [ @@ -85,15 +69,26 @@ " Authenticate()" ] }, + { + "cell_type": "markdown", + "source": [ + "## Initialize a client\n", + "\n", + "Use the generated API key to intialize a client connection to Pinecone:" + ], + "metadata": { + "id": "sbJFp5DO5ryT" + } + }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": { "id": "e9rr_u6ZIvZ-" }, "outputs": [], "source": [ - "from pinecone import Pinecone\n", + "from pinecone import Pinecone, ServerlessSpec\n", "\n", "api_key = os.environ.get(\"PINECONE_API_KEY\")\n", "\n", @@ -102,28 +97,44 @@ }, { "cell_type": "markdown", - "metadata": { - "id": "qXBdv9IG06IU" - }, "source": [ - "Now we setup our index specification, this allows us to define the cloud provider and region where we want to deploy our index." - ] + "## Generate vectors\n", + "\n", + "A [vector embedding](https://www.pinecone.io/learn/vector-embeddings/) is a numerical representation of data that enables similarity-based search in vector databases like Pinecone. To convert data into this format, you use an embedding model.\n", + "\n", + "For this quickstart, use the [`multilingual-e5-large`](https://docs.pinecone.io/models/multilingual-e5-large) embedding model hosted by Pinecone to [create vector embeddings](https://docs.pinecone.io/guides/inference/generate-embeddings) for sentences related to the word \"apple\". Note that some sentences are about the tech company, while others are about the fruit.\n" + ], + "metadata": { + "id": "bN9Rl7GP258C" + } }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "XYWFv-gw08WG" - }, - "outputs": [], "source": [ - "from pinecone import ServerlessSpec\n", + "# Define a sample dataset where each item has a unique ID and piece of text\n", + "data = [\n", + " {\"id\": \"vec1\", \"text\": \"Apple is a popular fruit known for its sweetness and crisp texture.\"},\n", + " {\"id\": \"vec2\", \"text\": \"The tech company Apple is known for its innovative products like the iPhone.\"},\n", + " {\"id\": \"vec3\", \"text\": \"Many people enjoy eating apples as a healthy snack.\"},\n", + " {\"id\": \"vec4\", \"text\": \"Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.\"},\n", + " {\"id\": \"vec5\", \"text\": \"An apple a day keeps the doctor away, as the saying goes.\"},\n", + " {\"id\": \"vec6\", \"text\": \"Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.\"}\n", + "]\n", "\n", - "cloud = os.environ.get('PINECONE_CLOUD') or 'aws'\n", - "region = os.environ.get('PINECONE_REGION') or 'us-east-1'\n", + "# Convert the text into numerical vectors that Pinecone can index\n", + "embeddings = pc.inference.embed(\n", + " model=\"multilingual-e5-large\",\n", + " inputs=[d['text'] for d in data],\n", + " parameters={\"input_type\": \"passage\", \"truncate\": \"END\"}\n", + ")\n", "\n", - "spec = ServerlessSpec(cloud=cloud, region=region)" - ] + "print(embeddings)\n" + ], + "metadata": { + "id": "ZIclo2UK3NFE" + }, + "execution_count": null, + "outputs": [] }, { "cell_type": "markdown", @@ -131,16 +142,16 @@ "id": "VpgIIsLlJGFf" }, "source": [ - "## Create a serverless index\n", + "## Create an index\n", "\n", - "In Pinecone, an [index](https://docs.pinecone.io/guides/indexes/understanding-indexes) is the highest-level organizational unit of data, where you define the dimension of vectors to be stored and the [similarity metric](https://www.pinecone.io/learn/vector-similarity/) to be used when querying them. Normally, you choose a dimension and similarity metric based on the [embedding model](https://www.pinecone.io/models/) used to create your vectors. For this quickstart, however, you'll use a configuration that makes it easy to verify your query results.\n", + "In Pinecone, you store data in an [index](https://docs.pinecone.io/guides/indexes/understanding-indexes).\n", "\n", - "[Create a serverless index](https://docs.pinecone.io/guides/indexes/create-an-index#create-a-serverless-index) named `docs-quickstart-notebook` that stores vectors of 2 dimensions and performs nearest-neighbor search using the cosine similarity metric:" + "Create a serverless index that matches the dimension (`1024`) and similarity metric (`cosine`) of the `multilingual-e5-large` model you used in the previous step, and choose a [cloud and region](https://docs.pinecone.io/guides/indexes/understanding-indexes#cloud-regions) for hosting the index:" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "metadata": { "id": "Buo2K1h8O_fN" }, @@ -151,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 10, "metadata": { "id": "MaqbcsI4I1gU" }, @@ -159,16 +170,20 @@ "source": [ "import time\n", "\n", - "if index_name not in pc.list_indexes().names():\n", + "if not pc.has_index(index_name):\n", " pc.create_index(\n", " name=index_name,\n", - " dimension=2,\n", + " dimension=1024,\n", " metric=\"cosine\",\n", - " spec=spec\n", + " spec=ServerlessSpec(\n", + " cloud='aws',\n", + " region='us-east-1'\n", + " )\n", " )\n", - " # wait for index to be ready\n", - " while not pc.describe_index(index_name).status['ready']:\n", - " time.sleep(1)" + "\n", + "# Wait for the index to be ready\n", + "while not pc.describe_index(index_name).status['ready']:\n", + " time.sleep(1)" ] }, { @@ -179,58 +194,37 @@ "source": [ "## Upsert vectors\n", "\n", - "Within an index, vectors are stored in [namespaces](https://docs.pinecone.io/guides/indexes/use-namespaces), and all upserts, queries, and other data operations always target one namespace:\n", - "\n", - "![multitenancy1.png]()\n", + "Target your index and use the [`upsert`](https://docs.pinecone.io/guides/data/upsert-data) operation to load your vector embeddings into a new namespace.\n", "\n", - "Now that you've created your index, target the `docs-quickstart-notebook` index and use the [`upsert`](https://docs.pinecone.io/reference/api/data-plane/upsert) operation to write six 2-dimensional vectors into 2 distinct namespaces:" + "**Note:** [Namespaces](https://docs.pinecone.io/guides/get-started/key-features#namespaces) let you partition records within an index and are essential for [implementing multitenancy](https://docs.pinecone.io/guides/get-started/implement-multitenancy) when you need to isolate the data of each customer/user.\n" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Ri6RX7FEiV4C", - "outputId": "a5bef5d5-6647-4946-f274-52b692c75e53" + "id": "Ri6RX7FEiV4C" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'upserted_count': 3}\n", - "{'upserted_count': 3}\n" - ] - } - ], + "outputs": [], "source": [ + "# Target the index where you'll store the vector embeddings\n", "index = pc.Index(index_name)\n", - "time.sleep(1)\n", - "\n", - "upsert1 = index.upsert(\n", - " vectors=[\n", - " {\"id\": \"vec1\", \"values\": [1.0, 1.5]},\n", - " {\"id\": \"vec2\", \"values\": [2.0, 1.0]},\n", - " {\"id\": \"vec3\", \"values\": [0.1, 3.0]},\n", - " ],\n", - " namespace=\"ns1\"\n", - ")\n", "\n", - "print(upsert1)\n", + "# Prepare the records for upsert\n", + "# Each contains an 'id', the embedding 'values', and the original text as 'metadata'\n", + "records = []\n", + "for d, e in zip(data, embeddings):\n", + " records.append({\n", + " \"id\": d['id'],\n", + " \"values\": e['values'],\n", + " \"metadata\": {'text': d['text']}\n", + " })\n", "\n", - "upsert2 = index.upsert(\n", - " vectors=[\n", - " {\"id\": \"vec1\", \"values\": [1.0, -2.5]},\n", - " {\"id\": \"vec2\", \"values\": [3.0, -2.0]},\n", - " {\"id\": \"vec3\", \"values\": [0.5, -1.5]},\n", - " ],\n", - " namespace=\"ns2\"\n", - ")\n", - "\n", - "print(upsert2)" + "# Upsert the records into the index\n", + "index.upsert(\n", + " vectors=records,\n", + " namespace=\"example-namespace\"\n", + ")" ] }, { @@ -239,7 +233,7 @@ "id": "fqVA4OrlidX2" }, "source": [ - "**Note:** When upserting larger amounts of data, [upsert data in batches](https://docs.pinecone.io/guides/data/upsert-data#upsert-records-in-batches) of 100-500 vectors over multiple upsert requests." + "**Note:** To load large amounts of data, [import from object storage](https://docs.pinecone.io/guides/data/understanding-imports) or [upsert in large batches](https://docs.pinecone.io/guides/data/upsert-data#upsert-records-in-batches)." ] }, { @@ -255,27 +249,14 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ANfVNxzDivEY", - "outputId": "6f77f8cf-ee64-42c7-964a-aaf03ba51b71" + "id": "ANfVNxzDivEY" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'dimension': 2,\n", - " 'index_fullness': 0.0,\n", - " 'namespaces': {},\n", - " 'total_vector_count': 0}\n" - ] - } - ], + "outputs": [], "source": [ + "time.sleep(10) # Wait for the upserted vectors to be indexed\n", + "\n", "print(index.describe_index_stats())" ] }, @@ -287,47 +268,41 @@ "source": [ "## Run a similarity search\n", "\n", - "Query each namespace in your index for the 3 vectors that are most similar to an example 2-dimensional vector using the cosine distance metric you specified for the index:" + "With data in your index, let's say you now want to search for information about \"Apple\" the tech company, not \"apple\" the fruit.\n", + "\n", + "Use the the `multilingual-e5-large` model to convert your query into a vector embedding, and then use the [`query`](https://docs.pinecone.io/guides/data/query-data) operation to search for the three vectors in the index that are most semantically similar to the query vector:" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "RyP4EQX8jcLn", - "outputId": "44a78289-eb69-44a9-d62b-225436ac164e" + "id": "RyP4EQX8jcLn" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'matches': [], 'namespace': 'ns1', 'usage': {'read_units': 1}}\n", - "{'matches': [], 'namespace': 'ns2', 'usage': {'read_units': 1}}\n" - ] - } - ], + "outputs": [], "source": [ - "query_results1 = index.query(\n", - " namespace=\"ns1\",\n", - " vector=[1.0, 1.5],\n", - " top_k=3,\n", - " include_values=True\n", - ")\n", + "# Define your query\n", + "query = \"Tell me about the tech company known as Apple.\"\n", "\n", - "print(query_results1)\n", + "# Convert the query into a numerical vector that Pinecone can search with\n", + "query_embedding = pc.inference.embed(\n", + " model=\"multilingual-e5-large\",\n", + " inputs=[query],\n", + " parameters={\n", + " \"input_type\": \"query\"\n", + " }\n", + ")\n", "\n", - "query_results2 = index.query(\n", - " namespace=\"ns2\",\n", - " vector=[1.0,-2.5],\n", + "# Search the index for the three most similar vectors\n", + "results = index.query(\n", + " namespace=\"example-namespace\",\n", + " vector=query_embedding[0].values,\n", " top_k=3,\n", - " include_values=True\n", + " include_values=False,\n", + " include_metadata=True\n", ")\n", "\n", - "print(query_results2)" + "print(results)" ] }, { @@ -336,17 +311,7 @@ "id": "9jAJDjSAjsvA" }, "source": [ - "
\n", - " Query results explained\n", - "\n", - " Your index uses the cosine distance metric, which measures similarity based on the angle between two vectors. Scores range between 1 and -1. The greater the score, the greater the similarity between the vectors.\n", - "\n", - " In the following graph, the upper and lower right quadrants show the query results from namespaces `ns1` and `ns2`, respectively. In each quadrant, blue represents the most similar vector, green the second most similar, and red the third most similar. In this case, the most similar vectors are identical to the query vectors, with a score of 1, and so the blue arrows represent both the query vectors and the nearest vectors.\n", - " \n", - " ![quickstart-cosine.png]()\n", - "
\n", - "\n", - "This is a simple example. As you put more demands on Pinecone, you’ll see it returning low-latency, accurate results at huge scales, with indexes of up to billions of vectors." + "Notice that the response includes only sentences about the tech company, not the fruit." ] }, { @@ -357,12 +322,12 @@ "source": [ "## Clean up\n", "\n", - "When you no longer need the “docs-quickstart-notebook” index, use the [`delete_index`](https://docs.pinecone.io/reference/api/control-plane/delete_index) operation to delete it:" + "When you no longer need the `docs-quickstart-notebook` index, use the [`delete_index`](https://docs.pinecone.io/reference/api/control-plane/delete_index) operation to delete it:" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, "metadata": { "id": "1iHV2Y0ujy0y" }, @@ -395,4 +360,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} +} \ No newline at end of file