-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3.1_processNatCap.r
149 lines (108 loc) · 6.54 KB
/
3.1_processNatCap.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Summarize the NatCap InVest output onto our analysis grid
##############################
## Process NatCap Wind data ##
##############################
require(raster)
require(sf)
require(data.table)
gridsize = 0.25 # size of grid for the CMPS analysis, in degrees
# read in data
wind_west <- raster('../NatCap_temp/westcoastwind/output/npv_US_millions.tif')
# image(wind_west)
wind_east <- raster('../NatCap_temp/eastcoastwind/output/npv_US_millions.tif')
# image(wind_east)
grid <- readRDS('temp/SPsf2.rds') # the analysis grid
# project to LL
wind_east.t <- projectRaster(wind_east, crs=crs(grid))
wind_west.t <- projectRaster(wind_west, crs=crs(grid)) # slow step
# extract from raster to the grid cells: VERY SLOW approach
# wind_east_df <- extract(x=wind_east.t, y=as(grid[grid$lon > -100,], 'Spatial'), method='bilinear', fun=mean, na.rm=TRUE) # get raster values by climate grid cell
# wind_west_df <- extract(x=wind_west.t, y=as(grid[grid$lon < -100,], 'Spatial'), method='bilinear', fun=mean, na.rm=TRUE)
# wind_east_df <- cbind(npv = wind_east_df, grid[grid$lon > -100, c('lon', 'lat')])
# wind_west_df <- cbind(npv = wind_west_df, grid[grid$lon < -100, c('lon', 'lat')])
# extract from raster to the grid cells: fast approach
wind_east_dt <- data.table(cbind(coordinates(wind_east.t), npv=extract(x=wind_east.t, y=extent(wind_east.t)))) # get raster values by raster grid cell
wind_west_dt <- data.table(cbind(coordinates(wind_west.t), npv=extract(x=wind_west.t, y=extent(wind_west.t))))
wind_dt <- rbind(wind_east_dt, wind_west_dt) # concatenate
wind_dt[, latgrid := floor(y/gridsize)*gridsize + gridsize/2] # round to nearest CMSP grid center
wind_dt[, longrid := floor(x/gridsize)*gridsize + gridsize/2]
wind_sum <- wind_dt[, .(npv = mean(npv, na.rm = TRUE)), by = c('latgrid', 'longrid')] # average by climate grid cell
# plot to make sure it worked
wind_sum[, plot(longrid, latgrid, col=c('red', 'blue')[1+(npv > 0)], pch=16, cex=0.05)] # plots of <> a threshold
wind_sum[, plot(longrid, latgrid, col=c('red', 'blue')[1+(npv > 0)], pch=16, cex=0.5, xlim=c(-80, -60), ylim=c(40, 45))] # zoom in
# mark which grids are in climate grid
grid$latgrid <- floor(grid$lat/gridsize)*gridsize + gridsize/2 # round to nearest CMSP grid center (to fix some rounding errors)
grid$longrid <- floor(grid$lon/gridsize)*gridsize + gridsize/2
plot(grid$longrid, grid$latgrid, pch=16, cex=0.05) # check it
wind_sum[, keep := FALSE] # set up a column to mark the ones to keep
wind_sum[paste(latgrid, longrid) %in% paste(grid$latgrid, grid$longrid), keep := TRUE] # keep if in the climate grid
wind_sum[, sum(keep)]
wind_sum[, sum(!keep)]
wind_sum[keep == TRUE, plot(longrid, latgrid, col=c('red', 'blue')[1+(npv > 0)], pch=16, cex=0.25)] # plots of <> a threshold
wind_sum[, plot(longrid, latgrid, col=c('red', 'blue')[keep+1], pch=16, cex=0.25)] # plots of not keep/keep
# remove grids not in clim
wind.out <- wind_sum[keep == TRUE, .(lat = latgrid, lon = longrid, npv = npv)]
# convert NAs to lowest value (too deep)
minnpv <- wind.out[!is.na(npv), min(npv)]
wind.out[is.na(npv), npv := minnpv]
wind.out[, plot(lon, lat, col=c('red', 'blue')[1+(npv > 0)], pch=16, cex=0.25)] # plots of <> a threshold
# are all climate grid cells in the wind object?
missing <- !(paste(grid$latgrid, grid$longrid) %in% wind.out[, paste(lat, lon)])
sum(missing) # 0
# write out
write.csv(wind.out, gzfile('output/wind_npv.csv.gz'))
##############################
## Process NatCap Wave data ##
##############################
require(raster)
require(sf)
require(data.table)
gridsize = 0.25 # size of grid of the climate data, in degrees
# read in data
wave_west <- raster('../NatCap_temp/westcoastwave/output/npv_usd.tif')
# image(wave_west)
wave_east <- raster('../NatCap_temp/eastcoastwave/output/npv_usd.tif')
# image(wave_east)
grid <- readRDS('temp/SPsf2.rds') # the analysis grid
# project to LL
wave_east.t <- projectRaster(wave_east, crs=crs(grid))
wave_west.t <- projectRaster(wave_west, crs=crs(grid)) # took 15 min. why? because has to grid the whole globe from -180 to 180.
# split west into east and west of -180
# otherwise R doesn't have enough memory to do the next step all at once
wave_west.t1 <- crop(wave_west.t, extent(165, 180, 40, 65))
wave_west.t2 <- crop(wave_west.t, extent(-180, -100, 0, 90))
# extract from raster to the grid cells: fast approach
wave_east_dt <- data.table(cbind(coordinates(wave_east.t), npv=extract(x=wave_east.t, y=extent(wave_east.t)))) # get raster values by raster grid cell
wave_west_dt1 <- data.table(cbind(coordinates(wave_west.t1), npv=extract(x=wave_west.t1, y=extent(wave_west.t1))))
wave_west_dt2 <- data.table(cbind(coordinates(wave_west.t2), npv=extract(x=wave_west.t2, y=extent(wave_west.t2))))
wave_dt <- rbind(wave_east_dt, wave_west_dt1, wave_west_dt2) # concatenate
nrow(wave_east_dt)
nrow(wave_west_dt1)
nrow(wave_west_dt2) # very big
nrow(wave_dt) # very big
wave_dt[, latgrid := floor(y/gridsize)*gridsize + gridsize/2] # round to nearest climate grid center
wave_dt[, longrid := floor(x/gridsize)*gridsize + gridsize/2]
wave_sum <- wave_dt[, .(npv = mean(npv, na.rm = TRUE)), by = c('latgrid', 'longrid')] # average by climate grid cell
nrow(wave_sum) # more reasonable
# plot to make sure it worked
wave_sum[, plot(longrid, latgrid, col=c('red', 'blue')[1+(npv > 0)], pch=16, cex=0.05)] # plots of <> a threshold
# mark which grids are in climate grid
grid$latgrid <- floor(grid$lat/gridsize)*gridsize + gridsize/2 # round to nearest climate grid center (to fix some rounding errors)
grid$longrid <- floor(grid$lon/gridsize)*gridsize + gridsize/2
wave_sum[, keep := FALSE] # set up a column to mark the ones to keep
wave_sum[paste(latgrid, longrid) %in% paste(grid$latgrid, grid$longrid), keep := TRUE] # keep if in the climate grid
wave_sum[, sum(keep)]
wave_sum[, sum(!keep)]
wave_sum[keep == TRUE, plot(longrid, latgrid, col=c('red', 'blue')[1+(npv > 0)], pch=16, cex=0.05)] # plots of <> a threshold
wave_sum[, plot(longrid, latgrid, col=c('red', 'blue')[1+keep], pch=16, cex=0.05)] # keep?
# remove grids not in clim
wave.out <- wave_sum[keep == TRUE, .(lat = latgrid, lon = longrid, npv = npv)]
# convert NAs to lowest value (too deep)
minnpv <- wave.out[!is.na(npv), min(npv)]
wave.out[is.na(npv), npv := minnpv]
wave.out[, plot(lon, lat, col=c('red', 'blue')[1+(npv > 0)], pch=16, cex=0.05)] # plots of <> a threshold
# are all climate grid cells in the wave object?
missing <- !(paste(grid$latgrid, grid$longrid) %in% wave.out[, paste(lat, lon)])
sum(missing) # 0
# write out
write.csv(wave.out, gzfile('output/wave_npv.csv.gz'))