-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5.1_prioritizr.r
491 lines (397 loc) · 25 KB
/
5.1_prioritizr.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# Set up and run Prioritizr with zones to simulate CMSP in one region
# set up to source from within R 3.5.3: source('code/5.1_prioritizr.r')
# May need to set R_MAX_VSIZE=60000000 or larger in .Renviron to avoid hitting memory limits (Sys.getenv('R_MAX_VSIZE') to query)
#############
## Parameters
#############
# choose the rcps
# will use both for first planning period
# will use only the second for the second planning period
rcps <- c(26, 85)
# choose the climate models to use for future planning (save others for testing)
#bcc-csm1-1-m, bcc-csm1-1, CanESM2, CCSM4, CESM1-CAM5, CNRM-CM5, GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, GISS-E2-R, GISS-E2-H, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM, MPI-ESM-LR, NorESM1-ME
gcminds <- c(1, 2, 3, 4, 8, 9, 10, 14) # from running sample(1:16, 8)
# CMSP goals
consgoal <- 0.1 # proportion of presences to capture in conservation
energygoal <- 0.2 # proportion of NPV
fishgoal <- 0.5 # proportion of biomass
cost <- 0.01 # basic cost of including each planning unit in a given zone
# oceans to read in
oceans <- c('Atl', 'Pac')
# choose region and name these runs
myregs <- c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf')
runname1s <- paste0('hist_', myregs)
runname2s <- paste0('2per_', myregs)
# which time periods to use in the multi-period planning
# contemporary time period must be in first slot, second time period must be the future
planningperiods <- c('2007-2020', '2081-2100')
# folders
prioritizrfolder <- 'output/prioritizr_runs/'
# optimality gap for gurobi solver
gap <- 0.01
######################
# Functions
######################
require(data.table)
library(prioritizr) # only runs in R 3.5.3 for now (Gurobi 8.1.1)
#####################
## Load data
#####################
# loads presence/absence and biomass data
if(!(length(rcps) %in% c(1,2))){
stop('rcp must be length 1 or 2')
}
for (i in 1:length(rcps)){
print(paste0('Loading rcp', rcps[i]))
for(j in 1:length(oceans)){
for(k in 1:length(planningperiods)){
# do both RCPs for first planning period. Do only 2nd rcp for 2nd planning period.
if(k == 1 | (k == 2 & i == 2)){
print(paste(oceans[j], planningperiods[k]))
prestemp <- fread(cmd = paste0('gunzip -c temp/presmap_', oceans[j], '_rcp', rcps[i], '_', planningperiods[k], '.csv.gz'), drop = 1)
biotemp <- fread(cmd = paste0('gunzip -c temp/biomassmap_', oceans[j], '_rcp', rcps[i], '_', planningperiods[k], '.csv.gz'), drop = 1)
# calculate ensemble mean across training GCMs and remaining RCPs
prestemp <- prestemp[model %in% c(1:16)[gcminds], .(poccur = mean(poccur)), by = c('latgrid', 'longrid', 'year_range', 'rcp', 'spp')]
biotemp <- biotemp[model %in% c(1:16)[gcminds], .(biomass = mean(biomass)), by = c('latgrid', 'longrid', 'year_range', 'rcp', 'spp')]
if(i == 1 & j == 1 & k == 1){
presmap <- prestemp
biomassmap <- biotemp
} else {
presmap <- rbind(presmap, prestemp)
biomassmap <- rbind(biomassmap, biotemp)
}
}
}
}
}
rm(prestemp, biotemp)
# average across the remaining rcps
presmap <- presmap[, .(poccur = mean(poccur)), by = c('latgrid', 'longrid', 'year_range', 'spp')]
biomassmap <- biomassmap[, .(biomass = mean(biomass)), by = c('latgrid', 'longrid', 'year_range', 'spp')]
# poccur threshold: how high does the probability of occurrence in the projections need to be to consider the species "present"?
# use the thresholds calculated during model fitting from Morley et al. 2018 PLOS ONE
poccurthresh <- fread('https://raw.githubusercontent.com/pinskylab/project_velocity/master/output/modeldiag_Nov2017_fitallreg_2017.csv', drop = 1)[, .(sppocean, thresh.kappa)]
# load NatCap calculations
windnpv <- fread(cmd = 'gunzip -c output/wind_npv.csv.gz', drop = 1)
wavenpv <- fread(cmd = 'gunzip -c output/wave_npv.csv.gz', drop = 1)
setnames(windnpv, c('lat', 'lon', 'npv'), c('latgrid', 'longrid', 'wind_npv'))
setnames(wavenpv, c('lat', 'lon', 'npv'), c('latgrid', 'longrid', 'wave_npv'))
# definition of fishery species by region
fisheryspps <- fread('output/fishery_spps.csv', drop = 1) # which spp to include in fishery goal in each region
# region definitions
regiongrid <- fread(cmd = 'gunzip -c output/region_grid.csv.gz', drop = 1)
################################
## Set up data for any region
################################
# Fix lon in regiongrid to match presmap (-360 to 0)
regiongrid[longrid > 0, longrid := longrid - 360]
# Add region information to presmap
setkey(presmap, latgrid, longrid)
setkey(regiongrid, latgrid, longrid)
presmap <- merge(presmap, regiongrid[, .(latgrid, longrid, region)], all.x = TRUE) # add region information
if(presmap[is.na(region) & !duplicated(presmap[,.(latgrid, longrid)]), .N] != 0){ # 0 missing region: good!
stop('presmap is missing >0 regions')
}
# presmap[is.na(region) & !duplicated(presmap[,.(latgrid, longrid)]), ]
# presmap[is.na(region) & !duplicated(presmap[,.(latgrid, longrid)]), plot(longrid, latgrid)]
# Add region information to biomassmap
setkey(biomassmap, latgrid, longrid)
setkey(regiongrid, latgrid, longrid)
biomassmap <- merge(biomassmap, regiongrid[, .(latgrid, longrid, region)], all.x = TRUE) # add region information
if(biomassmap[is.na(region) & !duplicated(biomassmap[,.(latgrid, longrid)]), .N] != 0){ # 0 missing region: good!
stop('biomassmap is missing >0 regions')
}
# Add poccur threshold to presmap
poccurthresh[, ocean := gsub('.*_', '', sppocean)]
poccurthresh[, spp := gsub('_Atl|_Pac', '', sppocean)]
presmapPac <- merge(presmap[region %in% c('ebs', 'goa', 'bc', 'wc'), ], poccurthresh[ocean == 'Pac', .(spp, thresh.kappa)], by = 'spp') # have to do Atl and Pac separately since some species are in both regions but use different models
presmapAtl <- merge(presmap[region %in% c('gmex', 'seus', 'neus', 'maritime', 'newf'), ], poccurthresh[ocean == 'Atl', .(spp, thresh.kappa)], by = 'spp')
if(nrow(presmap) == nrow(presmapPac) + nrow(presmapAtl)){
presmap <- rbind(presmapPac, presmapAtl)
rm(presmapPac, presmapAtl)
} else {
stop('merge of poccurthesh and presmap did not work')
}
# Fix a species name
# ALSO DORYTEUTHIS/LOLIGO PEALEII?
presmap[spp == 'theragra chalcogramma', spp := 'gadus chalcogrammus']
# zones
# id and names for each zone
zones <- data.frame(id = 1:3, name = c('conservation', 'fishery', 'energy'))
############################
# Run prioritizr
# Do hist-only and 2-period
#############################
for (i in 1:length(myregs)) {
print(paste0('Starting region ', myregs[i]))
###############################
# Set up data for this region
###############################
# pus
# planning features are each 1/4 deg square
pus <- presmap[region == myregs[i], c('latgrid', 'longrid')]
pus <- pus[!duplicated(pus),]
dim(pus) # 2195 (ebs), 795 (goa), (bc), (wc), 651 (gomex), (seus), (neus), (maritime), (newf)
if(nrow(pus) == 0) stop('pus has length zero')
pus <- pus[order(pus$latgrid, pus$longrid),]
pus$id <- 1:nrow(pus)
pus$dummycost <- rep(cost, nrow(pus)) # set the same cost in each planning unit. can add separate costs for each zone.
############################################
## Run prioritizr just on 2007-2020
############################################
# spps
# id and name for each species
# fishery features entered separately from conservation features, even if same species
# plan on ensemble mean of all climate models for the current time-period
sppstokeep <- presmap[region == myregs[i] & year_range == planningperiods[1], .(poccur = mean(poccur)), by = c('latgrid', 'longrid', 'spp', 'thresh.kappa')] # average across models
dim(sppstokeep)
sppstokeep <- sppstokeep[poccur >= thresh.kappa, ]
sppstokeep <- merge(sppstokeep, pus[, .(latgrid, longrid, id)], by = c('latgrid', 'longrid')) # add pu id (and trim to focal pus)
setnames(sppstokeep, 'id', 'pu')
dim(sppstokeep)
ngrid <- sppstokeep[ , .(ngrid = length(unique(pu))), by = 'spp']
sppstokeep <- merge(sppstokeep, ngrid, by = 'spp')
sppstokeep[ , summary(ngrid)] #
nspps <- sppstokeep[ , .(nspp = length(unique(spp))), by = 'pu']
sppstokeep <- merge(sppstokeep, nspps, by = 'pu')
sppstokeep[, summary(nspp)] #
sppstokeep <- sppstokeep[ngrid >= (nrow(pus)*0.05),] # trim to species found at poccur > poccurthresh in at least 5% of grids
sppstokeep[ , length(unique(spp))]
spps <- data.table(id = 1:length(unique(sppstokeep$spp)), name = gsub(' |_', '', sort(unique(sppstokeep$spp))), spp = sort(unique(sppstokeep$spp))) # fill spaces in species names.
# add fishery features
spps <- rbind(spps, data.table(id = max(spps$id) + 1:fisheryspps[region == myregs[i], length(projname)],
name = paste0(gsub(' |_', '', fisheryspps[region == myregs[i], projname]), '_fishery'),
spp = fisheryspps[region == myregs[i], projname]))
# add wind and wave energy feature
spps <- rbind(spps, data.table(id = max(spps$id) + 1, name = c('energy'), spp = c(NA)))
# write out the species for this region
write.csv(spps, file = paste0(prioritizrfolder, 'spp_', myregs[i], '.csv'))
# puvsp
# which features are in each planning unit
# Format conservation data
puvsppa <- presmap[region == myregs[i] & year_range == planningperiods[1], .(poccur = mean(poccur)), by = c('latgrid', 'longrid', 'spp', 'thresh.kappa')] # pres/abs data.
dim(puvsppa)
puvsppa[, amount := as.numeric(poccur >= thresh.kappa)] # use pres/abs as conservation amount.
puvsppa[, summary(amount)]
puvsppa[, sort(unique(amount))]
puvsppa[, poccur := NULL]
puvsppa[ , name := gsub(' |_', '', spp)] # trim out spaces from species names
# Format fishery data
puvspbio <- biomassmap[region == myregs[i] & year_range == planningperiods[1] & spp %in% fisheryspps[region == myregs[i], projname], .(biomass = mean(biomass)), by = c('latgrid', 'longrid', 'spp')] # biomass data.
dim(puvspbio)
puvspbio[, length(unique(spp))] # should be 10
puvspbio[, amount := biomass] # use biomass as amount for fishery targets
puvspbio[ , name := paste0(gsub(' |_', '', spp), '_fishery')] # trim out spaces from species names, append fishery
# Format wind and wave data
puvenergy <- merge(windnpv, wavenpv, by = c('latgrid', 'longrid'), all = TRUE)
head(puvenergy)
dim(windnpv)
dim(wavenpv)
dim(puvenergy)
puvenergy[wind_npv < 0 | is.na(wind_npv), wind_npv := 0] # set negative or NA NPV to 0
puvenergy[wave_npv < 0 | is.na(wave_npv), wave_npv := 0]
puvenergy[, amount := (wind_npv + wave_npv)/10000] # scale down to pass presolve checks
puvenergy[, name := 'energy']
# combine
puvsp <- rbind(puvsppa[, .(name, latgrid, longrid, amount, zone = 1)],
puvspbio[, .(name, latgrid, longrid, amount, zone = 2)],
puvenergy[, .(name, latgrid, longrid, amount, zone = 3)])
# Add species ids
nrow(puvsp)
puvsp <- merge(puvsp, spps[, .(id, name)], by = 'name') # merge in species IDs and trim to focal species
nrow(puvsp)
setnames(puvsp, 'id', 'species')
# Add planning units
puvsp <- merge(puvsp, pus[, .(latgrid, longrid, id)], by = c('latgrid', 'longrid')) # add pu id (and trim to focal pus)
nrow(puvsp)
setnames(puvsp, 'id', 'pu')
# Check fishery species for adequate biomass and scale up if needed
# Makes sure that no fishery species are eliminated by the next section checking for amount < 1e6
fishtotals <- puvsp[grepl('fishery', name), .(total = sum(amount), name = unique(name)), by = 'species']
for(j in which(fishtotals[, total < 1])){
scalar <- 1/fishtotals[j, total] # scale up so sum would be 1
puvsp[species == fishtotals[j, species], amount := amount * scalar]
}
# Trim out values < 1e-6 (will throw error in prioritizr)
# Use 5e-6 to leave some buffer
puvsp[amount < 5e-6, amount := 0]
# Sort and trim columns and rows
setkey(puvsp, pu, species) # order by pu then species
puvsp <- puvsp[amount > 0, ] # trim only to presences
# checks
if(length(unique(puvsp$pu)) != nrow(pus)) stop(paste0('region: ', myregs[i], '. puvsp planning units do not match pus.')) # planning units for species + NatCap: 2195 (ebs), 661 (goa), 549 (neus), 1342 (newf)
if(!all(unique(puvsp$species) %in% spps$id)) stop(paste0('region: ', myregs[i], '. Some puvsp features are not in spps.')) # features that are species + fishery + NatCap
if(min(sort(unique(table(puvsp$species)))) < 1) stop(paste0('region: ', myregs[i], '. Some species are not in a planning unit (hist).')) # make sure all species show up in some planning units (shouldn't see any 0s)
if(min(sort(unique(table(puvsp$pu))) < 1)) stop(paste0('region: ', myregs[i], '. Some planning units do not have a species (hist).')) # make sure all planning units have some species (shouldn't see any 0s)
if(!all(sort(unique(table(puvsp$pu, puvsp$species))) %in% c(0,1))) stop(paste0('region: ', myregs[i], '. Some planning unit-species combinations appear more than once (hist).')) # should be all 0s and 1s
if(puvsp[, max(amount) > 1e6]) stop(paste0('region:', myregs[i], '. Amount > 1e6 (hist).'))
#zone target
# set zone-specific targets: rows are features, columns are zones
zonetarget <- matrix(0, nrow = nrow(spps), ncol = nrow(zones), dimnames = list(spps$name, zones$name))
zonetarget[!grepl('energy|fishery', rownames(zonetarget)), 'conservation'] <- consgoal # set conservation zone target
zonetarget[grepl('fishery', rownames(zonetarget)), 'fishery'] <- fishgoal # set fishing zone target
zonetarget[grepl('energy', rownames(zonetarget)), 'energy'] <- energygoal # set energy goal target
# basic checks (automated)
if(!all(colSums(zonetarget) > 0)) stop(paste0('region:', myregs[i], '. Some zone targets are 0 (hist).')) # reasonable targets?
if(nrow(zonetarget) != nrow(spps)) stop(paste0('region: ', myregs[i], '. Zonetargets do not match spps (hist).'))
if(!all(rownames(zonetarget) == spps$name)) stop(paste0('region: ', myregs[i], '. Zonetargets order does not match spps order (hist).'))
if(sum(!(puvsp$pu %in% pus$id)) > 0) stop(paste0('region: ', myregs[i], '. Some planning units not in pus (hist).'))
if(sum(!(puvsp$species %in% spps$id)) > 0) stop(paste0('region: ', myregs[i], '. Some species units not in spps (hist).'))
if(sum(!(pus$id %in% puvsp$pu)) > 0) stop(paste0('region: ', myregs[i], '. Some pus units not in puvsp (hist).'))
if(sum(!(spps$id %in% puvsp$species)) > 0) stop(paste0('region: ', myregs[i], '. Some species units not in puvsp (hist).'))
# Define the problem in prioritzr format
# rij may need a zone column
p1 <- problem(pus, spps, cost_column = c('dummycost', 'dummycost', 'dummycost'), rij = puvsp, zones = zones) %>%
add_min_set_objective() %>%
add_relative_targets(zonetarget) %>%
add_binary_decisions() %>%
add_gurobi_solver(gap = gap)
# solve it
cat('\tSolving hist\n')
if(presolve_check(p1)){
s1 <- solve(p1)
} else {
stop(paste0('region:', myregs[i], '. Failed presolve check (hist).'))
}
# force solution (e.g., if fails presolve checks)
# but beware: solution may be meaningless
# s1 <- p1 %>%
# add_gurobi_solver(numeric_focus = TRUE) %>%
# solve(force = TRUE)
# examine solution in various ways
s1[,.(navail = sum(solution_1_conservation == 0 & solution_1_fishery == 0 & solution_1_energy == 0),
ncons = sum(solution_1_conservation),
nfish = sum(solution_1_fishery),
nenergy = sum(solution_1_energy))] # number of cells in each zone
r1 <- feature_representation(p1, s1[, .(solution_1_conservation, solution_1_fishery, solution_1_energy)]) # representation of each feature in each zone
r1dt <- as.data.table(r1)
r1dt[zone=='conservation',] # meeting conservation targets?
r1dt[zone=='conservation' & !grepl('fishery|energy', feature), .(summary(absolute_held), summary(relative_held))] # meeting conservation targets?
r1dt[zone=='fishery' & grepl('fishery', feature),] # fishery targets
r1dt[zone=='energy',]
# write out
write.csv(s1, file = paste0(prioritizrfolder, 'solution_', runname1s[i], '.csv'))
##################################################################
## Set up a prioritizr run on 2006-2020 and half an ensemble mean 2081-2100
## This assumes that the historical-only code (previous section) has been run and is loaded in memory
##################################################################
# spps2
# document every species present
# add future species to include
spps2 <- spps # use the same species as in the historical-only run
sppinds <- !grepl('energy', spps2$name) # don't include energy in each time period
temp1 <- spps2[sppinds,]
spps2$name[sppinds] <- paste0(spps2$name[sppinds], gsub('-', '', planningperiods[1]))
temp1$name <- paste0(temp1$name, gsub('-', '', planningperiods[2]))
temp1$id = temp1$id + max(spps2$id) # make sure the ids don't overlap
spps2 <- rbind(spps2, temp1)
# puvsp2
# table of species by planning units
# add future species to include
# use only a set of 8 models, leaving later 8 for testing
# Format future conservation data
puvsppa2 <- presmap[region == myregs[i] & year_range == planningperiods[2], .(poccur = mean(poccur)), by = c('latgrid', 'longrid', 'spp', 'thresh.kappa')] # pres/abs data. trim to focal models
dim(puvsppa2)
puvsppa2[, amount := as.numeric(poccur >= thresh.kappa)] # use pres/abs as conservation amount. should this instead be left as poccur?
puvsppa2[, summary(amount)]
puvsppa2[, sort(unique(amount))]
puvsppa2[ , name := gsub(' |_', '', spp)] # trim out spaces from species names and add future
puvsppa2[!grepl('energy', name), name := paste0(name, gsub('-', '', planningperiods[2]))] # append time period
# Format fishery data
puvspbio2 <- biomassmap[region == myregs[i] & year_range == planningperiods[2] & spp %in% fisheryspps[region == myregs[i], projname], .(biomass = mean(biomass)), by = c('latgrid', 'longrid', 'spp')] # biomass data
dim(puvspbio2)
puvspbio2[, length(unique(spp))] # should be 10
puvspbio2[, amount := biomass] # use biomass as amount for fishery targets.
puvspbio2[ , name := paste0(gsub(' |_', '', spp), '_fishery')] # trim out spaces from species names
puvspbio2[!grepl('energy', name), name := paste0(name, gsub('-', '', planningperiods[2]))] # append time period
# combine future data
puvsp2 <- rbind(puvsppa2[, .(name, latgrid, longrid, amount, zone = 1)],
puvspbio2[, .(name, latgrid, longrid, amount, zone = 2)])
# Add species ids
nrow(puvsp2)
puvsp2 <- merge(puvsp2, spps2[, .(id, name)], by = 'name') # merge in species IDs and trim to focal species
nrow(puvsp2)
setnames(puvsp2, 'id', 'species')
# Add planning units
puvsp2 <- merge(puvsp2, pus[, .(latgrid, longrid, id)], by = c('latgrid', 'longrid')) # add pu id (and trim to focal pus)
nrow(puvsp2)
setnames(puvsp2, 'id', 'pu')
# Check fishery species for adequate biomass and scale up if needed
# Makes sure that no fishery species are eliminated by the next section checking for amount < 1e6
fishtotals2 <- puvsp2[grepl('fishery', name), .(total = sum(amount), name = unique(name)), by = 'species']
for(j in which(fishtotals2[, total < 1])){
scalar <- 1/fishtotals2[j, total] # scale up so sum would be 1
puvsp2[species == fishtotals2[j, species], amount := amount * scalar]
}
# Add historical data
temp1 <- puvsp # start from the same data as in the historical run
temp1[!grepl('energy', name), name := paste0(name, gsub('-', '', planningperiods[1]))] # append time period (except energy)
puvsp2 <- rbind(temp1, puvsp2)
# Trim out values < 1e-6 (will throw error in prioritizr)
# Use 5e-6 to leave some buffer
puvsp2[amount < 5e-6, amount := 0]
# Sort and trim columns and rows
setkey(puvsp2, pu, species) # order by pu then species
puvsp2 <- puvsp2[amount > 0, ] # trim only to presences
# checks
if(length(unique(puvsp2$pu)) != nrow(pus)) stop(paste0('region: ', myregs[i], '. puvsp2 planning units do not match pus.')) # planning units for species + NatCap
if(!all(unique(puvsp2$species) %in% spps2$id)) stop(paste0('region: ', myregs[i], '. Some puvsp2 features are not in spps.')) # features that are species + fishery + NatCap
if(min(sort(unique(table(puvsp2$species)))) < 1) stop(paste0('region: ', myregs[i], '. Some species are not in a planning unit (2per).')) # make sure all species show up in some planning units (shouldn't see any 0s)
if(min(sort(unique(table(puvsp2$pu))) < 1)) stop(paste0('region: ', myregs[i], '. Some planning units do not have a species (2per.')) # make sure all planning units have some species (shouldn't see any 0s)
if(!all(sort(unique(table(puvsp2$pu, puvsp2$species))) %in% c(0,1))) stop(paste0('region: ', myregs[i], '. Some planning unit-species combinations appear more than once (2per).')) # should be all 0s and 1s
if(puvsp2[, max(amount) > 1e6]) stop(paste0('region:', myregs[i], '. Amount > 1e6 (2per).'))
#zone target
# set zone-specific targets: rows are features, columns are zones
zonetarget2 <- matrix(0, nrow = nrow(spps2), ncol = nrow(zones), dimnames = list(spps2$name, zones$name))
zonetarget2[!grepl('energy|fishery', rownames(zonetarget)), 'conservation'] <- consgoal # set conservation zone target
zonetarget2[grepl('fishery', rownames(zonetarget)), 'fishery'] <- fishgoal # set fishing zone target
zonetarget2[grepl('energy', rownames(zonetarget)), 'energy'] <- energygoal # set energy goal target
# trim out species that aren't present
nrow(spps2)
spps2 <- spps2[name %in% puvsp2$name,]
nrow(spps2)
nrow(zonetarget2)
zonetarget2 <- zonetarget2[rownames(zonetarget2) %in% puvsp2$name,]
nrow(zonetarget2)
# basic checks (automated)
if(!all(colSums(zonetarget) > 0)) stop(paste0('region:', myregs[i], '. Some zone targets are 0 (2per).')) # reasonable targets?
if(nrow(zonetarget) != nrow(spps)) stop(paste0('region: ', myregs[i], '. Zonetargets do not match spps (2per).'))
if(!all(rownames(zonetarget) == spps$name)) stop(paste0('region: ', myregs[i], '. Zonetargets order does not match spps order (2per).'))
if(sum(!(puvsp$pu %in% pus$id)) > 0) stop(paste0('region: ', myregs[i], '. Some planning units not in pus (2per).'))
if(sum(!(puvsp$species %in% spps$id)) > 0) stop(paste0('region: ', myregs[i], '. Some species units not in spps (2per).'))
if(sum(!(pus$id %in% puvsp$pu)) > 0) stop(paste0('region: ', myregs[i], '. Some pus units not in puvsp (2per).'))
if(sum(!(spps$id %in% puvsp$species)) > 0) stop(paste0('region: ', myregs[i], '. Some species units not in puvsp (2per).'))
# Define the problem in prioritzr format
# rij may need a zone column
p2 <- problem(pus, spps2, cost_column = c('dummycost', 'dummycost', 'dummycost'),
rij = puvsp2, zones = zones) %>%
add_min_set_objective() %>%
add_relative_targets(zonetarget2) %>%
add_binary_decisions() %>%
add_gurobi_solver(gap = gap)
# solve it
cat('\tSolving 2per\n')
if(presolve_check(p2)){
s2 <- solve(p2)
} else {
stop(paste0('region:', myregs[i], '. Failed presolve check (2per).'))
}
# force solution (e.g., if fails presolve checks)
# but beware: solution may be meaningless
# s2 <- p2 %>%
# add_gurobi_solver(numeric_focus = TRUE) %>%
# solve(force = TRUE)
# examine solution in various ways
s2[,.(navail = sum(solution_1_conservation == 0 & solution_1_fishery == 0 & solution_1_energy == 0),
ncons = sum(solution_1_conservation),
nfish = sum(solution_1_fishery),
nenergy = sum(solution_1_energy))] # number of cells in each zone
r2 <- feature_representation(p2, s2[, .(solution_1_conservation, solution_1_fishery, solution_1_energy)]) # representation of each feature in each zone
r1dt <- as.data.table(r2)
r1dt[zone=='conservation',] # meeting conservation targets?
r1dt[zone=='conservation' & !grepl('fishery|energy', feature), .(summary(absolute_held), summary(relative_held))] # meeting conservation targets?
r1dt[zone=='fishery' & grepl('fishery', feature),] # fishery targets
r1dt[zone=='energy' & grepl('energy', feature),]
# write out
write.csv(s2, file = paste0(prioritizrfolder, 'solution_', runname2s[i], '.csv'))
}