-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathimage_synthesizer.py
283 lines (250 loc) · 13.1 KB
/
image_synthesizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.utils
import tqdm
from utils import kd_loss, DiffAugment
import wandb
import copy
from torch.utils.data import Dataset
from copy import deepcopy
import time
import random
from reparam_module import ReparamModule
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
mean_dataset={
"cifar10": [0.4914, 0.4822, 0.4465],
"mnist": [0.1307],
"fmnist": [0.1307],
}
std_dataset = {
"cifar10" : [0.2023, 0.1994, 0.2010],
"mnist" : [0.3081],
"fmnist" : [0.3081],
}
class TensorDataset(Dataset):
def __init__(self, images, labels): # images: n x c x h x w tensor
self.images = images
self.labels = labels
def __getitem__(self, index):
return self.images[index], self.labels[index]
def __len__(self):
return self.images.shape[0]
def reduce_params(sources, weights):
targets = []
for i in range(len(sources[0])):
target = torch.sum(weights * torch.stack([source[i].cuda() for source in sources], dim = -1), dim=-1)
targets.append(target)
return targets
def epoch(mode, dataloader, net, optimizer, criterion, aug=True, args=None):
loss_avg, acc_avg, num_exp = 0, 0, 0
net = net.cuda()
if mode == 'train':
net.train()
else:
net.eval()
for i_batch, datum in enumerate(dataloader):
img = datum[0].float().cuda()
lab = datum[1].cuda()
if aug:
img = DiffAugment(img, args.dsa_strategy, param=args.dsa_param)
n_b = lab.shape[0]
output = net(img)
loss = criterion(output, lab)
if mode == 'train':
acc = np.sum(np.equal(np.argmax(output.cpu().data.numpy(), axis=-1), np.argmax(lab.cpu().data.numpy(), axis=-1)))
else:
acc = np.sum(np.equal(np.argmax(output.cpu().data.numpy(), axis=-1), lab.cpu().data.numpy()))
loss_avg += loss.item()*n_b
acc_avg += acc
num_exp += n_b
if mode == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_avg /= num_exp
acc_avg /= num_exp
return loss_avg, acc_avg
def evaluate_synset(it_eval, net, lr_net, images_train, labels_train, testloader, args):
net = net.cuda()
images_train = images_train.cuda()
labels_train = labels_train.cuda()
lr = float(lr_net)
Epoch = 500
lr_schedule = [Epoch//2+1]
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=0.0005)
dst_train = TensorDataset(images_train, labels_train)
trainloader = torch.utils.data.DataLoader(dst_train, batch_size=256, shuffle=True, num_workers=0)
start = time.time()
acc_train_list = []
loss_train_list = []
for ep in tqdm.tqdm(range(Epoch+1)):
loss_train, acc_train = epoch('train', trainloader, net, optimizer, kd_loss, aug=True, args=args)
acc_train_list.append(acc_train)
loss_train_list.append(loss_train)
if ep == Epoch:
with torch.no_grad():
loss_test, acc_test = epoch('test', testloader, net, optimizer, nn.CrossEntropyLoss().cuda(), aug=False, args=args)
if ep in lr_schedule:
lr *= 0.1
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=0.0005)
time_train = time.time() - start
print('Evaluate_%02d: epoch = %04d train time = %d s train loss = %.6f train acc = %.4f, test acc = %.4f' % (it_eval, Epoch, int(time_train), loss_train, acc_train, acc_test))
return net, acc_train_list, acc_test
class Synthesizer:
def __init__(self, network, test_loader, args):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.dataset =args.dataset
self.testloader =test_loader
self.batch_syn = args.batch_syn
self.save_path = args.RESULTS_PATH
self.iteration = args.Iteration
self.channel = args.channel
hard_label = [np.ones(args.ipc, dtype=np.long)*i for i in range(args.num_classes)]
label_syn = torch.nn.functional.one_hot(torch.tensor(hard_label).reshape(-1), num_classes=args.num_classes).float()
label_syn = label_syn * args.label_init
label_syn = label_syn.detach().to(self.device).requires_grad_(True)
image_syn = torch.randn(size=(args.num_classes * args.ipc, args.channel, args.imsize[0], args.imsize[1]), dtype=torch.float)
syn_lr = torch.tensor(args.lr_teacher).to(self.device)
image_syn = image_syn.detach().to(self.device).requires_grad_(True)
syn_lr = syn_lr.detach().to(self.device).requires_grad_(True)
if args.img_optim == "sgd":
optimizer_img = torch.optim.SGD([image_syn], lr=args.lr_img, momentum=0.5)
optimizer_label = torch.optim.SGD([label_syn], lr=args.lr_label, momentum=0.5)
else:
optimizer_img = torch.optim.Adam([image_syn], lr=args.lr_img)
optimizer_label = torch.optim.Adam([label_syn], lr=args.lr_label)
if args.lr_optim == "sgd":
optimizer_lr = torch.optim.SGD([syn_lr], lr=args.lr_lr, momentum=0.5)
else:
optimizer_lr = torch.optim.Adam([syn_lr], lr=args.lr_lr)
self.test_loader = test_loader
self.label_syn, self.image_syn, self.syn_lr = label_syn, image_syn, syn_lr
self.optimizer_img, self.optimizer_label, self.optimizer_lr = optimizer_img, optimizer_label, optimizer_lr
self.network = network.cuda()
self.weight_averaging, self.least_ave_num, self.max_ave_num, self.random_weights = args.weight_averaging, args.least_ave_num, args.max_ave_num, args.random_weights
self.distributed = torch.cuda.device_count() > 1
self.syn_steps, self.min_start_epoch , self.max_start_epoch, self.expert_epochs = args.syn_steps, args.min_start_epoch, args.max_start_epoch, args.expert_epochs
def synthesize(self, trajectories_list, args):
for it in range(0, self.iteration):
trajectories = trajectories_list[random.randint(0, len(trajectories_list)-1)]
# trajectories = trajectories_list[-1]
student_net = ReparamModule(copy.deepcopy(self.network))
if self.distributed:
student_net = torch.nn.DataParallel(student_net)
student_net.train()
num_params = sum([np.prod(p.size()) for p in (student_net.parameters())])
curr_max_start_epoch = min([self.max_start_epoch, len(trajectories) - 1 - self.expert_epochs])
if curr_max_start_epoch == 0:
start_epoch = 0
else:
start_epoch = np.random.randint(self.min_start_epoch, curr_max_start_epoch+1)
# print(f"max start epoch {curr_max_start_epoch}, min start epoch {self.min_start_epoch}, expert epoch {self.expert_epochs}")
# print(f"sampled start epoch {start_epoch}")
starting_params = trajectories[start_epoch]
if not self.weight_averaging:
target_params = trajectories[start_epoch+self.expert_epochs]
else:
max_ave_num = self.max_ave_num+1 if self.max_ave_num < self.expert_epochs else self.expert_epochs+1
averaging_num = random.choice(list(range(self.least_ave_num, max_ave_num)))
candidate_params = random.choices(trajectories[start_epoch+1: start_epoch+self.expert_epochs+1],k=averaging_num)
if not self.random_weights:
weights = torch.full([len(candidate_params)], 1./len(candidate_params), dtype=torch.float, device="cuda")
else:
weights = torch.rand(len(candidate_params)).to(self.device)
weights = torch.softmax(weights, dim=0)
target_params = reduce_params(candidate_params, weights)
target_params = torch.cat([p.data.to(self.device).reshape(-1) for p in target_params], 0)
student_params = [torch.cat([p.data.to(self.device).reshape(-1) for p in starting_params], 0).requires_grad_(True)]
starting_params = torch.cat([p.data.to(self.device).reshape(-1) for p in starting_params], 0)
syn_images = self.image_syn
y_hat = self.label_syn
param_loss_list = []
param_dist_list = []
indices_chunks = []
for step in range(self.syn_steps):
if not indices_chunks:
indices = torch.randperm(len(syn_images))
indices_chunks = list(torch.split(indices, self.batch_syn))
these_indices = indices_chunks.pop()
x = syn_images[these_indices]
this_y = y_hat[these_indices]
if args.dsa:
x = DiffAugment(x, args.dsa_strategy, param=args.dsa_param)
if self.distributed:
forward_params = student_params[-1].unsqueeze(0).expand(torch.cuda.device_count(), -1)
else:
forward_params = student_params[-1]
x = student_net(x, flat_param=forward_params)
ce_loss = kd_loss(x, this_y)
grad = torch.autograd.grad(ce_loss, student_params[-1], create_graph=True)[0]
student_params.append(student_params[-1] - self.syn_lr * grad)
param_loss = torch.tensor(0.0).to(self.device)
param_dist = torch.tensor(0.0).to(self.device)
param_loss += torch.nn.functional.mse_loss(student_params[-1], target_params, reduction="sum")
param_dist += torch.nn.functional.mse_loss(starting_params, target_params, reduction="sum")
param_loss_list.append(param_loss)
param_dist_list.append(param_dist)
param_loss /= num_params
param_dist /= num_params
param_loss /= param_dist
grand_loss = param_loss
self.optimizer_img.zero_grad()
self.optimizer_label.zero_grad()
self.optimizer_lr.zero_grad()
grand_loss.backward()
self.optimizer_img.step()
self.optimizer_lr.step()
self.optimizer_label.step()
# wandb.log({"Grand_Loss": grand_loss.detach().cpu()})
for _ in student_params:
del _
if it%10 == 0:
print('iter = %04d, loss = %.4f' % (it, grand_loss.item()))
print(f"syn_labels = {F.softmax(self.label_syn)}")
if (it+1)%500 == 0:
self.evaluate(0,upload_wandb=False, args=args)
def evaluate(self, c_round, upload_wandb= True, args=None):
accs_test = []
accs_train = []
for it_eval in range(3):
net_eval = copy.deepcopy(self.network).to(self.device) # get a random model
eval_labs = self.label_syn.detach()
with torch.no_grad():
image_save = self.image_syn
image_syn_eval, label_syn_eval = copy.deepcopy(image_save.detach()), copy.deepcopy(eval_labs.detach()) # avoid any unaware modification
lr_net = self.syn_lr.item()
_, acc_train, acc_test = evaluate_synset(it_eval, net_eval, lr_net, image_syn_eval, label_syn_eval, self.testloader, args)
accs_test.append(acc_test)
accs_train.append(acc_train)
accs_test = np.array(accs_test)
acc_test_mean = np.mean(accs_test)
acc_test_std = np.std(accs_test)
print('Evaluate %d, mean = %.4f std = %.4f\n-------------------------'%(len(accs_test), acc_test_mean, acc_test_std))
# uploading images to wandb
upsampled = image_save
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=2)
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=3)
grid = torchvision.utils.make_grid(upsampled, nrow=10, normalize=True, scale_each=True)
if upload_wandb:
wandb.log({'Accuracy/{}'.format("ConvNet"): acc_test_mean}, step=c_round)
wandb.log({'Std/{}'.format("ConvNet"): acc_test_std}, step=c_round)
wandb.log({"Synthetic_Images": wandb.Image(torch.nan_to_num(grid.detach().cpu()))}, step=c_round)
wandb.log({'Synthetic_Pixels': wandb.Histogram(torch.nan_to_num(image_save.detach().cpu()))}, step=c_round)
image_syn_vis = copy.deepcopy(image_save.detach().cpu())
for ch in range(self.channel):
image_syn_vis[:, ch] = image_syn_vis[:, ch] * std_dataset.get(self.dataset)[ch] + mean_dataset.get(self.dataset)[ch]
image_syn_vis[image_syn_vis<0] = 0.0
image_syn_vis[image_syn_vis>1] = 1.0
grid = torchvision.utils.make_grid(image_syn_vis, nrow=10, normalize=True, scale_each=True)
wandb.log({"Synthetic vis_Images": wandb.Image(torch.nan_to_num(grid.detach().cpu()))}, step=c_round)
save_data_path = os.path.join(self.save_path, "syn_data")
if not os.path.exists(save_data_path):
os.makedirs(save_data_path)
torch.save(self.image_syn.detach().cpu(), os.path.join(save_data_path, "images_best.pt".format(c_round)))
torch.save(self.label_syn.detach().cpu(), os.path.join(save_data_path, "labels_best.pt".format(c_round)))
print(f"saved synthetic data at {save_data_path}")