-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
808 lines (650 loc) · 28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
import os, argparse, json, copy, time
from tqdm import tqdm
from functools import partial
import torch, torchvision
import numpy as np
import torch.nn as nn
import data, models
import experiment_manager as xpm
# from fl_devices import Client, Server, Client_flip, Client_target, Client_LIE
from collections import OrderedDict
from torch.utils.data import Dataset
import torch.nn.functional as F
from torch.utils.data import Dataset
from torchvision import datasets, transforms
from scipy.ndimage.interpolation import rotate as scipyrotate
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class ParamDiffAug():
def __init__(self):
self.aug_mode = 'S' # 'multiple or single'
self.prob_flip = 0.5
self.ratio_scale = 1.2
self.ratio_rotate = 15.0
self.ratio_crop_pad = 0.125
self.ratio_cutout = 0.5 # the size would be 0.5x0.5
self.ratio_noise = 0.05
self.brightness = 1.0
self.saturation = 2.0
self.contrast = 0.5
def set_seed_DiffAug(param):
if param.latestseed == -1:
return
else:
torch.random.manual_seed(param.latestseed)
param.latestseed += 1
def DiffAugment(x, strategy='', seed=-1, param=None):
if seed == -1:
param.batchmode = False
else:
param.batchmode = True
param.latestseed = seed
if strategy == 'None' or strategy == 'none':
return x
if strategy:
if param.aug_mode == 'M': # original
for p in strategy.split('_'):
for f in AUGMENT_FNS[p]:
x = f(x, param)
elif param.aug_mode == 'S':
pbties = strategy.split('_')
set_seed_DiffAug(param)
p = pbties[torch.randint(0, len(pbties), size=(1,)).item()]
for f in AUGMENT_FNS[p]:
x = f(x, param)
else:
exit('Error ZH: unknown augmentation mode.')
x = x.contiguous()
return x
# We implement the following differentiable augmentation strategies based on the codes provided in https://github.com/mit-han-lab/data-efficient-gans.
def rand_scale(x, param):
# x>1, max scale
# sx, sy: (0, +oo), 1: orignial size, 0.5: enlarge 2 times
ratio = param.ratio_scale
set_seed_DiffAug(param)
sx = torch.rand(x.shape[0]) * (ratio - 1.0 / ratio) + 1.0 / ratio
set_seed_DiffAug(param)
sy = torch.rand(x.shape[0]) * (ratio - 1.0 / ratio) + 1.0 / ratio
theta = [[[sx[i], 0, 0],
[0, sy[i], 0], ] for i in range(x.shape[0])]
theta = torch.tensor(theta, dtype=torch.float)
if param.batchmode: # batch-wise:
theta[:] = theta[0]
grid = F.affine_grid(theta, x.shape, align_corners=True).to(x.device)
x = F.grid_sample(x, grid, align_corners=True)
return x
def rand_rotate(x, param): # [-180, 180], 90: anticlockwise 90 degree
ratio = param.ratio_rotate
set_seed_DiffAug(param)
theta = (torch.rand(x.shape[0]) - 0.5) * 2 * ratio / 180 * float(np.pi)
theta = [[[torch.cos(theta[i]), torch.sin(-theta[i]), 0],
[torch.sin(theta[i]), torch.cos(theta[i]), 0], ] for i in range(x.shape[0])]
theta = torch.tensor(theta, dtype=torch.float)
if param.batchmode: # batch-wise:
theta[:] = theta[0]
grid = F.affine_grid(theta, x.shape, align_corners=True).to(x.device)
x = F.grid_sample(x, grid, align_corners=True)
return x
def rand_flip(x, param):
prob = param.prob_flip
set_seed_DiffAug(param)
randf = torch.rand(x.size(0), 1, 1, 1, device=x.device)
if param.batchmode: # batch-wise:
randf[:] = randf[0]
return torch.where(randf < prob, x.flip(3), x)
def rand_brightness(x, param):
ratio = param.brightness
set_seed_DiffAug(param)
randb = torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device)
if param.batchmode: # batch-wise:
randb[:] = randb[0]
x = x + (randb - 0.5) * ratio
return x
def rand_saturation(x, param):
ratio = param.saturation
x_mean = x.mean(dim=1, keepdim=True)
set_seed_DiffAug(param)
rands = torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device)
if param.batchmode: # batch-wise:
rands[:] = rands[0]
x = (x - x_mean) * (rands * ratio) + x_mean
return x
def rand_contrast(x, param):
ratio = param.contrast
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
set_seed_DiffAug(param)
randc = torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device)
if param.batchmode: # batch-wise:
randc[:] = randc[0]
x = (x - x_mean) * (randc + ratio) + x_mean
return x
def rand_crop(x, param):
# The image is padded on its surrounding and then cropped.
ratio = param.ratio_crop_pad
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
set_seed_DiffAug(param)
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
set_seed_DiffAug(param)
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
if param.batchmode: # batch-wise:
translation_x[:] = translation_x[0]
translation_y[:] = translation_y[0]
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(x.size(2), dtype=torch.long, device=x.device),
torch.arange(x.size(3), dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2)
return x
def rand_cutout(x, param):
ratio = param.ratio_cutout
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
set_seed_DiffAug(param)
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
set_seed_DiffAug(param)
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
if param.batchmode: # batch-wise:
offset_x[:] = offset_x[0]
offset_y[:] = offset_y[0]
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
mask[grid_batch, grid_x, grid_y] = 0
x = x * mask.unsqueeze(1)
return x
AUGMENT_FNS = {
'color': [rand_brightness, rand_saturation, rand_contrast],
'crop': [rand_crop],
'cutout': [rand_cutout],
'flip': [rand_flip],
'scale': [rand_scale],
'rotate': [rand_rotate],
}
class TensorDataset(Dataset):
def __init__(self, images, labels): # images: n x c x h x w tensor
self.images = images.detach().float()
self.labels = labels.detach()
def __getitem__(self, index):
return self.images[index], self.labels[index]
def __len__(self):
return self.images.shape[0]
def get_benign_updates(mali_clients, server):
# import pdb; pdb.set_trace()
mal_user_grad_sum = {}
mal_user_grad_pow = {}
user_grad = {}
server_weights = server.parameter_dict[mali_clients[0].model_name]
for client in mali_clients:
# import pdb; pdb.set_trace()
for name in client.W:
user_grad[name] = client.W[name].detach() - server_weights[name].detach()
# import pdb; pdb.set_trace()
if name not in mal_user_grad_sum:
mal_user_grad_sum[name] = user_grad[name].clone()
mal_user_grad_pow[name] = torch.pow(user_grad[name], 2)
else:
mal_user_grad_sum[name] += user_grad[name].clone()
mal_user_grad_pow[name] += torch.pow(user_grad[name], 2)
mal_user_grad_mean2 = OrderedDict()
mal_user_grad_std2 = OrderedDict()
for name in mali_clients[0].W:
mal_user_grad_mean2[name] = mal_user_grad_sum[name] / len(mali_clients)
mal_user_grad_std2[name] = torch.sqrt(
(mal_user_grad_pow[name] / len(mali_clients) - torch.pow(mal_user_grad_mean2[name], 2)))
return mal_user_grad_mean2, mal_user_grad_std2
def plot_1d(benign_zscores, mali_zscores, mu, var, pi, save_name):
from matplotlib import pyplot as plt
import seaborn as sns
from scipy.stats import multivariate_normal
mu = mu.cpu()
var = var.cpu()
pi = pi.cpu()
benign = np.array(benign_zscores)
mali = np.array(mali_zscores)
# import pdb; pdb.set_trace()
min_X = np.concatenate([benign, mali]).min()
max_X = np.concatenate([benign, mali]).max()
X = np.linspace(min_X - 0.1, max_X + 0.1, 1000)
G_benign = multivariate_normal(mean=mu[0], cov=var[0])
G_mali = multivariate_normal(mean=mu[1], cov=var[1])
y_benign = G_benign.pdf(X)
y_mali = G_mali.pdf(X)
y_ = y_mali + y_benign
sns.distplot(benign, norm_hist=True, kde=False)
sns.distplot(mali, norm_hist=True, kde=False)
plt.plot(X, y_benign)
plt.plot(X, y_mali)
plt.tight_layout()
plt.savefig(save_name)
plt.clf()
def plot_2d(data, y, real, save_name):
import matplotlib.pyplot as plt
import seaborn as sns
# import pdb; pdb.set_trace()
data = data.cpu()
# y = np.array(y)
# real = np.array(real)
n = data.shape[0]
colors = sns.color_palette("Paired", n_colors=12).as_hex()
fig, ax = plt.subplots(1, 1, figsize=(1.61803398875 * 4, 4))
ax.set_facecolor("#bbbbbb")
ax.set_xlabel("KL")
ax.set_ylabel("CE")
# plot the locations of all data points ..
for i, point in enumerate(data.data):
if real[i] == 0:
# .. separating them by ground truth ..
ax.scatter(*point, color="#000000", s=3, alpha=.75, zorder=n + i)
else:
ax.scatter(*point, color="#ffffff", s=3, alpha=.75, zorder=n + i)
if y[i] == 0:
# .. as well as their predicted class
ax.scatter(*point, zorder=i, color="#dbe9ff", alpha=.6, edgecolors=colors[5])
else:
ax.scatter(*point, zorder=i, color="#ffdbdb", alpha=.6, edgecolors=colors[1])
handles = [plt.Line2D([0], [0], color="w", lw=4, label="Ground Truth Benign"),
plt.Line2D([0], [0], color="black", lw=4, label="Ground Truth Malicious"),
plt.Line2D([0], [0], color=colors[1], lw=4, label="Predicted Benign"),
plt.Line2D([0], [0], color=colors[5], lw=4, label="Predicted Malicious"), ]
legend = ax.legend(loc="best", handles=handles)
plt.tight_layout()
plt.savefig(save_name)
def train_op_target(model, loader, optimizer, epochs, lambda_fedprox=0.0, class_num=10):
model.train()
W0 = {k: v.detach().clone() for k, v in model.named_parameters()}
running_loss, samples = 0.0, 0
for ep in range(epochs):
for x, y in loader:
# import pdb; pdb.set_trace()
# print(y)
y = torch.tensor([1] * len(y))
# print(y)
# import pdb; pdb.set_trace()
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
loss = nn.CrossEntropyLoss()(model(x), y)
if lambda_fedprox > 0.0:
loss += lambda_fedprox * torch.sum(
(flatten(W0).cuda() - flatten(dict(model.named_parameters())).cuda()) ** 2)
running_loss += loss.item() * y.shape[0]
samples += y.shape[0]
loss.backward()
optimizer.step()
return {"loss": running_loss / samples}
def train_op_flip(model, loader, optimizer, epochs, lambda_fedprox=0.0, class_num=10):
model.train()
W0 = {k: v.detach().clone() for k, v in model.named_parameters()}
running_loss, samples = 0.0, 0
for ep in range(epochs):
for x, y in loader:
# print(y)
y += 1
y = y % class_num
# print(y)
# import pdb; pdb.set_trace()
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
loss = nn.CrossEntropyLoss()(model(x), y)
if lambda_fedprox > 0.0:
loss += lambda_fedprox * torch.sum(
(flatten(W0).cuda() - flatten(dict(model.named_parameters())).cuda()) ** 2)
running_loss += loss.item() * y.shape[0]
samples += y.shape[0]
loss.backward()
optimizer.step()
return {"loss": running_loss / samples}
def eval_epoch(model, loader):
running_loss, samples = 0.0, 0
with torch.no_grad():
for x, y in loader:
x, y = x.to(device), y.to(device)
loss = nn.CrossEntropyLoss()(model(x), y)
running_loss += loss.item() * y.shape[0]
samples += y.shape[0]
running_loss = running_loss / samples
return running_loss
def gaussian_noise(data_shape, s, sigma, device=None):
"""
Gaussian noise
"""
return torch.normal(0, sigma * s, data_shape).to(device)
def train_op(model, loader, optimizer, epochs, lambda_fedprox=0.0, print_train_loss=False):
model.train()
W0 = {k: v.detach().clone() for k, v in model.named_parameters()}
losses = []
running_loss, samples = 0.0, 0
for ep in range(epochs):
for it, (x, y) in enumerate(loader):
if print_train_loss and it % 2 == 0:
losses.append(round(eval_epoch(model, loader), 2))
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
loss = nn.CrossEntropyLoss()(model(x), y)
if lambda_fedprox > 0.0:
# import pdb; pdb.set_trace()
loss += lambda_fedprox * torch.sum(
(flatten(W0).cuda() - flatten(dict(model.named_parameters())).cuda()) ** 2)
running_loss += loss.item() * y.shape[0]
samples += y.shape[0]
loss.backward()
optimizer.step()
if print_train_loss:
print(losses)
return {"loss": running_loss / samples}
def train_op_private(model, loader, optimizer, epochs, lambda_fedprox=0.0, print_train_loss=False, privacy_sigma = 1, clip_bound = 5):
model.train()
W0 = {k: v.detach().clone() for k, v in model.named_parameters()}
losses = []
running_loss, samples = 0.0, 0
for ep in range(epochs):
clipped_grads = {name: torch.zeros_like(param) for name, param in model.named_parameters()}
for it, (x, y) in enumerate(loader):
if print_train_loss and it % 2 == 0:
losses.append(round(eval_epoch(model, loader), 2))
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
loss = nn.CrossEntropyLoss()(model(x), y)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=clip_bound)
for name, param in model.named_parameters():
clipped_grads[name] += param.grad
model.zero_grad()
# add Gaussian noise
for name, param in model.named_parameters():
clipped_grads[name] += gaussian_noise(clipped_grads[name].shape, clip_bound, privacy_sigma, device='cuda')
for name, param in model.named_parameters():
param.grad = clipped_grads[name]
running_loss += loss.item() * y.shape[0]
samples += y.shape[0]
optimizer.step()
if print_train_loss:
print(losses)
return {"loss": running_loss / samples}
def train_op_datadistill(model, loader, optimizer, epochs, images_train, labels_train, eta=0.5, current_round=0,
start_round=0):
model.train()
distilled_dataset = TensorDataset(images_train, labels_train)
distilled_loader = torch.utils.data.DataLoader(distilled_dataset, batch_size=32, shuffle=True, num_workers=4)
running_loss, samples = 0.0, 0
for ep in range(epochs):
for (x, y), (x_dis, y_dis) in zip(loader, distilled_loader):
x, y = x.to(device), y.to(device)
x_dis, y_dis = x_dis.cuda(), y_dis.cuda()
optimizer.zero_grad()
loss = nn.CrossEntropyLoss()(model(x), y)
if current_round >= start_round:
loss_distill = nn.CrossEntropyLoss()(model(x_dis), y_dis)
if eta > 0.0:
loss_total = loss + eta * loss_distill
else:
loss_total = loss
else:
loss_distill = 0
loss_total = loss
print(f"loss {loss}, loss_distill {loss_distill}")
running_loss += loss.item() * y.shape[0]
samples += y.shape[0]
loss_total.backward()
optimizer.step()
return {"loss": running_loss / samples}
def kd_loss(output, y):
soft_label = F.softmax(y, dim=1)
# soft_label = y
logsoftmax = torch.nn.LogSoftmax()
return torch.mean(- soft_label * logsoftmax(output))
def train_op_datadistill_soft(model, loader, optimizer, epochs, images_train, labels_train, eta=0.5, current_round=0,
start_round=0, dsa=True, args=None):
model.train()
distilled_dataset = TensorDataset(images_train, labels_train)
distilled_loader = torch.utils.data.DataLoader(distilled_dataset, batch_size=32, shuffle=True, num_workers=4)
distilled_iter = iter(distilled_loader)
running_loss, samples = 0.0, 0
for ep in range(epochs):
for (x, y) in loader:
x, y = x.to(device), y.to(device)
try:
x_dis, y_dis = next(distilled_iter)
except:
distilled_iter = iter(distilled_loader)
x_dis, y_dis = next(distilled_iter)
x_dis, y_dis = x_dis.cuda(), y_dis.cuda()
if dsa:
x_dis = DiffAugment(x_dis, args.dsa_strategy, param=args.dsa_param)
optimizer.zero_grad()
loss = nn.CrossEntropyLoss()(model(x), y)
if current_round >= start_round:
loss_distill = kd_loss(model(x_dis), y_dis)
if eta > 0.0:
loss_total = (1 - eta) * loss + eta * loss_distill
else:
loss_total = loss
else:
loss_distill = 0
loss_total = loss
print(f"eta {eta}, loss {loss}, loss_distill {loss_distill}")
running_loss += loss.item() * y.shape[0]
samples += y.shape[0]
loss_total.backward()
# loss.backward()
optimizer.step()
return {"loss": running_loss / samples}
def train_op_datadistill_later(model, loader, optimizer, epochs, images_train, labels_train, finetune_epoch=1,
finetune_lr=1e-3, current_round=0, start_round=0, dsa=None, args=None):
model.train()
distilled_dataset = TensorDataset(images_train, labels_train)
distilled_loader = torch.utils.data.DataLoader(distilled_dataset, batch_size=256, shuffle=True, num_workers=4)
running_loss, samples = 0.0, 0
for ep in range(epochs):
for x, y in loader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
loss = nn.CrossEntropyLoss()(model(x), y)
print(f"loss {loss}")
running_loss += loss.item() * y.shape[0]
samples += y.shape[0]
loss.backward()
optimizer.step()
if current_round >= start_round:
optimizer_finetune = torch.optim.Adam(model.parameters(), lr=finetune_lr)
for ep in range(finetune_epoch):
for x_dis, y_dis in distilled_loader:
x_dis, y_dis = x_dis.cuda(), y_dis.cuda()
if dsa:
x_dis = DiffAugment(x_dis, args.dsa_strategy, param=args.dsa_param)
optimizer_finetune.zero_grad()
loss_distill = kd_loss(model(x_dis), y_dis)
loss_distill.backward()
optimizer_finetune.step()
print(f"loss_distill {loss_distill}")
return {"loss": running_loss / samples}
def train_op_nlp(model, loader, optimizer, epochs, lambda_fedprox=0.0):
model.train()
W0 = {k: v.detach().clone() for k, v in model.named_parameters()}
running_loss, samples = 0.0, 0
for ep in range(epochs):
for label, text, offsets in loader:
label, text, offsets = label.to(device), text.to(device), offsets.to(device)
optimizer.zero_grad()
prediction = model(text, offsets)
loss = nn.CrossEntropyLoss()(prediction, label)
if lambda_fedprox > 0.0:
# import pdb; pdb.set_trace()
loss += lambda_fedprox * torch.sum(
(flatten(W0).cuda() - flatten(dict(model.named_parameters())).cuda()) ** 2)
try:
running_loss += loss.item() * label.shape[0]
samples += label.shape[0]
loss.backward()
optimizer.step()
except:
print(f"labels {label}")
print(f"prediction {prediction}")
print(f"loss {loss}")
print(f"error")
return {"loss": running_loss / samples}
def eval_op(model, loader):
model.train()
samples, correct = 0, 0
with torch.no_grad():
for i, (x, y) in enumerate(loader):
x, y = x.to(device), y.to(device)
y_ = model(x)
_, predicted = torch.max(y_.detach(), 1)
samples += y.shape[0]
correct += (predicted == y).sum().item()
return {"accuracy": correct / samples}
def eval_op_ensemble(models, test_loader, val_loader):
for model in models:
# model.train()
model.eval()
samples, correct = 0, 0
with torch.no_grad():
for i, (x, y) in enumerate(test_loader):
x, y = x.to(device), y.to(device)
y_ = torch.mean(torch.stack([model(x) for model in models], dim=0), dim=0)
_, predicted = torch.max(y_.detach(), 1)
samples += y.shape[0]
correct += (predicted == y).sum().item()
test_acc = correct / samples
for model in models:
model.eval()
samples, correct = 0, 0
with torch.no_grad():
for i, (x, y) in enumerate(val_loader):
x, y = x.to(device), y.to(device)
y_ = torch.mean(torch.stack([model(x) for model in models], dim=0), dim=0)
_, predicted = torch.max(y_.detach(), 1)
samples += y.shape[0]
correct += (predicted == y).sum().item()
val_acc = correct / samples
return {"test_accuracy": test_acc, "val_accuracy": val_acc}
def eval_op_ensemble_nlp(models, test_loader, val_loader):
for model in models:
model.train()
samples, correct = 0, 0
with torch.no_grad():
for label, text, offsets in test_loader:
label, text, offsets = label.to(device), text.to(device), offsets.to(device)
y_ = torch.mean(torch.stack([model(text, offsets) for model in models], dim=0), dim=0)
_, predicted = torch.max(y_.detach(), 1)
samples += label.shape[0]
correct += (predicted == label).sum().item()
test_acc = correct / samples
for model in models:
model.eval()
samples, correct = 0, 0
with torch.no_grad():
for label, text, offsets in val_loader:
label, text, offsets = label.to(device), text.to(device), offsets.to(device)
y_ = torch.mean(torch.stack([model(text, offsets) for model in models], dim=0), dim=0)
_, predicted = torch.max(y_.detach(), 1)
samples += label.shape[0]
correct += (predicted == label).sum().item()
val_acc = correct / samples
return {"test_accuracy": test_acc, "val_accuracy": val_acc}
def reduce_average(target, sources):
# import pdb; pdb.set_trace()
for name in target:
target[name].data = torch.mean(torch.stack([source[name].detach() for source in sources]), dim=0).clone()
def reduce_median(target, sources):
for name in target:
# import pdb; pdb.set_trace()
target[name].data = torch.median(torch.stack([source[name].detach() for source in sources]),
dim=0).values.clone()
# import pdb; pdb.set_trace()
def reduce_trimmed_mean(target, sources, mali_ratio):
import math
trimmed_mean_beta = math.ceil(mali_ratio * len(sources)) + 1
for name in target:
stacked_weights = torch.stack([source[name].detach() for source in sources])
# import pdb; pdb.set_trace()
user_num = stacked_weights.size(0)
largest_value, _ = torch.topk(stacked_weights, k=trimmed_mean_beta, dim=0)
smallest_value, _ = torch.topk(stacked_weights, k=trimmed_mean_beta, dim=0, largest=False)
target[name].data = ((
torch.sum(stacked_weights, dim=0)
- torch.sum(largest_value, dim=0)
- torch.sum(smallest_value, dim=0)
) / (user_num - 2 * trimmed_mean_beta)).clone()
# import pdb; pdb.set_trace()
def reduce_krum(target, sources, mali_ratio):
import math
krum_mal_num = math.ceil(mali_ratio * len(sources)) + 1
user_num = len(sources)
user_flatten_grad = []
for source in sources:
user_flatten_grad_i = []
for name in target:
user_flatten_grad_i.append(torch.flatten(source[name].detach()))
user_flatten_grad_i = torch.cat(user_flatten_grad_i)
user_flatten_grad.append(user_flatten_grad_i)
user_flatten_grad = torch.stack(user_flatten_grad)
# compute l2 distance between users
user_scores = torch.zeros((user_num, user_num), device=user_flatten_grad.device)
for u_i, source in enumerate(sources):
user_scores[u_i] = torch.norm(
user_flatten_grad - user_flatten_grad[u_i],
dim=list(range(len(user_flatten_grad.shape)))[1:],
)
# import pdb; pdb.set_trace()
user_scores[u_i, u_i] = float('inf')
topk_user_scores, _ = torch.topk(
user_scores, k=user_num - krum_mal_num - 2, dim=1, largest=False
)
sm_user_scores = torch.sum(topk_user_scores, dim=1)
# users with smallest score is selected as update gradient
u_score, select_ui = torch.topk(sm_user_scores, k=1, largest=False)
select_ui = select_ui.cpu().numpy()
select_ui = select_ui[0]
print(select_ui)
# import pdb; pdb.set_trace()
for name in target:
target[name].data = sources[select_ui][name].detach().clone()
def reduce_residual(source_1, source_2):
tmp_dict = {}
# import pdb; pdb.set_trace()
for name in source_1:
tmp_dict[name] = (source_1[name].detach() - source_2[name].detach()).clone()
# import pdb; pdb.set_trace()
return tmp_dict
def reduce_weighted(target, sources, weights):
for name in target:
# import pdb; pdb.set_trace()
target[name].data = torch.sum(weights * torch.stack([source[name].detach() for source in sources], dim=-1),
dim=-1).clone()
# import pdb; pdb.set_trace()
def flatten(source):
return torch.cat([value.flatten() for value in source.values()])
def copy(target, source):
for name in target:
target[name].data = source[name].detach().clone()
def olr(mu, var):
from scipy.stats import multivariate_normal
X = np.linspace(0, 0.4, 1000)
if mu[0] > mu[1]:
new_mu = [mu[1], mu[0]]
new_var = [var[1], var[0]]
else:
new_mu = mu
new_var = var
step = 500
x_step = (new_mu[1] - new_mu[0]) / step
G_m = multivariate_normal(mean=new_mu[0], cov=new_var[0])
G_b = multivariate_normal(mean=new_mu[1], cov=new_var[1])
y_benign = G_b.pdf(X)
y_mali = G_m.pdf(X)
index = 0
while index < step:
x = mu[0] + x_step * index
if G_b.pdf(x) > G_m.pdf(x):
break
index += 1
overlap = (1 - G_m.cdf(x)) + G_b.cdf(x)
return overlap