-
Notifications
You must be signed in to change notification settings - Fork 0
/
CRFD_hotspots.html
206 lines (162 loc) · 236 KB
/
CRFD_hotspots.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="PJ Bouchet" />
<meta name="date" content="2019-01-18" />
<title>Hotspot identification using a relative frequency distribution approach</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>
<link href="data:text/css;charset=utf-8,body%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Amargin%3A%201em%20auto%3B%0Amax%2Dwidth%3A%20700px%3B%0Aoverflow%3A%20visible%3B%0Apadding%2Dleft%3A%202em%3B%0Apadding%2Dright%3A%202em%3B%0Afont%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2014px%3B%0Aline%2Dheight%3A%201%2E35%3B%0A%7D%0A%23header%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%23TOC%20%7B%0Aclear%3A%20both%3B%0Amargin%3A%200%200%2010px%2010px%3B%0Apadding%3A%204px%3B%0Awidth%3A%20400px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Aborder%2Dradius%3A%205px%3B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Afont%2Dsize%3A%2013px%3B%0Aline%2Dheight%3A%201%2E3%3B%0A%7D%0A%23TOC%20%2Etoctitle%20%7B%0Afont%2Dweight%3A%20bold%3B%0Afont%2Dsize%3A%2015px%3B%0Amargin%2Dleft%3A%205px%3B%0A%7D%0A%23TOC%20ul%20%7B%0Apadding%2Dleft%3A%2040px%3B%0Amargin%2Dleft%3A%20%2D1%2E5em%3B%0Amargin%2Dtop%3A%205px%3B%0Amargin%2Dbottom%3A%205px%3B%0A%7D%0A%23TOC%20ul%20ul%20%7B%0Amargin%2Dleft%3A%20%2D2em%3B%0A%7D%0A%23TOC%20li%20%7B%0Aline%2Dheight%3A%2016px%3B%0A%7D%0Atable%20%7B%0Amargin%3A%201em%20auto%3B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dcolor%3A%20%23DDDDDD%3B%0Aborder%2Dstyle%3A%20outset%3B%0Aborder%2Dcollapse%3A%20collapse%3B%0A%7D%0Atable%20th%20%7B%0Aborder%2Dwidth%3A%202px%3B%0Apadding%3A%205px%3B%0Aborder%2Dstyle%3A%20inset%3B%0A%7D%0Atable%20td%20%7B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dstyle%3A%20inset%3B%0Aline%2Dheight%3A%2018px%3B%0Apadding%3A%205px%205px%3B%0A%7D%0Atable%2C%20table%20th%2C%20table%20td%20%7B%0Aborder%2Dleft%2Dstyle%3A%20none%3B%0Aborder%2Dright%2Dstyle%3A%20none%3B%0A%7D%0Atable%20thead%2C%20table%20tr%2Eeven%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Ap%20%7B%0Amargin%3A%200%2E5em%200%3B%0A%7D%0Ablockquote%20%7B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Apadding%3A%200%2E25em%200%2E75em%3B%0A%7D%0Ahr%20%7B%0Aborder%2Dstyle%3A%20solid%3B%0Aborder%3A%20none%3B%0Aborder%2Dtop%3A%201px%20solid%20%23777%3B%0Amargin%3A%2028px%200%3B%0A%7D%0Adl%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Adl%20dd%20%7B%0Amargin%2Dbottom%3A%2013px%3B%0Amargin%2Dleft%3A%2013px%3B%0A%7D%0Adl%20dt%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Aul%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Aul%20li%20%7B%0Alist%2Dstyle%3A%20circle%20outside%3B%0A%7D%0Aul%20ul%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Apre%2C%20code%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0Acolor%3A%20%23333%3B%0Awhite%2Dspace%3A%20pre%2Dwrap%3B%20%0A%7D%0Apre%20%7B%0Aborder%2Dradius%3A%203px%3B%0Amargin%3A%205px%200px%2010px%200px%3B%0Apadding%3A%2010px%3B%0A%7D%0Apre%3Anot%28%5Bclass%5D%29%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20Monaco%2C%20%27Courier%20New%27%2C%20monospace%3B%0Afont%2Dsize%3A%2085%25%3B%0A%7D%0Ap%20%3E%20code%2C%20li%20%3E%20code%20%7B%0Apadding%3A%202px%200px%3B%0A%7D%0Adiv%2Efigure%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0Aimg%20%7B%0Abackground%2Dcolor%3A%20%23FFFFFF%3B%0Apadding%3A%202px%3B%0Aborder%3A%201px%20solid%20%23DDDDDD%3B%0Aborder%2Dradius%3A%203px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Amargin%3A%200%205px%3B%0A%7D%0Ah1%20%7B%0Amargin%2Dtop%3A%200%3B%0Afont%2Dsize%3A%2035px%3B%0Aline%2Dheight%3A%2040px%3B%0A%7D%0Ah2%20%7B%0Aborder%2Dbottom%3A%204px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Apadding%2Dbottom%3A%202px%3B%0Afont%2Dsize%3A%20145%25%3B%0A%7D%0Ah3%20%7B%0Aborder%2Dbottom%3A%202px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Afont%2Dsize%3A%20120%25%3B%0A%7D%0Ah4%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23f7f7f7%3B%0Amargin%2Dleft%3A%208px%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Ah5%2C%20h6%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23ccc%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%230033dd%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%20%7B%0Acolor%3A%20%236666ff%3B%20%7D%0Aa%3Avisited%20%7B%0Acolor%3A%20%23800080%3B%20%7D%0Aa%3Avisited%3Ahover%20%7B%0Acolor%3A%20%23BB00BB%3B%20%7D%0Aa%5Bhref%5E%3D%22http%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0Aa%5Bhref%5E%3D%22https%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0A%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23555%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23902000%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%2340a070%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23888888%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0Acode%20%3E%20span%2Eal%20%7B%20color%3A%20%23ff0000%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Efu%20%7B%20color%3A%20%23900%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%20code%20%3E%20span%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%20%0A" rel="stylesheet" type="text/css" />
</head>
<body>
<h1 class="title toc-ignore">Hotspot identification using a relative frequency distribution approach</h1>
<h4 class="author"><em>PJ Bouchet</em></h4>
<h4 class="date"><em>2019-01-18</em></h4>
<p>This small vignette illustrates the use of custom functions for identifying ‘hotspots’ in a spatial variable of interest.</p>
<p>The code is based on the frequency distribution approach proposed by Bartolino et al. (2011)<a href="#fn1" class="footnoteRef" id="fnref1"><sup>1</sup></a> and applied in Bouchet et al. (2017).<a href="#fn2" class="footnoteRef" id="fnref2"><sup>2</sup></a></p>
<p>The required libraries and options are specified below.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(fANCOVA)
<span class="kw">library</span>(raster)
<span class="kw">library</span>(virtualspecies)
<span class="kw">library</span>(tidyverse)
<span class="kw">options</span>(<span class="dt">tibble.width =</span> <span class="ot">Inf</span>) <span class="co"># All tibble columns shown</span>
<span class="kw">options</span>(<span class="dt">pillar.neg =</span> <span class="ot">FALSE</span>) <span class="co"># No colouring negative numbers</span>
<span class="kw">options</span>(<span class="dt">pillar.subtle =</span> <span class="ot">TRUE</span>)
<span class="kw">options</span>(<span class="dt">pillar.sigfig =</span> <span class="dv">4</span>)</code></pre></div>
<p>Below is a simple simulated example using WorldClim data. WorldClim (www.worldclim.org) freely provides gridded climate data (temperature and precipitations) for the entire World. Here, we generate a virtual tropical species (ie. living in hot and humid environments), whose response to two environmental variables, the annual mean temperature bio1 and annual mean precipitation bio2, is pre-determined. Code adapted from: <a href="http://borisleroy.com/files/virtualspecies-tutorial.html#input-data" class="uri">http://borisleroy.com/files/virtualspecies-tutorial.html#input-data</a></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Downloads WorldClim data</span>
worldclim <-<span class="st"> </span><span class="kw">getData</span>(<span class="st">"worldclim"</span>, <span class="dt">var =</span> <span class="st">"bio"</span>, <span class="dt">res =</span> <span class="dv">10</span>)
<span class="co"># Gaussian functions of bio1 and bio12</span>
my.parameters <-<span class="st"> </span><span class="kw">formatFunctions</span>(<span class="dt">bio1 =</span> <span class="kw">c</span>(<span class="dt">fun =</span> <span class="st">"dnorm"</span>, <span class="dt">mean =</span> <span class="dv">250</span>, <span class="dt">sd =</span> <span class="dv">50</span>),
<span class="dt">bio12 =</span> <span class="kw">c</span>(<span class="dt">fun =</span> <span class="st">"dnorm"</span>, <span class="dt">mean =</span> <span class="dv">4000</span>, <span class="dt">sd =</span> <span class="dv">2000</span>))
<span class="co"># Generates simulated species distributions</span>
simsp <-<span class="st"> </span><span class="kw">generateSpFromFun</span>(<span class="dt">raster.stack =</span> worldclim[[<span class="kw">c</span>(<span class="st">"bio1"</span>, <span class="st">"bio12"</span>)]], <span class="dt">parameters =</span> my.parameters,
<span class="dt">plot =</span> <span class="ot">TRUE</span>)</code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">
<span class="co"># For the sake of the example only extracts a small portion of that</span>
<span class="co"># distribution eg from South America</span>
simdist <-<span class="st"> </span>raster<span class="op">::</span><span class="kw">crop</span>(<span class="dt">x =</span> simsp<span class="op">$</span>suitab.raster, <span class="dt">y =</span> <span class="kw">as</span>(<span class="kw">extent</span>(<span class="kw">c</span>(<span class="op">-</span><span class="dv">51</span>, <span class="op">-</span><span class="dv">45</span>, <span class="op">-</span><span class="dv">15</span>,
<span class="op">-</span><span class="dv">5</span>)), <span class="st">"SpatialPolygons"</span>))
<span class="kw">plot</span>(simdist)</code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Turns the raster into a data.frame object and manipulates values</span>
dat <-<span class="st"> </span>raster<span class="op">::</span><span class="kw">as.data.frame</span>(simdist, <span class="dt">xy =</span> T)
dat <-<span class="st"> </span>dat <span class="op">%>%</span><span class="st"> </span>purrr<span class="op">::</span><span class="kw">set_names</span>(., <span class="kw">c</span>(<span class="st">"longitude"</span>, <span class="st">"latitude"</span>, <span class="st">"z"</span>))
dat<span class="op">$</span>z =<span class="st"> </span><span class="kw">round</span>(dat<span class="op">$</span>z <span class="op">*</span><span class="st"> </span><span class="dv">100</span>, <span class="dv">0</span>)</code></pre></div>
<p>Next we define custom functions to calculate the cumulative relative frequency distribution function CRFD (as described in the Bartolino paper)</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">no.cumul <-<span class="st"> </span><span class="cf">function</span>(data, value) {
<span class="kw">return</span>(<span class="kw">length</span>(data[data <span class="op"><</span><span class="st"> </span>value]))
}
bartolino <-<span class="st"> </span><span class="cf">function</span>(df, var.name) {
<span class="co"># Converts var.name to a string</span>
var.name <-<span class="st"> </span><span class="kw">deparse</span>(<span class="kw">substitute</span>(var.name))
<span class="co"># Calculates x-axis [x = z / zm] and y-axis [y = M(x)/n] values</span>
df <-<span class="st"> </span>df <span class="op">%>%</span><span class="st"> </span><span class="kw">mutate_</span>(<span class="dt">x =</span> <span class="kw">paste</span>(var.name, <span class="st">"/max("</span>, var.name, <span class="st">")"</span>))
allx <-<span class="st"> </span>df <span class="op">%>%</span><span class="st"> </span><span class="kw">pull</span>(x)
df <-<span class="st"> </span>df <span class="op">%>%</span><span class="st"> </span>rowwise <span class="op">%>%</span><span class="st"> </span><span class="kw">mutate</span>(<span class="dt">y =</span> <span class="kw">no.cumul</span>(allx, x)<span class="op">/</span><span class="kw">nrow</span>(df)) <span class="op">%>%</span><span class="st"> </span><span class="kw">ungroup</span>()
<span class="kw">return</span>(df)
} <span class="co"># End function</span></code></pre></div>
<p>These functions can be applied to the data.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">dat.bart <-<span class="st"> </span><span class="kw">bartolino</span>(<span class="dt">df =</span> dat, <span class="dt">var.name =</span> z)</code></pre></div>
<p>Additional functions are needed to determine the highest x-value corresponding to a 45 degree tangent to the predicted loess curve.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">find.bartolino <-<span class="st"> </span><span class="cf">function</span>(loess.predictions) {
<span class="cf">for</span> (p <span class="cf">in</span> <span class="dv">3</span><span class="op">:</span>(<span class="kw">length</span>(loess.predictions) <span class="op">-</span><span class="st"> </span><span class="dv">1</span>)) {
slope.curve <-<span class="st"> </span>(loess.predictions[p <span class="op">+</span><span class="st"> </span><span class="dv">1</span>] <span class="op">-</span><span class="st"> </span>loess.predictions[p <span class="op">-</span><span class="st"> </span><span class="dv">1</span>])<span class="op">/</span>(loess.x[p <span class="op">+</span><span class="st"> </span>
<span class="st"> </span><span class="dv">1</span>] <span class="op">-</span><span class="st"> </span>loess.x[p <span class="op">-</span><span class="st"> </span><span class="dv">1</span>])
<span class="cf">if</span> (slope.curve <span class="op">>=</span><span class="st"> </span><span class="dv">1</span>) {
barto.x <-<span class="st"> </span>loess.x[p]
<span class="cf">break</span>
}
}
<span class="kw">return</span>(barto.x)
} <span class="co"># End function</span>
find.bartolino.y <-<span class="st"> </span><span class="cf">function</span>(loess.predictions) {
<span class="cf">for</span> (p <span class="cf">in</span> <span class="dv">3</span><span class="op">:</span>(<span class="kw">length</span>(loess.predictions) <span class="op">-</span><span class="st"> </span><span class="dv">1</span>)) {
slope.curve <-<span class="st"> </span>(loess.predictions[p <span class="op">+</span><span class="st"> </span><span class="dv">1</span>] <span class="op">-</span><span class="st"> </span>loess.predictions[p <span class="op">-</span><span class="st"> </span><span class="dv">1</span>])<span class="op">/</span>(loess.x[p <span class="op">+</span><span class="st"> </span>
<span class="st"> </span><span class="dv">1</span>] <span class="op">-</span><span class="st"> </span>loess.x[p <span class="op">-</span><span class="st"> </span><span class="dv">1</span>])
<span class="cf">if</span> (slope.curve <span class="op">>=</span><span class="st"> </span><span class="dv">1</span>) {
barto.y <-<span class="st"> </span>loess.predictions[p]
<span class="cf">break</span>
}
}
<span class="kw">return</span>(barto.y)
} <span class="co"># End function</span></code></pre></div>
<p>A LOESS model can be fitted to the CRFD points, and the x-value cutoff identified from the resulting predictions.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># LOESS smoothing - with automated span selection based on AICc or GCV The</span>
<span class="co"># degree of smoothing can also be selected manually using user.span</span>
loess.x <-<span class="st"> </span><span class="kw">rev</span>(<span class="kw">seq</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="fl">0.001</span>))
loessmod.n <-<span class="st"> </span>fANCOVA<span class="op">::</span><span class="kw">loess.as</span>(dat.bart<span class="op">$</span>x, dat.bart<span class="op">$</span>y, <span class="dt">degree =</span> <span class="dv">0</span>, <span class="dt">criterion =</span> <span class="kw">c</span>(<span class="st">"aicc"</span>,
<span class="st">"gcv"</span>)[<span class="dv">1</span>], <span class="dt">user.span =</span> <span class="ot">NULL</span>, <span class="dt">plot =</span> T)
lo.preds.n <-<span class="st"> </span><span class="kw">predict</span>(loessmod.n, loess.x)
xbest <-<span class="st"> </span><span class="kw">find.bartolino</span>(lo.preds.n)
ybest <-<span class="st"> </span><span class="kw">find.bartolino.y</span>(lo.preds.n)
<span class="kw">abline</span>(<span class="dt">v =</span> xbest, <span class="dt">col =</span> <span class="st">"orange"</span>, <span class="dt">lty =</span> <span class="dv">2</span>)</code></pre></div>
<p><img src="" /><!-- --></p>
<p>Finally, hotspots are simply those sites with an x value higher than the threshold.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">dat.hot <-<span class="st"> </span>dat.bart <span class="op">%>%</span><span class="st"> </span><span class="kw">filter</span>(x <span class="op">>=</span><span class="st"> </span>xbest)
<span class="co"># Converts to SpatialPoints df</span>
hot.pts <-<span class="st"> </span>dat.hot <span class="op">%>%</span><span class="st"> </span>dplyr<span class="op">::</span><span class="kw">select</span>(longitude, latitude, z) <span class="op">%>%</span><span class="st"> </span><span class="kw">SpatialPointsDataFrame</span>(<span class="dt">coords =</span> <span class="kw">cbind</span>(.<span class="op">$</span>longitude,
.<span class="op">$</span>latitude), <span class="dt">data =</span> .)
<span class="co"># Visualisation</span>
<span class="kw">plot</span>(simdist)
<span class="kw">plot</span>(hot.pts, <span class="dt">add =</span> T)</code></pre></div>
<p><img src="" /><!-- --></p>
<div class="footnotes">
<hr />
<ol>
<li id="fn1"><p>Bartolino V, Maiorano L, Colloca F. 2011. A frequency distribution approach to hotspot identification. Population Ecology, 53(2): 351-359<a href="#fnref1">↩</a></p></li>
<li id="fn2"><p>Bouchet et al. 2017. Continental-scale hotspots of pelagic fish abundance inferred from commercial catch records. Global Ecology and Biogeography, 26(10): 1098-1111.<a href="#fnref2">↩</a></p></li>
</ol>
</div>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>