-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathQSufSort.c
402 lines (341 loc) · 12.3 KB
/
QSufSort.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/* QSufSort.c
Original source from qsufsort.c
Copyright 1999, N. Jesper Larsson, all rights reserved.
This file contains an implementation of the algorithm presented in "Faster
Suffix Sorting" by N. Jesper Larsson (jesper@cs.lth.se) and Kunihiko
Sadakane (sada@is.s.u-tokyo.ac.jp).
This software may be used freely for any purpose. However, when distributed,
the original source must be clearly stated, and, when the source code is
distributed, the copyright notice must be retained and any alterations in
the code must be clearly marked. No warranty is given regarding the quality
of this software.
Modified by Wong Chi-Kwong, 2004
Changes summary: - Used long variable and function names
- Removed global variables
- Replace pointer references with array references
- Used insertion sort in place of selection sort and increased insertion sort threshold
- Reconstructing suffix array from inverse becomes an option
- Add handling where end-of-text symbol is not necessary < all characters
- Removed codes for supporting alphabet size > number of characters
No warrenty is given regarding the quality of the modifications.
*/
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include "QSufSort.h"
#define min(value1, value2) ( ((value1) < (value2)) ? (value1) : (value2) )
#define med3(a, b, c) ( a<b ? (b<c ? b : a<c ? c : a) : (b>c ? b : a>c ? c : a))
#define swap(a, b, t); t = a; a = b; b = t;
// Static functions
static void QSufSortSortSplit(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t lowestPos,
const qsint_t highestPos, const qsint_t numSortedChar);
static qsint_t QSufSortChoosePivot(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t lowestPos,
const qsint_t highestPos, const qsint_t numSortedChar);
static void QSufSortInsertSortSplit(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t lowestPos,
const qsint_t highestPos, const qsint_t numSortedChar);
static void QSufSortBucketSort(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t numChar, const qsint_t alphabetSize);
static qsint_t QSufSortTransform(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t numChar, const qsint_t largestInputSymbol,
const qsint_t smallestInputSymbol, const qsint_t maxNewAlphabetSize, qsint_t *numSymbolAggregated);
/* Makes suffix array p of x. x becomes inverse of p. p and x are both of size
n+1. Contents of x[0...n-1] are integers in the range l...k-1. Original
contents of x[n] is disregarded, the n-th symbol being regarded as
end-of-string smaller than all other symbols.*/
void QSufSortSuffixSort(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t numChar, const qsint_t largestInputSymbol,
const qsint_t smallestInputSymbol, const int skipTransform)
{
qsint_t i, j;
qsint_t s, negatedSortedGroupLength;
qsint_t numSymbolAggregated;
qsint_t numSortedPos = 1;
qsint_t newAlphabetSize;
if (!skipTransform) {
/* bucketing possible*/
newAlphabetSize = QSufSortTransform(V, I, numChar, largestInputSymbol, smallestInputSymbol,
numChar, &numSymbolAggregated);
QSufSortBucketSort(V, I, numChar, newAlphabetSize);
I[0] = -1;
V[numChar] = 0;
numSortedPos = numSymbolAggregated;
}
while ((qsint_t)(I[0]) >= -(qsint_t)numChar) {
i = 0;
negatedSortedGroupLength = 0;
do {
s = I[i];
if (s < 0) {
i -= s; /* skip over sorted group.*/
negatedSortedGroupLength += s;
} else {
if (negatedSortedGroupLength) {
I[i+negatedSortedGroupLength] = negatedSortedGroupLength; /* combine preceding sorted groups */
negatedSortedGroupLength = 0;
}
j = V[s] + 1;
QSufSortSortSplit(V, I, i, j - 1, numSortedPos);
i = j;
}
} while (i <= numChar);
if (negatedSortedGroupLength) {
/* array ends with a sorted group.*/
I[i+negatedSortedGroupLength] = negatedSortedGroupLength; /* combine sorted groups at end of I.*/
}
numSortedPos *= 2; /* double sorted-depth.*/
}
}
void QSufSortGenerateSaFromInverse(const qsint_t* V, qsint_t* __restrict I, const qsint_t numChar)
{
qsint_t i;
for (i=0; i<=numChar; i++)
I[V[i]] = i + 1;
}
/* Sorting routine called for each unsorted group. Sorts the array of integers
(suffix numbers) of length n starting at p. The algorithm is a ternary-split
quicksort taken from Bentley & McIlroy, "Engineering a Sort Function",
Software -- Practice and Experience 23(11), 1249-1265 (November 1993). This
function is based on Program 7.*/
static void QSufSortSortSplit(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t lowestPos,
const qsint_t highestPos, const qsint_t numSortedChar) {
qsint_t a, b, c, d;
qsint_t l, m;
qsint_t f, v, s, t;
qsint_t tmp;
qsint_t numItem;
numItem = highestPos - lowestPos + 1;
if (numItem <= INSERT_SORT_NUM_ITEM) {
QSufSortInsertSortSplit(V, I, lowestPos, highestPos, numSortedChar);
return;
}
v = QSufSortChoosePivot(V, I, lowestPos, highestPos, numSortedChar);
a = b = lowestPos;
c = d = highestPos;
while (1) {
while (c >= b && (f = KEY(V, I, b, numSortedChar)) <= v) {
if (f == v) {
swap(I[a], I[b], tmp);
a++;
}
b++;
}
while (c >= b && (f = KEY(V, I, c, numSortedChar)) >= v) {
if (f == v) {
swap(I[c], I[d], tmp);
d--;
}
c--;
}
if (b > c)
break;
swap(I[b], I[c], tmp);
b++;
c--;
}
s = a - lowestPos;
t = b - a;
s = min(s, t);
for (l = lowestPos, m = b - s; m < b; l++, m++) {
swap(I[l], I[m], tmp);
}
s = d - c;
t = highestPos - d;
s = min(s, t);
for (l = b, m = highestPos - s + 1; m <= highestPos; l++, m++) {
swap(I[l], I[m], tmp);
}
s = b - a;
t = d - c;
if (s > 0)
QSufSortSortSplit(V, I, lowestPos, lowestPos + s - 1, numSortedChar);
// Update group number for equal portion
a = lowestPos + s;
b = highestPos - t;
if (a == b) {
// Sorted group
V[I[a]] = a;
I[a] = -1;
} else {
// Unsorted group
for (c=a; c<=b; c++)
V[I[c]] = b;
}
if (t > 0)
QSufSortSortSplit(V, I, highestPos - t + 1, highestPos, numSortedChar);
}
/* Algorithm by Bentley & McIlroy.*/
static qsint_t QSufSortChoosePivot(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t lowestPos,
const qsint_t highestPos, const qsint_t numSortedChar) {
qsint_t m;
qsint_t keyl, keym, keyn;
qsint_t key1, key2, key3;
qsint_t s;
qsint_t numItem;
numItem = highestPos - lowestPos + 1;
m = lowestPos + numItem / 2;
s = numItem / 8;
key1 = KEY(V, I, lowestPos, numSortedChar);
key2 = KEY(V, I, lowestPos+s, numSortedChar);
key3 = KEY(V, I, lowestPos+2*s, numSortedChar);
keyl = med3(key1, key2, key3);
key1 = KEY(V, I, m-s, numSortedChar);
key2 = KEY(V, I, m, numSortedChar);
key3 = KEY(V, I, m+s, numSortedChar);
keym = med3(key1, key2, key3);
key1 = KEY(V, I, highestPos-2*s, numSortedChar);
key2 = KEY(V, I, highestPos-s, numSortedChar);
key3 = KEY(V, I, highestPos, numSortedChar);
keyn = med3(key1, key2, key3);
return med3(keyl, keym, keyn);
}
/* Quadratic sorting method to use for small subarrays. */
static void QSufSortInsertSortSplit(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t lowestPos,
const qsint_t highestPos, const qsint_t numSortedChar)
{
qsint_t i, j;
qsint_t tmpKey, tmpPos;
qsint_t numItem;
qsint_t key[INSERT_SORT_NUM_ITEM], pos[INSERT_SORT_NUM_ITEM];
qsint_t negativeSortedLength;
qsint_t groupNum;
numItem = highestPos - lowestPos + 1;
for (i=0; i<numItem; i++) {
pos[i] = I[lowestPos + i];
key[i] = V[pos[i] + numSortedChar];
}
for (i=1; i<numItem; i++) {
tmpKey = key[i];
tmpPos = pos[i];
for (j=i; j>0 && key[j-1] > tmpKey; j--) {
key[j] = key[j-1];
pos[j] = pos[j-1];
}
key[j] = tmpKey;
pos[j] = tmpPos;
}
negativeSortedLength = -1;
i = numItem - 1;
groupNum = highestPos;
while (i > 0) {
I[i+lowestPos] = pos[i];
V[I[i+lowestPos]] = groupNum;
if (key[i-1] == key[i]) {
negativeSortedLength = 0;
} else {
if (negativeSortedLength < 0)
I[i+lowestPos] = negativeSortedLength;
groupNum = i + lowestPos - 1;
negativeSortedLength--;
}
i--;
}
I[lowestPos] = pos[0];
V[I[lowestPos]] = groupNum;
if (negativeSortedLength < 0)
I[lowestPos] = negativeSortedLength;
}
/* Bucketsort for first iteration.
Input: x[0...n-1] holds integers in the range 1...k-1, all of which appear
at least once. x[n] is 0. (This is the corresponding output of transform.) k
must be at most n+1. p is array of size n+1 whose contents are disregarded.
Output: x is V and p is I after the initial sorting stage of the refined
suffix sorting algorithm.*/
static void QSufSortBucketSort(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t numChar, const qsint_t alphabetSize)
{
qsint_t i, c;
qsint_t d;
qsint_t groupNum;
qsint_t currentIndex;
// mark linked list empty
for (i=0; i<alphabetSize; i++)
I[i] = -1;
// insert to linked list
for (i=0; i<=numChar; i++) {
c = V[i];
V[i] = (qsint_t)(I[c]);
I[c] = i;
}
currentIndex = numChar;
for (i=alphabetSize; i>0; i--) {
c = I[i-1];
d = (qsint_t)(V[c]);
groupNum = currentIndex;
V[c] = groupNum;
if (d >= 0) {
I[currentIndex] = c;
while (d >= 0) {
c = d;
d = V[c];
V[c] = groupNum;
currentIndex--;
I[currentIndex] = c;
}
} else {
// sorted group
I[currentIndex] = -1;
}
currentIndex--;
}
}
/* Transforms the alphabet of x by attempting to aggregate several symbols into
one, while preserving the suffix order of x. The alphabet may also be
compacted, so that x on output comprises all integers of the new alphabet
with no skipped numbers.
Input: x is an array of size n+1 whose first n elements are positive
integers in the range l...k-1. p is array of size n+1, used for temporary
storage. q controls aggregation and compaction by defining the maximum intue
for any symbol during transformation: q must be at least k-l; if q<=n,
compaction is guaranteed; if k-l>n, compaction is never done; if q is
INT_MAX, the maximum number of symbols are aggregated into one.
Output: Returns an integer j in the range 1...q representing the size of the
new alphabet. If j<=n+1, the alphabet is compacted. The global variable r is
set to the number of old symbols grouped into one. Only x[n] is 0.*/
static qsint_t QSufSortTransform(qsint_t* __restrict V, qsint_t* __restrict I, const qsint_t numChar, const qsint_t largestInputSymbol,
const qsint_t smallestInputSymbol, const qsint_t maxNewAlphabetSize, qsint_t *numSymbolAggregated)
{
qsint_t c, i, j;
qsint_t a; // numSymbolAggregated
qsint_t mask;
qsint_t minSymbolInChunk = 0, maxSymbolInChunk = 0;
qsint_t newAlphabetSize;
qsint_t maxNumInputSymbol, maxNumBit, maxSymbol;
maxNumInputSymbol = largestInputSymbol - smallestInputSymbol + 1;
for (maxNumBit = 0, i = maxNumInputSymbol; i; i >>= 1) ++maxNumBit;
maxSymbol = QSINT_MAX >> maxNumBit;
c = maxNumInputSymbol;
for (a = 0; a < numChar && maxSymbolInChunk <= maxSymbol && c <= maxNewAlphabetSize; a++) {
minSymbolInChunk = (minSymbolInChunk << maxNumBit) | (V[a] - smallestInputSymbol + 1);
maxSymbolInChunk = c;
c = (maxSymbolInChunk << maxNumBit) | maxNumInputSymbol;
}
mask = (1 << (a-1) * maxNumBit) - 1; /* mask masks off top old symbol from chunk.*/
V[numChar] = smallestInputSymbol - 1; /* emulate zero terminator.*/
/* bucketing possible, compact alphabet.*/
for (i=0; i<=maxSymbolInChunk; i++)
I[i] = 0; /* zero transformation table.*/
c = minSymbolInChunk;
for (i=a; i<=numChar; i++) {
I[c] = 1; /* mark used chunk symbol.*/
c = ((c & mask) << maxNumBit) | (V[i] - smallestInputSymbol + 1); /* shift in next old symbol in chunk.*/
}
for (i=1; i<a; i++) { /* handle last r-1 positions.*/
I[c] = 1; /* mark used chunk symbol.*/
c = (c & mask) << maxNumBit; /* shift in next old symbol in chunk.*/
}
newAlphabetSize = 1;
for (i=0; i<=maxSymbolInChunk; i++) {
if (I[i]) {
I[i] = newAlphabetSize;
newAlphabetSize++;
}
}
c = minSymbolInChunk;
for (i=0, j=a; j<=numChar; i++, j++) {
V[i] = I[c]; /* transform to new alphabet.*/
c = ((c & mask) << maxNumBit) | (V[j] - smallestInputSymbol + 1); /* shift in next old symbol in chunk.*/
}
for (; i<numChar; i++) { /* handle last a-1 positions.*/
V[i] = I[c]; /* transform to new alphabet.*/
c = (c & mask) << maxNumBit; /* shift right-end zero in chunk.*/
}
V[numChar] = 0; /* end-of-string symbol is zero.*/
*numSymbolAggregated = a;
return newAlphabetSize;
}