-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextraction.py
155 lines (108 loc) · 5.42 KB
/
extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import time
import csv
import logging
import re
from crewai import Crew
from crewai import Task
from dotenv import load_dotenv
from agents import FinancialAgents
from tasks import FinancialAnalysisTasks
import subprocess
import schedule
from reddit_scraper import scrape_subreddit, TextProcessor
import pandas as pd
from datetime import datetime, timedelta
from textblob import TextBlob
from article_preprocessor import read_company_for_event_extraction, load_processed_urls
class event_extract():
# Setup environment
def event_id(company_name):
load_dotenv()
logger = logging.getLogger()
logging.basicConfig(level=logging.INFO)
agents = FinancialAgents()
event_extraction_agent = agents.event_extraction_agent()
#cumulative_event_agent = agents.cumulative_event_agent()
trading_decision_agent = agents.trading_decision_agent()
tasks = FinancialAnalysisTasks()
logger.info("Current working directory: %s", os.getcwd())
csv_file_path = f"/teamspace/studios/this_studio/trading-project-2024/data/{company_name}_article_collection.csv"
# Read input CSV file
with open(csv_file_path, mode='r', newline='') as file:
csv_reader = csv.DictReader(file)
# Print headers to check for mismatche
# Process each row
for row in csv_reader:
article_url = row['URL']
company_name = row['Company']
print(company_name)
article_content = row['Article Content']
submission_date = row['Submission Date']
event_extraction_task = tasks.event_extraction_task(
agent=event_extraction_agent,
company_name=company_name,
financial_data={
'company_name': company_name,
'content': article_content,
'submission_date': submission_date,
'description': 'event identification of article content',
'expected_output': 'Major events detected?'
}
)
trading_decision_task = tasks.trading_decision_task(
agent=trading_decision_agent,
company_name=company_name,
financial_data=event_extraction_task
#context = event_extraction_task
)
crew = Crew(
agents=[
event_extraction_agent
],
tasks=[
event_extraction_task
],
max_rpm=25)
start_time = time.time()
#
#crew.train(n_iterations=1)
results = crew.kickoff()
end_time = time.time()
elapsed_time = end_time - start_time
logger.info(f"Crew kickoff for {company_name} took {elapsed_time} seconds.")
logger.info("Crew usage: %s", crew.usage_metrics)
lines = results.split('\n')
# Initialize an empty list to store the events
events = []
# Use a regular expression to match lines starting with a number followed by a period
pattern = re.compile(r'^\d+\.\s+Event:')
# Temporary variables to hold the current event and details
current_event = None
current_detail = []
for line in lines:
if pattern.match(line.strip()):
# If we find a new event, save the previous event if it exists
if current_event:
events.append((current_event, ' '.join(current_detail).strip()))
current_event = line.strip()
current_detail = []
elif current_event:
current_detail.append(line.strip())
# Add the last event if it exists
if current_event:
events.append((current_event, ' '.join(current_detail).strip()))
# Print events for debugging
print("Parsed Events:")
for event, detail in events:
print(f"{event}: {detail}")
# Define the CSV file name
date_str = datetime.now().strftime('%Y-%m-%d')
csv_file = f'/teamspace/studios/this_studio/trading-project-2024/data/events_{company_name}_{date_str}.csv'
# Define the CSV file name with the company name
# Write the events to the CSV file
with open(csv_file, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Event', 'Details'])
writer.writerows(events)
print(f'Events have been saved to {csv_file}')