-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcensus2csv.py
120 lines (87 loc) · 4.65 KB
/
census2csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# coding: utf-8
# In[1]:
#! python3
# census2csv
# This script is used to scrape and consolidate demographic, population, and housing data
# from the United States census website at: https://www.ffiec.gov/census/default.aspx
# In[2]:
import csv
import os
import sys
import requests
from lxml import html
from bs4 import BeautifulSoup
from tkinter import filedialog
from nested_dict import nested_dict
import pandas as pd
# In[ ]:
# import specific county codes for parsing
geo_info = ([36047,36061,6075,11001,6037,17031,25025,36081,6081,25021,36005,6111,36085,36119,
24033,53025,6059,34017,25017,6071,24031,6029,36059,42007,6065,6083,50003,6085,17197])
# standardize for use in parsing
state = []
county = []
for geo in geo_info:
geo = str(geo)
if len(geo) > 7:
geo = geo[:-1].replace(".","") # remove the last digit, and remove decimals
if len(geo) < 5:
geo = '0' + geo # for states less than 10, add a prefix 0 to fit the naming convention
state.append(geo[:2])
county.append(geo[2:])
# define columns for tables
columns = []
demographic_columns = ['Tract Code','Tract Income Level','Distressed (Y/N)','Tract Median Fam Income','MSA Median Fam Income','2017 Median Fam Income','2015 Median Fam Income','Tract Population','Tract Minority %','Minority Pop','Owner Occupied Units','1-4 Fam Units','state','county']
population_columns = ['Tract Code','Tract Population','Tract Minority %','Number of Families','Number Households','Non Hispanic White Pop','tract_minority_pop','american_indian_pop','asian_islander_pop','black_population','hisplanic_population','mixed_population','state','county']
housing_columns = ['Tract Code','Total Housing Units','1-4 Family Units','Median House Age','Inside City?','Owner Occupied Units','Vacant Units','Owner Occupied 1-4 Fam Units','Renter Occupied','state','county']
columns.append(demographic_columns)
columns.append(population_columns)
columns.append(housing_columns)
report = ['demographic','population','housing'] # type of data to pull from census site
# In[ ]:
def get_Page(url):
# This function is used to pull the max page number from each counties report on the FFIEC website
# Example of url for this function is: https://www.ffiec.gov/census/report.aspx?year=2017&county=019&tract=ALL&state=06&report=demographic
html_response = requests.get(url).text.encode('utf-8') # request html (hot garbage)
soup = BeautifulSoup(html_response, 'html.parser')
pages = soup.find_all("span", class_="main-body") # page number sits in this class
pages = str(pages[4].string) # specific to this site, lists page n of n
try:
page = int(pages[-2:]) # hoping this is a common format
except Exception:
page = 1
return page
def consolidate_pages(state):
pages = []
for i in range(len(state)):
# This uses the demographic report to pull the max page number, although any type of report should give the same result
print('Pulling page numbers from the govt. census website . . .')
base_url = 'https://www.ffiec.gov/census/report.aspx?year=2017&state=' + state[i] + '&msa=&county=' + county[i] + '&tract=ALL&report=demographic'
try:
page = get_Page(base_url) # iterate through each state/county pair and pull the max page number
except Exception: # if there is only one page, this exception will be thrown
page = 1
page = str(page)
pages.append(page)
return pages
pages = consolidate_pages(state) # define number of pages
# In[ ]:
pages
# In[ ]:
report = ['demographic','population','housing']
baseurl = 'https://www.ffiec.gov/census/report.aspx?year=2017&county=019&tract=ALL&state=06&report=demographic'
for j in range(len(report)):
column_df = columns[j] # use the correct headers for each type of census report
df = pd.DataFrame(columns = columns[j]) # initialize dataframe to hold consolidated reports
for i in range(len(state)):
print((i/((len(state)*len(report))))) # progress bar so I don't get impatient
url = 'https://www.ffiec.gov/census/report.aspx?year=2017&state=' + state[i] + '&msa=&county=' + county[i] + '&tract=ALL&report=' + report[j]+ '&page=' + pages[i]
html = requests.get(url).content
df_list = pd.read_html(html)
df_list = df_list[-1] # transpose to meet df structure
df_list['state'] = state[i]
df_list['county'] = county[i]
df_list = df_list.iloc[1:,:] # remove first row to prevent duplicate column headers
df_list.columns = column_df
df = df.append(df_list) # add to data frame
df.to_csv('censusInfo_' + report[j] + '.csv', index = False)