-
Notifications
You must be signed in to change notification settings - Fork 0
/
Links.txt
42 lines (42 loc) · 3.07 KB
/
Links.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
https://www.reddit.com/r/MachineLearning/comments/5x1l8e/d_what_is_the_state_of_the_art_in_paraphrase/
*******************************************************************************************************
T5:
https://towardsdatascience.com/t5-text-to-text-transfer-transformer-643f89e8905e
https://medium.com/dataseries/text-to-text-transfer-transformer-e35dc28bae14
https://towardsdatascience.com/paraphrase-any-question-with-t5-text-to-text-transfer-transformer-pretrained-model-and-cbb9e35f1555
https://huggingface.co/mrm8488/t5-small-finetuned-quora-for-paraphrasing
https://www.kaggle.com/c/quora-question-pairs/code
*******************************************************************************************************
http://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://huggingface.co/transformers/training.html
https://medium.com/@aniruddha.choudhury94/part-2-bert-fine-tuning-tutorial-with-pytorch-for-text-classification-on-the-corpus-of-linguistic-18057ce330e1
*******************************************************************************************************
Attention:
https://www.tensorflow.org/tutorials/text/nmt_with_attention
https://www.youtube.com/watch?v=W2rWgXJBZhU
https://www.youtube.com/watch?v=TQQlZhbC5ps
*******************************************************************************************************
Other useful links and future directions:
1. https://www.aclweb.org/anthology/D17-1091.pdf
2. https://paperswithcode.com/paper/learning-semantic-sentence-embeddings-using-1
3. https://www.aclweb.org/anthology/P19-1610.pdf
4. https://arxiv.org/pdf/1606.05250.pdf
5. https://www.cse.iitk.ac.in/users/piyush/papers/deep-paraphrase-aaai2018.pdf
6. https://towardsdatascience.com/nlp-building-a-question-answering-model-ed0529a68c54
7. https://www.pragnakalp.com/nlp-tutorial-setup-question-answering-system-bert-squad-colab-tpu/
8. https://github.com/google-research/bert
9. https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
10. https://towardsdatascience.com/finding-similar-quora-questions-with-word2vec-and-xgboost-1a19ad272c0d
11. https://tianjun.me/static/essay_resources/Paraphrase_Generation/main.html
12. https://www.researchgate.net/publication/336996372_Transformer_and_seq2seq_model_for_Paraphrase_Generation
13. https://github.com/tlatkowski/multihead-siamese-nets
14. https://github.com/farizrahman4u/seq2seq
15. https://arxiv.org/pdf/1810.04805.pdf (BERT)
16. https://www.analyticsvidhya.com/blog/2019/09/demystifying-bert-groundbreaking-nlp-framework/
17. https://github.com/topics/paraphrase-generation
*******************************************************************************************************
GPT2:
https://github.com/kingchloexx/GPT2-Question-Answering/blob/master/paper.md
https://towardsdatascience.com/natural-language-generation-part-2-gpt-2-and-huggingface-f3acb35bc86a
https://gist.github.com/GeorgeDittmar/5c57a35332b2b5818e51618af7953351