diff --git a/src/classes/Changelog.py b/src/classes/Changelog.py index b24752a5..4cc05ea6 100644 --- a/src/classes/Changelog.py +++ b/src/classes/Changelog.py @@ -7,7 +7,7 @@ from classes.ColorText import colorText -VERSION = "2.07" +VERSION = "2.08" changelog = colorText.BOLD + '[ChangeLog]\n' + colorText.END + colorText.BLUE + ''' [1.00 - Beta] @@ -242,4 +242,7 @@ 1. US S&P 500 Index added - Try Index `15 > US S&P 500` 2. Minor improvemnets +[2.08] +1. Nifty Prediction enhanced - New AI model uses Crude and Gold data for Gap Prediction + ''' + colorText.END diff --git a/src/classes/Fetcher.py b/src/classes/Fetcher.py index 56128912..8c244827 100644 --- a/src/classes/Fetcher.py +++ b/src/classes/Fetcher.py @@ -159,6 +159,21 @@ def fetchLatestNiftyDaily(self, proxyServer=None): progress=False, timeout=10 ) + gold = yf.download( + tickers="GC=F", + period='5d', + interval='1d', + progress=False, + timeout=10 + ).add_prefix(prefix='gold_') + crude = yf.download( + tickers="CL=F", + period='5d', + interval='1d', + progress=False, + timeout=10 + ).add_prefix(prefix='crude_') + data = pd.concat([data, gold, crude], axis=1) return data # Get Data for Five EMA strategy diff --git a/src/classes/Screener.py b/src/classes/Screener.py index ecc3830e..b6585ea5 100644 --- a/src/classes/Screener.py +++ b/src/classes/Screener.py @@ -583,10 +583,8 @@ def getNiftyPrediction(self, data, proxyServer): with SuppressOutput(suppress_stderr=True, suppress_stdout=True): data = data[pkl['columns']] ### v2 Preprocessing - data['High'] = data['High'].pct_change() * 100 - data['Low'] = data['Low'].pct_change() * 100 - data['Open'] = data['Open'].pct_change() * 100 - data['Close'] = data['Close'].pct_change() * 100 + for col in pkl['columns']: + data[col] = data[col].pct_change() * 100 data = data.iloc[-1] ### data = pkl['scaler'].transform([data]) diff --git a/src/classes/Utility.py b/src/classes/Utility.py index 42789412..ae2a1bd8 100644 --- a/src/classes/Utility.py +++ b/src/classes/Utility.py @@ -309,10 +309,10 @@ def getProgressbarStyle(): return bar, spinner def getNiftyModel(proxyServer=None): - files = ['nifty_model_v2.h5', 'nifty_model_v2.pkl'] + files = ['nifty_model_v3.h5', 'nifty_model_v3.pkl'] urls = [ - "https://raw.github.com/pranjal-joshi/Screeni-py/new-features/src/ml/nifty_model_v2.h5", - "https://raw.github.com/pranjal-joshi/Screeni-py/new-features/src/ml/nifty_model_v2.pkl" + f"https://raw.github.com/pranjal-joshi/Screeni-py/new-features/src/ml/{files[0]}", + f"https://raw.github.com/pranjal-joshi/Screeni-py/new-features/src/ml/{files[1]}" ] if os.path.isfile(files[0]) and os.path.isfile(files[1]): file_age = (time.time() - os.path.getmtime(files[0]))/604800 @@ -332,7 +332,7 @@ def getNiftyModel(proxyServer=None): resp = requests.get(file_url, stream=True) if resp.status_code == 200: print(colorText.BOLD + colorText.GREEN + - "[+] Downloading AI model (v2) for Nifty predictions, Please Wait.." + colorText.END) + "[+] Downloading AI model (v3) for Nifty predictions, Please Wait.." + colorText.END) try: chunksize = 1024*1024*1 filesize = int(int(resp.headers.get('content-length'))/chunksize) diff --git a/src/ml/experiment.ipynb b/src/ml/experiment.ipynb index ac446d86..a6b1a206 100644 --- a/src/ml/experiment.ipynb +++ b/src/ml/experiment.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 18, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -18,16 +18,17 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "TEST_DAYS = 40" + "TEST_DAYS = 50\n", + "PERIOD = '5y'" ] }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -36,32 +37,46 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 18, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/9c/8m67hqg13wd179_xl1xrnn2c0000gp/T/ipykernel_58100/1703223587.py:24: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " d.dropna(inplace=True)\n" - ] - } - ], + "outputs": [], + "source": [ + "INCLUDE_COMMODITIES = True" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], "source": [ "if INDICATOR_DATASET:\n", " d = joblib.load('nifty_data.pkl')\n", "else:\n", " d = yf.download(\n", " tickers=\"^NSEI\",\n", - " period='max',\n", + " period=PERIOD,\n", " interval='1d',\n", " progress=False,\n", " timeout=10\n", " )\n", + " if INCLUDE_COMMODITIES:\n", + " gold = yf.download(\n", + " tickers=\"GC=F\",\n", + " period=PERIOD,\n", + " interval='1d',\n", + " progress=False,\n", + " timeout=10\n", + " ).add_prefix(prefix='gold_')\n", + " crude = yf.download(\n", + " tickers=\"CL=F\",\n", + " period=PERIOD,\n", + " interval='1d',\n", + " progress=False,\n", + " timeout=10\n", + " ).add_prefix(prefix='crude_')\n", + " d = pd.concat([d, gold, crude], axis=1)\n", + " \n", " d['target'] = d.Open/d.Close.shift(-1)\n", " d.target = d.target.apply(np.floor)\n", "\n", @@ -71,17 +86,28 @@ " d['Low'] = d['Low'].pct_change() * 100\n", " d['Open'] = d['Open'].pct_change() * 100\n", " d['Close'] = d['Close'].pct_change() * 100 \n", + "\n", + " if INCLUDE_COMMODITIES:\n", + " d['gold_High'] = d['gold_High'].pct_change() * 100\n", + " d['gold_Low'] = d['gold_Low'].pct_change() * 100\n", + " d['gold_Open'] = d['gold_Open'].pct_change() * 100\n", + " d['gold_Close'] = d['gold_Close'].pct_change() * 100\n", + "\n", + " d['crude_High'] = d['crude_High'].pct_change() * 100\n", + " d['crude_Low'] = d['crude_Low'].pct_change() * 100\n", + " d['crude_Open'] = d['crude_Open'].pct_change() * 100\n", + " d['crude_Close'] = d['crude_Close'].pct_change() * 100\n", " # d.rename(columns = {'HighNew':'High','LowNew':'Low','OpenNew':'Open','CloseNew':'Close'}, inplace = True)\n", "\n", " # Remove outliers when Market closes +- 3.5%\n", - " d = d[d['change'] < 3.5]\n", + " d = d[d['change'] < 3]\n", " d.dropna(inplace=True)\n", " d.tail()" ] }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -90,12 +116,23 @@ " df['Low'] = df['Low'].pct_change() * 100\n", " df['Open'] = df['Open'].pct_change() * 100\n", " df['Close'] = df['Close'].pct_change() * 100 \n", + "\n", + " if INCLUDE_COMMODITIES:\n", + " df['gold_High'] = df['gold_High'].pct_change() * 100\n", + " df['gold_Low'] = df['gold_Low'].pct_change() * 100\n", + " df['gold_Open'] = df['gold_Open'].pct_change() * 100\n", + " df['gold_Close'] = df['gold_Close'].pct_change() * 100\n", + "\n", + " df['crude_High'] = df['crude_High'].pct_change() * 100\n", + " df['crude_Low'] = df['crude_Low'].pct_change() * 100\n", + " df['crude_Open'] = df['crude_Open'].pct_change() * 100\n", + " df['crude_Close'] = df['crude_Close'].pct_change() * 100\n", " return df" ] }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -104,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -113,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -121,13 +158,17 @@ " x = d.drop(columns=['target'])\n", " y = d.target\n", "else:\n", - " x = d.drop(columns=['target', 'Adj Close', 'Volume', 'change'], errors='ignore')\n", + " if INCLUDE_COMMODITIES:\n", + " # x = d.drop(columns=['target', 'Adj Close', 'Volume', 'change', 'gold_Adj Close', 'gold_Volume', 'crude_Adj Close', 'crude_Volume'], errors='ignore')\n", + " x = d.drop(columns=['target', 'Adj Close', 'Volume', 'change', 'gold_Open', 'gold_High', 'gold_Low', 'gold_Adj Close', 'gold_Volume', 'crude_Open', 'crude_High', 'crude_Low', 'crude_Adj Close', 'crude_Volume'], errors='ignore')\n", + " else:\n", + " x = d.drop(columns=['target', 'Adj Close', 'Volume', 'change'], errors='ignore')\n", " y = d.target" ] }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -155,6 +196,8 @@ "
3632 rows × 4 columns
\n", + "1059 rows × 6 columns
\n", "" ], "text/plain": [ - " Open High Low Close\n", - "Date \n", - "2007-09-18 -0.538904 0.060452 -0.029006 1.146926\n", - "2007-09-20 4.056922 0.461070 3.755835 0.321187\n", - "2007-09-21 0.382274 1.992293 0.265831 1.895715\n", - "2007-09-24 1.771525 1.759781 2.185388 1.956577\n", - "2007-09-25 2.107650 0.258037 0.847607 0.134826\n", - "... ... ... ... ...\n", - "2022-12-02 -0.633474 -0.559364 -0.740220 -0.618740\n", - "2022-12-05 -0.175175 -0.284047 -0.256715 0.026482\n", - "2022-12-06 -0.635167 -0.393512 -0.072341 -0.311751\n", - "2022-12-07 0.205365 0.071833 -0.266446 -0.441190\n", - "2022-12-08 -0.364829 -0.231948 0.046139 0.263191\n", + " Open High Low Close gold_Close crude_Close\n", + "Date \n", + "2018-10-23 -2.433727 -1.791318 -1.189851 -0.960935 0.999023 -3.961252\n", + "2018-10-24 1.236637 0.670614 0.241039 0.768224 -0.454028 0.587083\n", + "2018-10-25 -1.392280 -1.205471 -0.468073 -0.976548 0.105874 0.763248\n", + "2018-10-26 -0.125310 -0.371314 -0.741619 -0.937297 0.276627 0.386150\n", + "2018-10-29 -0.437151 1.445872 0.157926 2.201890 -0.649087 -0.813723\n", + "... ... ... ... ... ... ...\n", + "2023-07-25 -0.096714 -0.269934 -0.215439 0.041937 0.091819 1.130302\n", + "2023-07-26 0.020274 0.487852 0.513613 0.496434 0.346570 -1.067435\n", + "2023-07-27 0.595696 0.211601 -0.573871 -0.598638 -1.193560 1.662856\n", + "2023-07-28 -0.962931 -0.863974 -0.206346 -0.070446 0.771050 0.611819\n", + "2023-07-31 0.033569 0.390181 0.176352 0.548456 0.515200 1.514025\n", "\n", - "[3632 rows x 4 columns]" + "[1059 rows x 6 columns]" ] }, - "execution_count": 92, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -276,28 +343,28 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Date\n", - "2007-09-18 0.0\n", - "2007-09-20 0.0\n", - "2007-09-21 0.0\n", - "2007-09-24 0.0\n", - "2007-09-25 0.0\n", + "2018-10-23 0.0\n", + "2018-10-24 1.0\n", + "2018-10-25 1.0\n", + "2018-10-26 0.0\n", + "2018-10-29 0.0\n", " ... \n", - "2022-12-02 1.0\n", - "2022-12-05 1.0\n", - "2022-12-06 1.0\n", - "2022-12-07 1.0\n", - "2022-12-08 1.0\n", - "Name: target, Length: 3632, dtype: float64" + "2023-07-25 0.0\n", + "2023-07-26 1.0\n", + "2023-07-27 1.0\n", + "2023-07-28 0.0\n", + "2023-07-31 0.0\n", + "Name: target, Length: 1059, dtype: float64" ] }, - "execution_count": 93, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -308,15 +375,15 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "No. of Bullish samples: 1853\n", - "No. of Bearish samples: 1779\n" + "No. of Bullish samples: 554\n", + "No. of Bearish samples: 505\n" ] } ], @@ -327,7 +394,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -340,16 +407,22 @@ { "data": { "text/plain": [ - "array([[-0.44397101, 0.03341403, -0.07956986, 1.02006975],\n", - " [ 2.99061278, 0.42381322, 2.99941387, 0.25208989],\n", - " [ 0.24444976, 1.91598031, 0.16028141, 1.71648272],\n", + "array([[-2.20749184, -2.15630367, -1.28386843, -1.12858003, 1.00255906,\n", + " -0.38714857],\n", + " [ 1.02520233, 0.70696761, 0.15712183, 0.76864741, -0.54208534,\n", + " 0.07144068],\n", + " [-1.29023079, -1.4749529 , -0.5569958 , -1.14571072, 0.05311023,\n", + " 0.0892026 ],\n", " ...,\n", - " [-0.51591104, -0.40897068, -0.11482332, -0.33657615],\n", - " [ 0.11224095, 0.04450465, -0.27272798, -0.4569611 ],\n", - " [-0.31388057, -0.25152816, -0.0184391 , 0.19815053]])" + " [ 0.4606901 , 0.17312764, -0.66354028, -0.73106887, -1.32823429,\n", + " 0.17990622],\n", + " [-0.91207923, -1.07778541, -0.2934211 , -0.1515387 , 0.76021492,\n", + " 0.07393465],\n", + " [-0.03440639, 0.38081913, 0.09197882, 0.5275186 , 0.48823743,\n", + " 0.16490025]])" ] }, - "execution_count": 95, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -373,35 +446,35 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Model: \"sequential_5\"\n", + "Model: \"sequential_1\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", - " dense_35 (Dense) (None, 64) 320 \n", + " dense_7 (Dense) (None, 128) 896 \n", " \n", - " dense_36 (Dense) (None, 32) 2080 \n", + " dense_8 (Dense) (None, 64) 8256 \n", " \n", - " dense_37 (Dense) (None, 16) 528 \n", + " dense_9 (Dense) (None, 32) 2080 \n", " \n", - " dense_38 (Dense) (None, 8) 136 \n", + " dense_10 (Dense) (None, 16) 528 \n", " \n", - " dense_39 (Dense) (None, 4) 36 \n", + " dense_11 (Dense) (None, 8) 136 \n", " \n", - " dense_40 (Dense) (None, 2) 10 \n", + " dense_12 (Dense) (None, 4) 36 \n", " \n", - " dense_41 (Dense) (None, 1) 3 \n", + " dense_13 (Dense) (None, 1) 5 \n", " \n", "=================================================================\n", - "Total params: 3,113\n", - "Trainable params: 3,113\n", - "Non-trainable params: 0\n", + "Total params: 11937 (46.63 KB)\n", + "Trainable params: 11937 (46.63 KB)\n", + "Non-trainable params: 0 (0.00 Byte)\n", "_________________________________________________________________\n" ] } @@ -411,21 +484,21 @@ "from keras import Sequential\n", "from keras import Model\n", "from keras.layers import Dense\n", - "from keras.optimizers import SGD\n", + "from keras.optimizers import legacy\n", "import keras\n", "\n", "lr_list = []\n", "def scheduler(epoch, lr):\n", - " if epoch < 15:\n", + " if epoch < 10:\n", " lr = lr\n", " else:\n", " lr = lr * tf.math.exp(-0.01)\n", " lr_list.append(lr)\n", " return lr\n", "\n", - "units = 64 #1024\n", + "units = 128 #1024\n", "# sgd = SGD(learning_rate=0.0001, momentum=0.0, nesterov=True)\n", - "sgd = SGD(learning_rate=0.001, momentum=0.45, nesterov=True)\n", + "sgd = legacy.SGD(learning_rate=0.001, momentum=0.45, nesterov=True)\n", "kernel_init = 'he_uniform'\n", "activation = 'relu'\n", "\n", @@ -460,38 +533,35 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/500\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2023-02-07 21:32:56.887556: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "BATCH SIZE = 160\n", + "Epoch 1/750\n", + "\n", + "Epoch 1: val_accuracy improved from -inf to 0.40881, saving model to best_model.h5\n", + "6/6 - 5s - loss: 2.2815 - accuracy: 0.3682 - val_loss: 1.2598 - val_accuracy: 0.4088 - lr: 0.0010 - 5s/epoch - 765ms/step\n", + "Epoch 2/750\n", + "\n", + "Epoch 2: val_accuracy improved from 0.40881 to 0.44654, saving model to best_model.h5\n", + "6/6 - 0s - loss: 1.7582 - accuracy: 0.4060 - val_loss: 1.1155 - val_accuracy: 0.4465 - lr: 0.0010 - 88ms/epoch - 15ms/step\n", + "Epoch 3/750\n", "\n", - "Epoch 1: val_accuracy improved from -inf to 0.56514, saving model to best_model.h5\n", - "25/25 - 1s - loss: 0.7395 - accuracy: 0.5190 - val_loss: 0.6813 - val_accuracy: 0.5651 - lr: 0.0010 - 798ms/epoch - 32ms/step\n", - "Epoch 2/500\n" + "Epoch 3: val_accuracy improved from 0.44654 to 0.47170, saving model to best_model.h5\n", + "6/6 - 0s - loss: 1.4263 - accuracy: 0.4449 - val_loss: 0.9977 - val_accuracy: 0.4717 - lr: 0.0010 - 85ms/epoch - 14ms/step\n", + "Epoch 4/750\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-02-07 21:32:57.345736: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n" + "/Users/pranjaljoshi/miniforge3/envs/screenipy/lib/python3.10/site-packages/keras/src/engine/training.py:3079: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.\n", + " saving_api.save_model(\n" ] }, { @@ -499,1210 +569,1139 @@ "output_type": "stream", "text": [ "\n", - "Epoch 2: val_accuracy improved from 0.56514 to 0.56881, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.7237 - accuracy: 0.5238 - val_loss: 0.6748 - val_accuracy: 0.5688 - lr: 0.0010 - 227ms/epoch - 9ms/step\n", - "Epoch 3/500\n", + "Epoch 4: val_accuracy did not improve from 0.47170\n", + "6/6 - 0s - loss: 1.2121 - accuracy: 0.4883 - val_loss: 0.8805 - val_accuracy: 0.4654 - lr: 0.0010 - 66ms/epoch - 11ms/step\n", + "Epoch 5/750\n", "\n", - "Epoch 3: val_accuracy improved from 0.56881 to 0.57064, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.7119 - accuracy: 0.5287 - val_loss: 0.6682 - val_accuracy: 0.5706 - lr: 0.0010 - 232ms/epoch - 9ms/step\n", - "Epoch 4/500\n", + "Epoch 5: val_accuracy improved from 0.47170 to 0.52830, saving model to best_model.h5\n", + "6/6 - 0s - loss: 1.0301 - accuracy: 0.5106 - val_loss: 0.7915 - val_accuracy: 0.5283 - lr: 0.0010 - 82ms/epoch - 14ms/step\n", + "Epoch 6/750\n", "\n", - "Epoch 4: val_accuracy improved from 0.57064 to 0.57798, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.7027 - accuracy: 0.5368 - val_loss: 0.6624 - val_accuracy: 0.5780 - lr: 0.0010 - 228ms/epoch - 9ms/step\n", - "Epoch 5/500\n", + "Epoch 6: val_accuracy improved from 0.52830 to 0.59119, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.9162 - accuracy: 0.5328 - val_loss: 0.7282 - val_accuracy: 0.5912 - lr: 0.0010 - 80ms/epoch - 13ms/step\n", + "Epoch 7/750\n", "\n", - "Epoch 5: val_accuracy improved from 0.57798 to 0.59266, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6922 - accuracy: 0.5465 - val_loss: 0.6567 - val_accuracy: 0.5927 - lr: 0.0010 - 205ms/epoch - 8ms/step\n", - "Epoch 6/500\n", + "Epoch 7: val_accuracy improved from 0.59119 to 0.63522, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.8414 - accuracy: 0.5940 - val_loss: 0.6987 - val_accuracy: 0.6352 - lr: 0.0010 - 81ms/epoch - 14ms/step\n", + "Epoch 8/750\n", "\n", - "Epoch 6: val_accuracy improved from 0.59266 to 0.60734, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6815 - accuracy: 0.5640 - val_loss: 0.6493 - val_accuracy: 0.6073 - lr: 0.0010 - 205ms/epoch - 8ms/step\n", - "Epoch 7/500\n", + "Epoch 8: val_accuracy improved from 0.63522 to 0.64780, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.8066 - accuracy: 0.6151 - val_loss: 0.6838 - val_accuracy: 0.6478 - lr: 0.0010 - 80ms/epoch - 13ms/step\n", + "Epoch 9/750\n", "\n", - "Epoch 7: val_accuracy improved from 0.60734 to 0.66055, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6670 - accuracy: 0.6158 - val_loss: 0.6347 - val_accuracy: 0.6606 - lr: 0.0010 - 203ms/epoch - 8ms/step\n", - "Epoch 8/500\n", + "Epoch 9: val_accuracy improved from 0.64780 to 0.65409, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.7914 - accuracy: 0.6218 - val_loss: 0.6749 - val_accuracy: 0.6541 - lr: 0.0010 - 85ms/epoch - 14ms/step\n", + "Epoch 10/750\n", "\n", - "Epoch 8: val_accuracy improved from 0.66055 to 0.68257, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6458 - accuracy: 0.6683 - val_loss: 0.6256 - val_accuracy: 0.6826 - lr: 0.0010 - 214ms/epoch - 9ms/step\n", - "Epoch 9/500\n", + "Epoch 10: val_accuracy improved from 0.65409 to 0.66038, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.7745 - accuracy: 0.6318 - val_loss: 0.6685 - val_accuracy: 0.6604 - lr: 0.0010 - 81ms/epoch - 13ms/step\n", + "Epoch 11/750\n", "\n", - "Epoch 9: val_accuracy improved from 0.68257 to 0.69358, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6340 - accuracy: 0.6796 - val_loss: 0.6224 - val_accuracy: 0.6936 - lr: 0.0010 - 210ms/epoch - 8ms/step\n", - "Epoch 10/500\n", + "Epoch 11: val_accuracy did not improve from 0.66038\n", + "6/6 - 0s - loss: 0.7525 - accuracy: 0.6452 - val_loss: 0.6647 - val_accuracy: 0.6541 - lr: 9.9005e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 12/750\n", "\n", - "Epoch 10: val_accuracy improved from 0.69358 to 0.70642, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6285 - accuracy: 0.6884 - val_loss: 0.6199 - val_accuracy: 0.7064 - lr: 0.0010 - 208ms/epoch - 8ms/step\n", - "Epoch 11/500\n", + "Epoch 12: val_accuracy did not improve from 0.66038\n", + "6/6 - 0s - loss: 0.7431 - accuracy: 0.6407 - val_loss: 0.6572 - val_accuracy: 0.6604 - lr: 9.8020e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 13/750\n", "\n", - "Epoch 11: val_accuracy improved from 0.70642 to 0.71376, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6239 - accuracy: 0.6916 - val_loss: 0.6174 - val_accuracy: 0.7138 - lr: 0.0010 - 207ms/epoch - 8ms/step\n", - "Epoch 12/500\n", + "Epoch 13: val_accuracy improved from 0.66038 to 0.66667, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.7312 - accuracy: 0.6440 - val_loss: 0.6517 - val_accuracy: 0.6667 - lr: 9.7045e-04 - 80ms/epoch - 13ms/step\n", + "Epoch 14/750\n", "\n", - "Epoch 12: val_accuracy improved from 0.71376 to 0.71927, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6202 - accuracy: 0.6910 - val_loss: 0.6154 - val_accuracy: 0.7193 - lr: 0.0010 - 206ms/epoch - 8ms/step\n", - "Epoch 13/500\n", + "Epoch 14: val_accuracy did not improve from 0.66667\n", + "6/6 - 0s - loss: 0.7195 - accuracy: 0.6507 - val_loss: 0.6460 - val_accuracy: 0.6541 - lr: 9.6079e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 15/750\n", "\n", - "Epoch 13: val_accuracy improved from 0.71927 to 0.72661, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6181 - accuracy: 0.6923 - val_loss: 0.6136 - val_accuracy: 0.7266 - lr: 0.0010 - 214ms/epoch - 9ms/step\n", - "Epoch 14/500\n", + "Epoch 15: val_accuracy did not improve from 0.66667\n", + "6/6 - 0s - loss: 0.7093 - accuracy: 0.6541 - val_loss: 0.6421 - val_accuracy: 0.6541 - lr: 9.5123e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 16/750\n", "\n", - "Epoch 14: val_accuracy improved from 0.72661 to 0.72844, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6157 - accuracy: 0.6929 - val_loss: 0.6117 - val_accuracy: 0.7284 - lr: 0.0010 - 212ms/epoch - 8ms/step\n", - "Epoch 15/500\n", + "Epoch 16: val_accuracy did not improve from 0.66667\n", + "6/6 - 0s - loss: 0.6963 - accuracy: 0.6685 - val_loss: 0.6391 - val_accuracy: 0.6604 - lr: 9.4176e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 17/750\n", "\n", - "Epoch 15: val_accuracy did not improve from 0.72844\n", - "25/25 - 0s - loss: 0.6137 - accuracy: 0.6955 - val_loss: 0.6098 - val_accuracy: 0.7284 - lr: 0.0010 - 186ms/epoch - 7ms/step\n", - "Epoch 16/500\n", + "Epoch 17: val_accuracy did not improve from 0.66667\n", + "6/6 - 0s - loss: 0.6889 - accuracy: 0.6663 - val_loss: 0.6333 - val_accuracy: 0.6541 - lr: 9.3239e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 18/750\n", "\n", - "Epoch 16: val_accuracy improved from 0.72844 to 0.73028, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6117 - accuracy: 0.6945 - val_loss: 0.6080 - val_accuracy: 0.7303 - lr: 9.9005e-04 - 256ms/epoch - 10ms/step\n", - "Epoch 17/500\n", + "Epoch 18: val_accuracy did not improve from 0.66667\n", + "6/6 - 0s - loss: 0.6785 - accuracy: 0.6696 - val_loss: 0.6289 - val_accuracy: 0.6541 - lr: 9.2312e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 19/750\n", "\n", - "Epoch 17: val_accuracy improved from 0.73028 to 0.73578, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6098 - accuracy: 0.6952 - val_loss: 0.6064 - val_accuracy: 0.7358 - lr: 9.8020e-04 - 212ms/epoch - 8ms/step\n", - "Epoch 18/500\n", + "Epoch 19: val_accuracy did not improve from 0.66667\n", + "6/6 - 0s - loss: 0.6721 - accuracy: 0.6696 - val_loss: 0.6256 - val_accuracy: 0.6667 - lr: 9.1393e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 20/750\n", "\n", - "Epoch 18: val_accuracy did not improve from 0.73578\n", - "25/25 - 0s - loss: 0.6079 - accuracy: 0.6948 - val_loss: 0.6044 - val_accuracy: 0.7339 - lr: 9.7045e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 19/500\n", + "Epoch 20: val_accuracy improved from 0.66667 to 0.68553, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.6641 - accuracy: 0.6774 - val_loss: 0.6227 - val_accuracy: 0.6855 - lr: 9.0484e-04 - 80ms/epoch - 13ms/step\n", + "Epoch 21/750\n", "\n", - "Epoch 19: val_accuracy did not improve from 0.73578\n", - "25/25 - 0s - loss: 0.6063 - accuracy: 0.6991 - val_loss: 0.6025 - val_accuracy: 0.7321 - lr: 9.6079e-04 - 195ms/epoch - 8ms/step\n", - "Epoch 20/500\n", + "Epoch 21: val_accuracy improved from 0.68553 to 0.69811, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.6559 - accuracy: 0.6785 - val_loss: 0.6188 - val_accuracy: 0.6981 - lr: 8.9583e-04 - 79ms/epoch - 13ms/step\n", + "Epoch 22/750\n", "\n", - "Epoch 20: val_accuracy did not improve from 0.73578\n", - "25/25 - 0s - loss: 0.6049 - accuracy: 0.6965 - val_loss: 0.6008 - val_accuracy: 0.7321 - lr: 9.5123e-04 - 185ms/epoch - 7ms/step\n", - "Epoch 21/500\n", + "Epoch 22: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6487 - accuracy: 0.6852 - val_loss: 0.6172 - val_accuracy: 0.6604 - lr: 8.8692e-04 - 62ms/epoch - 10ms/step\n", + "Epoch 23/750\n", "\n", - "Epoch 21: val_accuracy did not improve from 0.73578\n", - "25/25 - 0s - loss: 0.6032 - accuracy: 0.6968 - val_loss: 0.5987 - val_accuracy: 0.7358 - lr: 9.4176e-04 - 186ms/epoch - 7ms/step\n", - "Epoch 22/500\n", + "Epoch 23: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6430 - accuracy: 0.6863 - val_loss: 0.6169 - val_accuracy: 0.6730 - lr: 8.7809e-04 - 62ms/epoch - 10ms/step\n", + "Epoch 24/750\n", "\n", - "Epoch 22: val_accuracy improved from 0.73578 to 0.73761, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.6015 - accuracy: 0.6994 - val_loss: 0.5973 - val_accuracy: 0.7376 - lr: 9.3239e-04 - 224ms/epoch - 9ms/step\n", - "Epoch 23/500\n", + "Epoch 24: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6394 - accuracy: 0.6819 - val_loss: 0.6132 - val_accuracy: 0.6604 - lr: 8.6936e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 25/750\n", "\n", - "Epoch 23: val_accuracy did not improve from 0.73761\n", - "25/25 - 0s - loss: 0.6001 - accuracy: 0.6994 - val_loss: 0.5964 - val_accuracy: 0.7358 - lr: 9.2312e-04 - 187ms/epoch - 7ms/step\n", - "Epoch 24/500\n", + "Epoch 25: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6290 - accuracy: 0.6919 - val_loss: 0.6114 - val_accuracy: 0.6667 - lr: 8.6071e-04 - 62ms/epoch - 10ms/step\n", + "Epoch 26/750\n", "\n", - "Epoch 24: val_accuracy did not improve from 0.73761\n", - "25/25 - 0s - loss: 0.5990 - accuracy: 0.7007 - val_loss: 0.5959 - val_accuracy: 0.7358 - lr: 9.1393e-04 - 188ms/epoch - 8ms/step\n", - "Epoch 25/500\n", + "Epoch 26: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6244 - accuracy: 0.6897 - val_loss: 0.6090 - val_accuracy: 0.6792 - lr: 8.5214e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 27/750\n", "\n", - "Epoch 25: val_accuracy improved from 0.73761 to 0.73945, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.5980 - accuracy: 0.7007 - val_loss: 0.5947 - val_accuracy: 0.7394 - lr: 9.0484e-04 - 234ms/epoch - 9ms/step\n", - "Epoch 26/500\n", + "Epoch 27: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6228 - accuracy: 0.6874 - val_loss: 0.6074 - val_accuracy: 0.6541 - lr: 8.4366e-04 - 62ms/epoch - 10ms/step\n", + "Epoch 28/750\n", "\n", - "Epoch 26: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5968 - accuracy: 0.7017 - val_loss: 0.5935 - val_accuracy: 0.7394 - lr: 8.9583e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 27/500\n", + "Epoch 28: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6155 - accuracy: 0.6897 - val_loss: 0.6069 - val_accuracy: 0.6541 - lr: 8.3527e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 29/750\n", "\n", - "Epoch 27: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5957 - accuracy: 0.7033 - val_loss: 0.5924 - val_accuracy: 0.7394 - lr: 8.8692e-04 - 180ms/epoch - 7ms/step\n", - "Epoch 28/500\n", + "Epoch 29: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6108 - accuracy: 0.6930 - val_loss: 0.6047 - val_accuracy: 0.6667 - lr: 8.2696e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 30/750\n", "\n", - "Epoch 28: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5947 - accuracy: 0.7026 - val_loss: 0.5912 - val_accuracy: 0.7376 - lr: 8.7809e-04 - 180ms/epoch - 7ms/step\n", - "Epoch 29/500\n", + "Epoch 30: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6079 - accuracy: 0.6908 - val_loss: 0.6016 - val_accuracy: 0.6792 - lr: 8.1873e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 31/750\n", "\n", - "Epoch 29: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5938 - accuracy: 0.7020 - val_loss: 0.5902 - val_accuracy: 0.7376 - lr: 8.6936e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 30/500\n", + "Epoch 31: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6047 - accuracy: 0.6908 - val_loss: 0.6000 - val_accuracy: 0.6918 - lr: 8.1058e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 32/750\n", "\n", - "Epoch 30: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5929 - accuracy: 0.7026 - val_loss: 0.5892 - val_accuracy: 0.7394 - lr: 8.6071e-04 - 201ms/epoch - 8ms/step\n", - "Epoch 31/500\n", + "Epoch 32: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.6027 - accuracy: 0.6930 - val_loss: 0.5990 - val_accuracy: 0.6855 - lr: 8.0252e-04 - 62ms/epoch - 10ms/step\n", + "Epoch 33/750\n", "\n", - "Epoch 31: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5920 - accuracy: 0.7023 - val_loss: 0.5884 - val_accuracy: 0.7358 - lr: 8.5214e-04 - 181ms/epoch - 7ms/step\n", - "Epoch 32/500\n", + "Epoch 33: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5986 - accuracy: 0.6974 - val_loss: 0.5981 - val_accuracy: 0.6855 - lr: 7.9453e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 34/750\n", "\n", - "Epoch 32: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5911 - accuracy: 0.7049 - val_loss: 0.5877 - val_accuracy: 0.7358 - lr: 8.4366e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 33/500\n", + "Epoch 34: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5949 - accuracy: 0.6930 - val_loss: 0.5985 - val_accuracy: 0.6918 - lr: 7.8663e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 35/750\n", "\n", - "Epoch 33: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5904 - accuracy: 0.7059 - val_loss: 0.5866 - val_accuracy: 0.7376 - lr: 8.3527e-04 - 180ms/epoch - 7ms/step\n", - "Epoch 34/500\n", + "Epoch 35: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5925 - accuracy: 0.6974 - val_loss: 0.5967 - val_accuracy: 0.6855 - lr: 7.7880e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 36/750\n", "\n", - "Epoch 34: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5896 - accuracy: 0.7049 - val_loss: 0.5854 - val_accuracy: 0.7376 - lr: 8.2696e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 35/500\n", + "Epoch 36: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5899 - accuracy: 0.7052 - val_loss: 0.5956 - val_accuracy: 0.6855 - lr: 7.7105e-04 - 62ms/epoch - 10ms/step\n", + "Epoch 37/750\n", "\n", - "Epoch 35: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5892 - accuracy: 0.7033 - val_loss: 0.5848 - val_accuracy: 0.7339 - lr: 8.1873e-04 - 180ms/epoch - 7ms/step\n", - "Epoch 36/500\n", + "Epoch 37: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5891 - accuracy: 0.7052 - val_loss: 0.5980 - val_accuracy: 0.6855 - lr: 7.6338e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 38/750\n", "\n", - "Epoch 36: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5883 - accuracy: 0.7049 - val_loss: 0.5847 - val_accuracy: 0.7339 - lr: 8.1058e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 37/500\n", + "Epoch 38: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5836 - accuracy: 0.7041 - val_loss: 0.5989 - val_accuracy: 0.6981 - lr: 7.5578e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 39/750\n", "\n", - "Epoch 37: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5877 - accuracy: 0.7033 - val_loss: 0.5838 - val_accuracy: 0.7358 - lr: 8.0252e-04 - 194ms/epoch - 8ms/step\n", - "Epoch 38/500\n", + "Epoch 39: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5849 - accuracy: 0.7052 - val_loss: 0.5965 - val_accuracy: 0.6855 - lr: 7.4826e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 40/750\n", "\n", - "Epoch 38: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5869 - accuracy: 0.7039 - val_loss: 0.5832 - val_accuracy: 0.7358 - lr: 7.9453e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 39/500\n", + "Epoch 40: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5819 - accuracy: 0.7075 - val_loss: 0.5963 - val_accuracy: 0.6981 - lr: 7.4082e-04 - 68ms/epoch - 11ms/step\n", + "Epoch 41/750\n", "\n", - "Epoch 39: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5863 - accuracy: 0.7039 - val_loss: 0.5825 - val_accuracy: 0.7358 - lr: 7.8663e-04 - 182ms/epoch - 7ms/step\n", - "Epoch 40/500\n", + "Epoch 41: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5837 - accuracy: 0.7086 - val_loss: 0.5950 - val_accuracy: 0.6792 - lr: 7.3345e-04 - 86ms/epoch - 14ms/step\n", + "Epoch 42/750\n", "\n", - "Epoch 40: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5857 - accuracy: 0.7052 - val_loss: 0.5821 - val_accuracy: 0.7358 - lr: 7.7880e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 41/500\n", + "Epoch 42: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5779 - accuracy: 0.7108 - val_loss: 0.5961 - val_accuracy: 0.6918 - lr: 7.2615e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 43/750\n", "\n", - "Epoch 41: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5849 - accuracy: 0.7046 - val_loss: 0.5817 - val_accuracy: 0.7339 - lr: 7.7105e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 42/500\n", + "Epoch 43: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5765 - accuracy: 0.7108 - val_loss: 0.5962 - val_accuracy: 0.6981 - lr: 7.1892e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 44/750\n", "\n", - "Epoch 42: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5844 - accuracy: 0.7039 - val_loss: 0.5811 - val_accuracy: 0.7358 - lr: 7.6338e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 43/500\n", + "Epoch 44: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5793 - accuracy: 0.7097 - val_loss: 0.5968 - val_accuracy: 0.6918 - lr: 7.1177e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 45/750\n", "\n", - "Epoch 43: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5837 - accuracy: 0.7042 - val_loss: 0.5806 - val_accuracy: 0.7358 - lr: 7.5578e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 44/500\n", + "Epoch 45: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5743 - accuracy: 0.7075 - val_loss: 0.5966 - val_accuracy: 0.6855 - lr: 7.0469e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 46/750\n", "\n", - "Epoch 44: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5831 - accuracy: 0.7046 - val_loss: 0.5797 - val_accuracy: 0.7339 - lr: 7.4826e-04 - 176ms/epoch - 7ms/step\n", - "Epoch 45/500\n", + "Epoch 46: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5726 - accuracy: 0.7164 - val_loss: 0.5958 - val_accuracy: 0.6918 - lr: 6.9767e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 47/750\n", "\n", - "Epoch 45: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5826 - accuracy: 0.7042 - val_loss: 0.5794 - val_accuracy: 0.7358 - lr: 7.4082e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 46/500\n", + "Epoch 47: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5715 - accuracy: 0.7141 - val_loss: 0.5965 - val_accuracy: 0.6918 - lr: 6.9073e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 48/750\n", "\n", - "Epoch 46: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5819 - accuracy: 0.7046 - val_loss: 0.5790 - val_accuracy: 0.7358 - lr: 7.3345e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 47/500\n", + "Epoch 48: val_accuracy did not improve from 0.69811\n", + "6/6 - 0s - loss: 0.5716 - accuracy: 0.7141 - val_loss: 0.5967 - val_accuracy: 0.6918 - lr: 6.8386e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 49/750\n", "\n", - "Epoch 47: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5813 - accuracy: 0.7055 - val_loss: 0.5788 - val_accuracy: 0.7358 - lr: 7.2615e-04 - 176ms/epoch - 7ms/step\n", - "Epoch 48/500\n", + "Epoch 49: val_accuracy improved from 0.69811 to 0.70440, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.5691 - accuracy: 0.7175 - val_loss: 0.5951 - val_accuracy: 0.7044 - lr: 6.7706e-04 - 82ms/epoch - 14ms/step\n", + "Epoch 50/750\n", "\n", - "Epoch 48: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5810 - accuracy: 0.7059 - val_loss: 0.5785 - val_accuracy: 0.7376 - lr: 7.1892e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 49/500\n", + "Epoch 50: val_accuracy did not improve from 0.70440\n", + "6/6 - 0s - loss: 0.5714 - accuracy: 0.7152 - val_loss: 0.5971 - val_accuracy: 0.6918 - lr: 6.7032e-04 - 73ms/epoch - 12ms/step\n", + "Epoch 51/750\n", "\n", - "Epoch 49: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5804 - accuracy: 0.7062 - val_loss: 0.5779 - val_accuracy: 0.7394 - lr: 7.1177e-04 - 182ms/epoch - 7ms/step\n", - "Epoch 50/500\n", + "Epoch 51: val_accuracy did not improve from 0.70440\n", + "6/6 - 0s - loss: 0.5682 - accuracy: 0.7175 - val_loss: 0.5957 - val_accuracy: 0.7044 - lr: 6.6365e-04 - 77ms/epoch - 13ms/step\n", + "Epoch 52/750\n", "\n", - "Epoch 50: val_accuracy did not improve from 0.73945\n", - "25/25 - 0s - loss: 0.5798 - accuracy: 0.7065 - val_loss: 0.5776 - val_accuracy: 0.7394 - lr: 7.0469e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 51/500\n", + "Epoch 52: val_accuracy did not improve from 0.70440\n", + "6/6 - 0s - loss: 0.5665 - accuracy: 0.7175 - val_loss: 0.5982 - val_accuracy: 0.7044 - lr: 6.5705e-04 - 73ms/epoch - 12ms/step\n", + "Epoch 53/750\n", "\n", - "Epoch 51: val_accuracy improved from 0.73945 to 0.74128, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.5792 - accuracy: 0.7065 - val_loss: 0.5768 - val_accuracy: 0.7413 - lr: 6.9767e-04 - 208ms/epoch - 8ms/step\n", - "Epoch 52/500\n", + "Epoch 53: val_accuracy improved from 0.70440 to 0.71069, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.5684 - accuracy: 0.7152 - val_loss: 0.5971 - val_accuracy: 0.7107 - lr: 6.5051e-04 - 97ms/epoch - 16ms/step\n", + "Epoch 54/750\n", "\n", - "Epoch 52: val_accuracy did not improve from 0.74128\n", - "25/25 - 0s - loss: 0.5786 - accuracy: 0.7081 - val_loss: 0.5762 - val_accuracy: 0.7394 - lr: 6.9073e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 53/500\n", + "Epoch 54: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5685 - accuracy: 0.7230 - val_loss: 0.5968 - val_accuracy: 0.7044 - lr: 6.4403e-04 - 81ms/epoch - 14ms/step\n", + "Epoch 55/750\n", "\n", - "Epoch 53: val_accuracy did not improve from 0.74128\n", - "25/25 - 0s - loss: 0.5780 - accuracy: 0.7065 - val_loss: 0.5758 - val_accuracy: 0.7394 - lr: 6.8386e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 54/500\n", + "Epoch 55: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5656 - accuracy: 0.7175 - val_loss: 0.5969 - val_accuracy: 0.7107 - lr: 6.3763e-04 - 76ms/epoch - 13ms/step\n", + "Epoch 56/750\n", "\n", - "Epoch 54: val_accuracy did not improve from 0.74128\n", - "25/25 - 0s - loss: 0.5777 - accuracy: 0.7085 - val_loss: 0.5753 - val_accuracy: 0.7394 - lr: 6.7706e-04 - 185ms/epoch - 7ms/step\n", - "Epoch 55/500\n", + "Epoch 56: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5670 - accuracy: 0.7197 - val_loss: 0.5984 - val_accuracy: 0.7044 - lr: 6.3128e-04 - 75ms/epoch - 13ms/step\n", + "Epoch 57/750\n", "\n", - "Epoch 55: val_accuracy did not improve from 0.74128\n", - "25/25 - 0s - loss: 0.5773 - accuracy: 0.7088 - val_loss: 0.5746 - val_accuracy: 0.7413 - lr: 6.7032e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 56/500\n", + "Epoch 57: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5678 - accuracy: 0.7119 - val_loss: 0.5997 - val_accuracy: 0.6981 - lr: 6.2500e-04 - 70ms/epoch - 12ms/step\n", + "Epoch 58/750\n", "\n", - "Epoch 56: val_accuracy did not improve from 0.74128\n", - "25/25 - 0s - loss: 0.5768 - accuracy: 0.7088 - val_loss: 0.5739 - val_accuracy: 0.7413 - lr: 6.6365e-04 - 185ms/epoch - 7ms/step\n", - "Epoch 57/500\n", + "Epoch 58: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5644 - accuracy: 0.7175 - val_loss: 0.5986 - val_accuracy: 0.7044 - lr: 6.1878e-04 - 70ms/epoch - 12ms/step\n", + "Epoch 59/750\n", "\n", - "Epoch 57: val_accuracy did not improve from 0.74128\n", - "25/25 - 0s - loss: 0.5764 - accuracy: 0.7101 - val_loss: 0.5735 - val_accuracy: 0.7394 - lr: 6.5705e-04 - 182ms/epoch - 7ms/step\n", - "Epoch 58/500\n", + "Epoch 59: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5667 - accuracy: 0.7186 - val_loss: 0.5975 - val_accuracy: 0.7044 - lr: 6.1262e-04 - 75ms/epoch - 12ms/step\n", + "Epoch 60/750\n", "\n", - "Epoch 58: val_accuracy did not improve from 0.74128\n", - "25/25 - 0s - loss: 0.5760 - accuracy: 0.7088 - val_loss: 0.5731 - val_accuracy: 0.7394 - lr: 6.5051e-04 - 187ms/epoch - 7ms/step\n", - "Epoch 59/500\n", + "Epoch 60: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5639 - accuracy: 0.7186 - val_loss: 0.5985 - val_accuracy: 0.7107 - lr: 6.0653e-04 - 79ms/epoch - 13ms/step\n", + "Epoch 61/750\n", "\n", - "Epoch 59: val_accuracy improved from 0.74128 to 0.74312, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.5757 - accuracy: 0.7091 - val_loss: 0.5722 - val_accuracy: 0.7431 - lr: 6.4403e-04 - 206ms/epoch - 8ms/step\n", - "Epoch 60/500\n", + "Epoch 61: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5672 - accuracy: 0.7108 - val_loss: 0.5997 - val_accuracy: 0.7107 - lr: 6.0049e-04 - 79ms/epoch - 13ms/step\n", + "Epoch 62/750\n", "\n", - "Epoch 60: val_accuracy did not improve from 0.74312\n", - "25/25 - 0s - loss: 0.5753 - accuracy: 0.7101 - val_loss: 0.5717 - val_accuracy: 0.7413 - lr: 6.3763e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 61/500\n", + "Epoch 62: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5634 - accuracy: 0.7208 - val_loss: 0.5974 - val_accuracy: 0.7044 - lr: 5.9452e-04 - 78ms/epoch - 13ms/step\n", + "Epoch 63/750\n", "\n", - "Epoch 61: val_accuracy did not improve from 0.74312\n", - "25/25 - 0s - loss: 0.5749 - accuracy: 0.7101 - val_loss: 0.5711 - val_accuracy: 0.7431 - lr: 6.3128e-04 - 181ms/epoch - 7ms/step\n", - "Epoch 62/500\n", + "Epoch 63: val_accuracy did not improve from 0.71069\n", + "6/6 - 0s - loss: 0.5633 - accuracy: 0.7219 - val_loss: 0.5989 - val_accuracy: 0.6981 - lr: 5.8860e-04 - 77ms/epoch - 13ms/step\n", + "Epoch 64/750\n", "\n", - "Epoch 62: val_accuracy did not improve from 0.74312\n", - "25/25 - 0s - loss: 0.5745 - accuracy: 0.7094 - val_loss: 0.5708 - val_accuracy: 0.7431 - lr: 6.2500e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 63/500\n", + "Epoch 64: val_accuracy improved from 0.71069 to 0.71698, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.5639 - accuracy: 0.7275 - val_loss: 0.5986 - val_accuracy: 0.7170 - lr: 5.8275e-04 - 96ms/epoch - 16ms/step\n", + "Epoch 65/750\n", "\n", - "Epoch 63: val_accuracy did not improve from 0.74312\n", - "25/25 - 0s - loss: 0.5741 - accuracy: 0.7101 - val_loss: 0.5704 - val_accuracy: 0.7413 - lr: 6.1878e-04 - 190ms/epoch - 8ms/step\n", - "Epoch 64/500\n", + "Epoch 65: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5633 - accuracy: 0.7297 - val_loss: 0.6001 - val_accuracy: 0.7170 - lr: 5.7695e-04 - 81ms/epoch - 14ms/step\n", + "Epoch 66/750\n", "\n", - "Epoch 64: val_accuracy did not improve from 0.74312\n", - "25/25 - 0s - loss: 0.5737 - accuracy: 0.7104 - val_loss: 0.5698 - val_accuracy: 0.7431 - lr: 6.1262e-04 - 194ms/epoch - 8ms/step\n", - "Epoch 65/500\n", + "Epoch 66: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5643 - accuracy: 0.7219 - val_loss: 0.5978 - val_accuracy: 0.7170 - lr: 5.7121e-04 - 81ms/epoch - 13ms/step\n", + "Epoch 67/750\n", "\n", - "Epoch 65: val_accuracy improved from 0.74312 to 0.74495, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.5734 - accuracy: 0.7098 - val_loss: 0.5694 - val_accuracy: 0.7450 - lr: 6.0653e-04 - 210ms/epoch - 8ms/step\n", - "Epoch 66/500\n", + "Epoch 67: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5616 - accuracy: 0.7130 - val_loss: 0.5998 - val_accuracy: 0.6855 - lr: 5.6552e-04 - 74ms/epoch - 12ms/step\n", + "Epoch 68/750\n", "\n", - "Epoch 66: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5730 - accuracy: 0.7098 - val_loss: 0.5691 - val_accuracy: 0.7450 - lr: 6.0049e-04 - 190ms/epoch - 8ms/step\n", - "Epoch 67/500\n", + "Epoch 68: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5653 - accuracy: 0.7219 - val_loss: 0.6005 - val_accuracy: 0.6918 - lr: 5.5990e-04 - 74ms/epoch - 12ms/step\n", + "Epoch 69/750\n", "\n", - "Epoch 67: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5727 - accuracy: 0.7098 - val_loss: 0.5688 - val_accuracy: 0.7431 - lr: 5.9452e-04 - 189ms/epoch - 8ms/step\n", - "Epoch 68/500\n", + "Epoch 69: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5620 - accuracy: 0.7186 - val_loss: 0.5992 - val_accuracy: 0.6981 - lr: 5.5433e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 70/750\n", "\n", - "Epoch 68: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5724 - accuracy: 0.7088 - val_loss: 0.5684 - val_accuracy: 0.7431 - lr: 5.8860e-04 - 186ms/epoch - 7ms/step\n", - "Epoch 69/500\n", + "Epoch 70: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5621 - accuracy: 0.7219 - val_loss: 0.5986 - val_accuracy: 0.6918 - lr: 5.4881e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 71/750\n", "\n", - "Epoch 69: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5720 - accuracy: 0.7104 - val_loss: 0.5681 - val_accuracy: 0.7413 - lr: 5.8275e-04 - 185ms/epoch - 7ms/step\n", - "Epoch 70/500\n", + "Epoch 71: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5610 - accuracy: 0.7241 - val_loss: 0.5995 - val_accuracy: 0.6981 - lr: 5.4335e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 72/750\n", "\n", - "Epoch 70: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5717 - accuracy: 0.7110 - val_loss: 0.5679 - val_accuracy: 0.7413 - lr: 5.7695e-04 - 186ms/epoch - 7ms/step\n", - "Epoch 71/500\n", + "Epoch 72: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5652 - accuracy: 0.7264 - val_loss: 0.6028 - val_accuracy: 0.6855 - lr: 5.3794e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 73/750\n", "\n", - "Epoch 71: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5715 - accuracy: 0.7110 - val_loss: 0.5673 - val_accuracy: 0.7413 - lr: 5.7121e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 72/500\n", + "Epoch 73: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5602 - accuracy: 0.7286 - val_loss: 0.6050 - val_accuracy: 0.7107 - lr: 5.3259e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 74/750\n", "\n", - "Epoch 72: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5711 - accuracy: 0.7117 - val_loss: 0.5672 - val_accuracy: 0.7413 - lr: 5.6552e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 73/500\n", + "Epoch 74: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5617 - accuracy: 0.7230 - val_loss: 0.5998 - val_accuracy: 0.7044 - lr: 5.2729e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 75/750\n", "\n", - "Epoch 73: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5710 - accuracy: 0.7104 - val_loss: 0.5670 - val_accuracy: 0.7431 - lr: 5.5990e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 74/500\n", + "Epoch 75: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5598 - accuracy: 0.7253 - val_loss: 0.5999 - val_accuracy: 0.7044 - lr: 5.2204e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 76/750\n", "\n", - "Epoch 74: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5707 - accuracy: 0.7114 - val_loss: 0.5662 - val_accuracy: 0.7431 - lr: 5.5433e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 75/500\n", + "Epoch 76: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5670 - accuracy: 0.7208 - val_loss: 0.6006 - val_accuracy: 0.7044 - lr: 5.1685e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 77/750\n", "\n", - "Epoch 75: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5703 - accuracy: 0.7114 - val_loss: 0.5661 - val_accuracy: 0.7413 - lr: 5.4881e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 76/500\n", + "Epoch 77: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5597 - accuracy: 0.7230 - val_loss: 0.6061 - val_accuracy: 0.6730 - lr: 5.1171e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 78/750\n", "\n", - "Epoch 76: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5701 - accuracy: 0.7117 - val_loss: 0.5660 - val_accuracy: 0.7450 - lr: 5.4335e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 77/500\n", + "Epoch 78: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5620 - accuracy: 0.7297 - val_loss: 0.6025 - val_accuracy: 0.6918 - lr: 5.0661e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 79/750\n", "\n", - "Epoch 77: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5699 - accuracy: 0.7114 - val_loss: 0.5657 - val_accuracy: 0.7450 - lr: 5.3794e-04 - 186ms/epoch - 7ms/step\n", - "Epoch 78/500\n", + "Epoch 79: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5628 - accuracy: 0.7175 - val_loss: 0.6041 - val_accuracy: 0.6730 - lr: 5.0157e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 80/750\n", "\n", - "Epoch 78: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5697 - accuracy: 0.7123 - val_loss: 0.5655 - val_accuracy: 0.7450 - lr: 5.3259e-04 - 194ms/epoch - 8ms/step\n", - "Epoch 79/500\n", + "Epoch 80: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5626 - accuracy: 0.7230 - val_loss: 0.6046 - val_accuracy: 0.6855 - lr: 4.9658e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 81/750\n", "\n", - "Epoch 79: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5694 - accuracy: 0.7117 - val_loss: 0.5654 - val_accuracy: 0.7450 - lr: 5.2729e-04 - 185ms/epoch - 7ms/step\n", - "Epoch 80/500\n", + "Epoch 81: val_accuracy did not improve from 0.71698\n", + "6/6 - 0s - loss: 0.5618 - accuracy: 0.7230 - val_loss: 0.6011 - val_accuracy: 0.7044 - lr: 4.9164e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 82/750\n", "\n", - "Epoch 80: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5692 - accuracy: 0.7120 - val_loss: 0.5655 - val_accuracy: 0.7450 - lr: 5.2204e-04 - 187ms/epoch - 7ms/step\n", - "Epoch 81/500\n", + "Epoch 82: val_accuracy improved from 0.71698 to 0.72956, saving model to best_model.h5\n", + "6/6 - 0s - loss: 0.5600 - accuracy: 0.7275 - val_loss: 0.6033 - val_accuracy: 0.7296 - lr: 4.8675e-04 - 80ms/epoch - 13ms/step\n", + "Epoch 83/750\n", "\n", - "Epoch 81: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5691 - accuracy: 0.7117 - val_loss: 0.5657 - val_accuracy: 0.7450 - lr: 5.1685e-04 - 188ms/epoch - 8ms/step\n", - "Epoch 82/500\n", + "Epoch 83: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5625 - accuracy: 0.7253 - val_loss: 0.6057 - val_accuracy: 0.7170 - lr: 4.8191e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 84/750\n", "\n", - "Epoch 82: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5690 - accuracy: 0.7130 - val_loss: 0.5653 - val_accuracy: 0.7450 - lr: 5.1171e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 83/500\n", + "Epoch 84: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5626 - accuracy: 0.7275 - val_loss: 0.6040 - val_accuracy: 0.6981 - lr: 4.7711e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 85/750\n", "\n", - "Epoch 83: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5687 - accuracy: 0.7127 - val_loss: 0.5647 - val_accuracy: 0.7450 - lr: 5.0661e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 84/500\n", + "Epoch 85: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5646 - accuracy: 0.7253 - val_loss: 0.6027 - val_accuracy: 0.6855 - lr: 4.7236e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 86/750\n", "\n", - "Epoch 84: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5685 - accuracy: 0.7123 - val_loss: 0.5645 - val_accuracy: 0.7450 - lr: 5.0157e-04 - 182ms/epoch - 7ms/step\n", - "Epoch 85/500\n", + "Epoch 86: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5609 - accuracy: 0.7253 - val_loss: 0.6045 - val_accuracy: 0.7107 - lr: 4.6766e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 87/750\n", "\n", - "Epoch 85: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5683 - accuracy: 0.7133 - val_loss: 0.5643 - val_accuracy: 0.7450 - lr: 4.9658e-04 - 189ms/epoch - 8ms/step\n", - "Epoch 86/500\n", + "Epoch 87: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5595 - accuracy: 0.7297 - val_loss: 0.6020 - val_accuracy: 0.6981 - lr: 4.6301e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 88/750\n", "\n", - "Epoch 86: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5681 - accuracy: 0.7123 - val_loss: 0.5642 - val_accuracy: 0.7450 - lr: 4.9164e-04 - 215ms/epoch - 9ms/step\n", - "Epoch 87/500\n", + "Epoch 88: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5609 - accuracy: 0.7241 - val_loss: 0.6038 - val_accuracy: 0.6981 - lr: 4.5840e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 89/750\n", "\n", - "Epoch 87: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5680 - accuracy: 0.7117 - val_loss: 0.5639 - val_accuracy: 0.7450 - lr: 4.8675e-04 - 188ms/epoch - 8ms/step\n", - "Epoch 88/500\n", + "Epoch 89: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5598 - accuracy: 0.7253 - val_loss: 0.6068 - val_accuracy: 0.6981 - lr: 4.5384e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 90/750\n", "\n", - "Epoch 88: val_accuracy did not improve from 0.74495\n", - "25/25 - 0s - loss: 0.5678 - accuracy: 0.7117 - val_loss: 0.5638 - val_accuracy: 0.7450 - lr: 4.8191e-04 - 189ms/epoch - 8ms/step\n", - "Epoch 89/500\n", + "Epoch 90: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5576 - accuracy: 0.7219 - val_loss: 0.6098 - val_accuracy: 0.7044 - lr: 4.4933e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 91/750\n", "\n", - "Epoch 89: val_accuracy improved from 0.74495 to 0.74679, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.5676 - accuracy: 0.7123 - val_loss: 0.5635 - val_accuracy: 0.7468 - lr: 4.7711e-04 - 219ms/epoch - 9ms/step\n", - "Epoch 90/500\n", + "Epoch 91: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5630 - accuracy: 0.7264 - val_loss: 0.6033 - val_accuracy: 0.7044 - lr: 4.4486e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 92/750\n", "\n", - "Epoch 90: val_accuracy did not improve from 0.74679\n", - "25/25 - 0s - loss: 0.5674 - accuracy: 0.7117 - val_loss: 0.5633 - val_accuracy: 0.7468 - lr: 4.7236e-04 - 185ms/epoch - 7ms/step\n", - "Epoch 91/500\n", + "Epoch 92: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5595 - accuracy: 0.7308 - val_loss: 0.6046 - val_accuracy: 0.7044 - lr: 4.4043e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 93/750\n", "\n", - "Epoch 91: val_accuracy improved from 0.74679 to 0.75046, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.5673 - accuracy: 0.7120 - val_loss: 0.5630 - val_accuracy: 0.7505 - lr: 4.6766e-04 - 223ms/epoch - 9ms/step\n", - "Epoch 92/500\n", + "Epoch 93: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5594 - accuracy: 0.7297 - val_loss: 0.6047 - val_accuracy: 0.6981 - lr: 4.3605e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 94/750\n", "\n", - "Epoch 92: val_accuracy did not improve from 0.75046\n", - "25/25 - 0s - loss: 0.5671 - accuracy: 0.7130 - val_loss: 0.5628 - val_accuracy: 0.7468 - lr: 4.6301e-04 - 183ms/epoch - 7ms/step\n", - "Epoch 93/500\n", + "Epoch 94: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5598 - accuracy: 0.7230 - val_loss: 0.6097 - val_accuracy: 0.6730 - lr: 4.3171e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 95/750\n", "\n", - "Epoch 93: val_accuracy did not improve from 0.75046\n", - "25/25 - 0s - loss: 0.5670 - accuracy: 0.7123 - val_loss: 0.5626 - val_accuracy: 0.7468 - lr: 4.5840e-04 - 186ms/epoch - 7ms/step\n", - "Epoch 94/500\n", + "Epoch 95: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5623 - accuracy: 0.7264 - val_loss: 0.6054 - val_accuracy: 0.6981 - lr: 4.2741e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 96/750\n", "\n", - "Epoch 94: val_accuracy did not improve from 0.75046\n", - "25/25 - 0s - loss: 0.5668 - accuracy: 0.7117 - val_loss: 0.5624 - val_accuracy: 0.7486 - lr: 4.5384e-04 - 183ms/epoch - 7ms/step\n", - "Epoch 95/500\n", + "Epoch 96: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5621 - accuracy: 0.7297 - val_loss: 0.6055 - val_accuracy: 0.6981 - lr: 4.2316e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 97/750\n", "\n", - "Epoch 95: val_accuracy did not improve from 0.75046\n", - "25/25 - 0s - loss: 0.5666 - accuracy: 0.7127 - val_loss: 0.5621 - val_accuracy: 0.7468 - lr: 4.4933e-04 - 183ms/epoch - 7ms/step\n", - "Epoch 96/500\n", + "Epoch 97: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5578 - accuracy: 0.7253 - val_loss: 0.6111 - val_accuracy: 0.6918 - lr: 4.1895e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 98/750\n", "\n", - "Epoch 96: val_accuracy did not improve from 0.75046\n", - "25/25 - 0s - loss: 0.5665 - accuracy: 0.7123 - val_loss: 0.5617 - val_accuracy: 0.7486 - lr: 4.4486e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 97/500\n", + "Epoch 98: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5594 - accuracy: 0.7319 - val_loss: 0.6060 - val_accuracy: 0.6981 - lr: 4.1478e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 99/750\n", "\n", - "Epoch 97: val_accuracy did not improve from 0.75046\n", - "25/25 - 0s - loss: 0.5664 - accuracy: 0.7130 - val_loss: 0.5616 - val_accuracy: 0.7505 - lr: 4.4043e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 98/500\n", + "Epoch 99: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5596 - accuracy: 0.7308 - val_loss: 0.6111 - val_accuracy: 0.6918 - lr: 4.1065e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 100/750\n", "\n", - "Epoch 98: val_accuracy improved from 0.75046 to 0.75229, saving model to best_model.h5\n", - "25/25 - 0s - loss: 0.5662 - accuracy: 0.7120 - val_loss: 0.5615 - val_accuracy: 0.7523 - lr: 4.3605e-04 - 195ms/epoch - 8ms/step\n", - "Epoch 99/500\n", + "Epoch 100: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5623 - accuracy: 0.7253 - val_loss: 0.6151 - val_accuracy: 0.6918 - lr: 4.0657e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 101/750\n", "\n", - "Epoch 99: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5661 - accuracy: 0.7114 - val_loss: 0.5614 - val_accuracy: 0.7505 - lr: 4.3171e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 100/500\n", + "Epoch 101: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5654 - accuracy: 0.7286 - val_loss: 0.6088 - val_accuracy: 0.6792 - lr: 4.0252e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 102/750\n", "\n", - "Epoch 100: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5660 - accuracy: 0.7114 - val_loss: 0.5612 - val_accuracy: 0.7486 - lr: 4.2741e-04 - 176ms/epoch - 7ms/step\n", - "Epoch 101/500\n", + "Epoch 102: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5604 - accuracy: 0.7241 - val_loss: 0.6057 - val_accuracy: 0.7107 - lr: 3.9852e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 103/750\n", "\n", - "Epoch 101: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5658 - accuracy: 0.7120 - val_loss: 0.5610 - val_accuracy: 0.7486 - lr: 4.2316e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 102/500\n", + "Epoch 103: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5589 - accuracy: 0.7308 - val_loss: 0.6043 - val_accuracy: 0.7044 - lr: 3.9455e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 104/750\n", "\n", - "Epoch 102: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5657 - accuracy: 0.7117 - val_loss: 0.5610 - val_accuracy: 0.7486 - lr: 4.1895e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 103/500\n", + "Epoch 104: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5624 - accuracy: 0.7341 - val_loss: 0.6103 - val_accuracy: 0.6792 - lr: 3.9063e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 105/750\n", "\n", - "Epoch 103: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5655 - accuracy: 0.7114 - val_loss: 0.5609 - val_accuracy: 0.7468 - lr: 4.1478e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 104/500\n", + "Epoch 105: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5616 - accuracy: 0.7286 - val_loss: 0.6076 - val_accuracy: 0.7044 - lr: 3.8674e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 106/750\n", "\n", - "Epoch 104: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5654 - accuracy: 0.7130 - val_loss: 0.5609 - val_accuracy: 0.7468 - lr: 4.1065e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 105/500\n", + "Epoch 106: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5588 - accuracy: 0.7253 - val_loss: 0.6069 - val_accuracy: 0.6981 - lr: 3.8289e-04 - 70ms/epoch - 12ms/step\n", + "Epoch 107/750\n", "\n", - "Epoch 105: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5653 - accuracy: 0.7130 - val_loss: 0.5609 - val_accuracy: 0.7468 - lr: 4.0657e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 106/500\n", + "Epoch 107: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5590 - accuracy: 0.7297 - val_loss: 0.6069 - val_accuracy: 0.6981 - lr: 3.7908e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 108/750\n", "\n", - "Epoch 106: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5651 - accuracy: 0.7130 - val_loss: 0.5607 - val_accuracy: 0.7468 - lr: 4.0252e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 107/500\n", + "Epoch 108: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5589 - accuracy: 0.7275 - val_loss: 0.6096 - val_accuracy: 0.6918 - lr: 3.7531e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 109/750\n", "\n", - "Epoch 107: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5649 - accuracy: 0.7127 - val_loss: 0.5606 - val_accuracy: 0.7468 - lr: 3.9852e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 108/500\n", + "Epoch 109: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5624 - accuracy: 0.7253 - val_loss: 0.6127 - val_accuracy: 0.6730 - lr: 3.7157e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 110/750\n", "\n", - "Epoch 108: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5648 - accuracy: 0.7123 - val_loss: 0.5606 - val_accuracy: 0.7468 - lr: 3.9455e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 109/500\n", + "Epoch 110: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5642 - accuracy: 0.7241 - val_loss: 0.6079 - val_accuracy: 0.6981 - lr: 3.6788e-04 - 84ms/epoch - 14ms/step\n", + "Epoch 111/750\n", "\n", - "Epoch 109: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5647 - accuracy: 0.7130 - val_loss: 0.5605 - val_accuracy: 0.7468 - lr: 3.9063e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 110/500\n", + "Epoch 111: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5619 - accuracy: 0.7175 - val_loss: 0.6099 - val_accuracy: 0.6918 - lr: 3.6422e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 112/750\n", "\n", - "Epoch 110: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5645 - accuracy: 0.7133 - val_loss: 0.5603 - val_accuracy: 0.7468 - lr: 3.8674e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 111/500\n", + "Epoch 112: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5670 - accuracy: 0.7286 - val_loss: 0.6105 - val_accuracy: 0.6981 - lr: 3.6059e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 113/750\n", "\n", - "Epoch 111: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5644 - accuracy: 0.7133 - val_loss: 0.5604 - val_accuracy: 0.7468 - lr: 3.8289e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 112/500\n", + "Epoch 113: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5583 - accuracy: 0.7308 - val_loss: 0.6110 - val_accuracy: 0.6918 - lr: 3.5700e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 114/750\n", "\n", - "Epoch 112: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5643 - accuracy: 0.7133 - val_loss: 0.5603 - val_accuracy: 0.7468 - lr: 3.7908e-04 - 182ms/epoch - 7ms/step\n", - "Epoch 113/500\n", + "Epoch 114: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5592 - accuracy: 0.7308 - val_loss: 0.6086 - val_accuracy: 0.6981 - lr: 3.5345e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 115/750\n", "\n", - "Epoch 113: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5642 - accuracy: 0.7133 - val_loss: 0.5600 - val_accuracy: 0.7486 - lr: 3.7531e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 114/500\n", + "Epoch 115: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5620 - accuracy: 0.7264 - val_loss: 0.6145 - val_accuracy: 0.6730 - lr: 3.4994e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 116/750\n", "\n", - "Epoch 114: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5640 - accuracy: 0.7123 - val_loss: 0.5600 - val_accuracy: 0.7468 - lr: 3.7157e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 115/500\n", + "Epoch 116: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5598 - accuracy: 0.7264 - val_loss: 0.6054 - val_accuracy: 0.7107 - lr: 3.4645e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 117/750\n", "\n", - "Epoch 115: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5640 - accuracy: 0.7130 - val_loss: 0.5598 - val_accuracy: 0.7505 - lr: 3.6788e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 116/500\n", + "Epoch 117: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5588 - accuracy: 0.7330 - val_loss: 0.6044 - val_accuracy: 0.7107 - lr: 3.4301e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 118/750\n", "\n", - "Epoch 116: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5639 - accuracy: 0.7127 - val_loss: 0.5597 - val_accuracy: 0.7505 - lr: 3.6422e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 117/500\n", + "Epoch 118: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5592 - accuracy: 0.7230 - val_loss: 0.6163 - val_accuracy: 0.6730 - lr: 3.3959e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 119/750\n", "\n", - "Epoch 117: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5637 - accuracy: 0.7130 - val_loss: 0.5597 - val_accuracy: 0.7486 - lr: 3.6059e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 118/500\n", + "Epoch 119: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5620 - accuracy: 0.7375 - val_loss: 0.6085 - val_accuracy: 0.7044 - lr: 3.3621e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 120/750\n", "\n", - "Epoch 118: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5636 - accuracy: 0.7133 - val_loss: 0.5596 - val_accuracy: 0.7468 - lr: 3.5700e-04 - 176ms/epoch - 7ms/step\n", - "Epoch 119/500\n", + "Epoch 120: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5612 - accuracy: 0.7308 - val_loss: 0.6129 - val_accuracy: 0.6981 - lr: 3.3287e-04 - 76ms/epoch - 13ms/step\n", + "Epoch 121/750\n", "\n", - "Epoch 119: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5635 - accuracy: 0.7133 - val_loss: 0.5594 - val_accuracy: 0.7486 - lr: 3.5345e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 120/500\n", + "Epoch 121: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5587 - accuracy: 0.7297 - val_loss: 0.6099 - val_accuracy: 0.7044 - lr: 3.2956e-04 - 73ms/epoch - 12ms/step\n", + "Epoch 122/750\n", "\n", - "Epoch 120: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5634 - accuracy: 0.7127 - val_loss: 0.5593 - val_accuracy: 0.7468 - lr: 3.4994e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 121/500\n", + "Epoch 122: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5651 - accuracy: 0.7308 - val_loss: 0.6153 - val_accuracy: 0.6855 - lr: 3.2628e-04 - 76ms/epoch - 13ms/step\n", + "Epoch 123/750\n", "\n", - "Epoch 121: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5633 - accuracy: 0.7130 - val_loss: 0.5592 - val_accuracy: 0.7468 - lr: 3.4645e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 122/500\n", + "Epoch 123: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5724 - accuracy: 0.7264 - val_loss: 0.6062 - val_accuracy: 0.6981 - lr: 3.2303e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 124/750\n", "\n", - "Epoch 122: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5632 - accuracy: 0.7136 - val_loss: 0.5591 - val_accuracy: 0.7486 - lr: 3.4301e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 123/500\n", + "Epoch 124: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5689 - accuracy: 0.7219 - val_loss: 0.6092 - val_accuracy: 0.7044 - lr: 3.1982e-04 - 70ms/epoch - 12ms/step\n", + "Epoch 125/750\n", "\n", - "Epoch 123: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5631 - accuracy: 0.7133 - val_loss: 0.5589 - val_accuracy: 0.7505 - lr: 3.3959e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 124/500\n", + "Epoch 125: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5579 - accuracy: 0.7297 - val_loss: 0.6106 - val_accuracy: 0.6981 - lr: 3.1663e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 126/750\n", "\n", - "Epoch 124: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5630 - accuracy: 0.7133 - val_loss: 0.5588 - val_accuracy: 0.7505 - lr: 3.3621e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 125/500\n", + "Epoch 126: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5612 - accuracy: 0.7319 - val_loss: 0.6168 - val_accuracy: 0.6730 - lr: 3.1348e-04 - 79ms/epoch - 13ms/step\n", + "Epoch 127/750\n", "\n", - "Epoch 125: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5629 - accuracy: 0.7130 - val_loss: 0.5586 - val_accuracy: 0.7505 - lr: 3.3287e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 126/500\n", + "Epoch 127: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5584 - accuracy: 0.7319 - val_loss: 0.6082 - val_accuracy: 0.7044 - lr: 3.1036e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 128/750\n", "\n", - "Epoch 126: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5628 - accuracy: 0.7136 - val_loss: 0.5586 - val_accuracy: 0.7505 - lr: 3.2956e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 127/500\n", + "Epoch 128: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5582 - accuracy: 0.7286 - val_loss: 0.6163 - val_accuracy: 0.6730 - lr: 3.0728e-04 - 76ms/epoch - 13ms/step\n", + "Epoch 129/750\n", "\n", - "Epoch 127: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5628 - accuracy: 0.7130 - val_loss: 0.5586 - val_accuracy: 0.7468 - lr: 3.2628e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 128/500\n", + "Epoch 129: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5649 - accuracy: 0.7353 - val_loss: 0.6114 - val_accuracy: 0.6981 - lr: 3.0422e-04 - 78ms/epoch - 13ms/step\n", + "Epoch 130/750\n", "\n", - "Epoch 128: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5627 - accuracy: 0.7143 - val_loss: 0.5586 - val_accuracy: 0.7486 - lr: 3.2303e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 129/500\n", + "Epoch 130: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5666 - accuracy: 0.7286 - val_loss: 0.6205 - val_accuracy: 0.6667 - lr: 3.0119e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 131/750\n", "\n", - "Epoch 129: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5626 - accuracy: 0.7136 - val_loss: 0.5584 - val_accuracy: 0.7486 - lr: 3.1982e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 130/500\n", + "Epoch 131: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5636 - accuracy: 0.7253 - val_loss: 0.6097 - val_accuracy: 0.6981 - lr: 2.9820e-04 - 74ms/epoch - 12ms/step\n", + "Epoch 132/750\n", "\n", - "Epoch 130: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5625 - accuracy: 0.7143 - val_loss: 0.5582 - val_accuracy: 0.7505 - lr: 3.1663e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 131/500\n", + "Epoch 132: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5654 - accuracy: 0.7230 - val_loss: 0.6085 - val_accuracy: 0.6981 - lr: 2.9523e-04 - 78ms/epoch - 13ms/step\n", + "Epoch 133/750\n", "\n", - "Epoch 131: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5625 - accuracy: 0.7133 - val_loss: 0.5581 - val_accuracy: 0.7505 - lr: 3.1348e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 132/500\n", + "Epoch 133: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5580 - accuracy: 0.7308 - val_loss: 0.6083 - val_accuracy: 0.6981 - lr: 2.9229e-04 - 80ms/epoch - 13ms/step\n", + "Epoch 134/750\n", "\n", - "Epoch 132: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5624 - accuracy: 0.7136 - val_loss: 0.5581 - val_accuracy: 0.7505 - lr: 3.1036e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 133/500\n", + "Epoch 134: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5567 - accuracy: 0.7319 - val_loss: 0.6079 - val_accuracy: 0.6981 - lr: 2.8938e-04 - 78ms/epoch - 13ms/step\n", + "Epoch 135/750\n", "\n", - "Epoch 133: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5623 - accuracy: 0.7136 - val_loss: 0.5579 - val_accuracy: 0.7505 - lr: 3.0728e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 134/500\n", + "Epoch 135: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5568 - accuracy: 0.7275 - val_loss: 0.6106 - val_accuracy: 0.6981 - lr: 2.8650e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 136/750\n", "\n", - "Epoch 134: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5622 - accuracy: 0.7133 - val_loss: 0.5578 - val_accuracy: 0.7505 - lr: 3.0422e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 135/500\n", + "Epoch 136: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5603 - accuracy: 0.7364 - val_loss: 0.6079 - val_accuracy: 0.7107 - lr: 2.8365e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 137/750\n", "\n", - "Epoch 135: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5621 - accuracy: 0.7133 - val_loss: 0.5578 - val_accuracy: 0.7505 - lr: 3.0119e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 136/500\n", + "Epoch 137: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5599 - accuracy: 0.7241 - val_loss: 0.6094 - val_accuracy: 0.7044 - lr: 2.8083e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 138/750\n", "\n", - "Epoch 136: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5620 - accuracy: 0.7133 - val_loss: 0.5577 - val_accuracy: 0.7505 - lr: 2.9820e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 137/500\n", + "Epoch 138: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5574 - accuracy: 0.7230 - val_loss: 0.6218 - val_accuracy: 0.6667 - lr: 2.7804e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 139/750\n", "\n", - "Epoch 137: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5620 - accuracy: 0.7136 - val_loss: 0.5574 - val_accuracy: 0.7505 - lr: 2.9523e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 138/500\n", + "Epoch 139: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5670 - accuracy: 0.7264 - val_loss: 0.6173 - val_accuracy: 0.6792 - lr: 2.7527e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 140/750\n", "\n", - "Epoch 138: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5619 - accuracy: 0.7136 - val_loss: 0.5574 - val_accuracy: 0.7505 - lr: 2.9229e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 139/500\n", + "Epoch 140: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5587 - accuracy: 0.7297 - val_loss: 0.6114 - val_accuracy: 0.6981 - lr: 2.7253e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 141/750\n", "\n", - "Epoch 139: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5618 - accuracy: 0.7136 - val_loss: 0.5574 - val_accuracy: 0.7505 - lr: 2.8938e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 140/500\n", + "Epoch 141: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5594 - accuracy: 0.7286 - val_loss: 0.6129 - val_accuracy: 0.6918 - lr: 2.6982e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 142/750\n", "\n", - "Epoch 140: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5617 - accuracy: 0.7136 - val_loss: 0.5573 - val_accuracy: 0.7505 - lr: 2.8650e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 141/500\n", + "Epoch 142: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5695 - accuracy: 0.7219 - val_loss: 0.6173 - val_accuracy: 0.6792 - lr: 2.6713e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 143/750\n", "\n", - "Epoch 141: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5616 - accuracy: 0.7133 - val_loss: 0.5572 - val_accuracy: 0.7486 - lr: 2.8365e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 142/500\n", + "Epoch 143: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5628 - accuracy: 0.7241 - val_loss: 0.6090 - val_accuracy: 0.6918 - lr: 2.6448e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 144/750\n", "\n", - "Epoch 142: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5616 - accuracy: 0.7127 - val_loss: 0.5571 - val_accuracy: 0.7486 - lr: 2.8083e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 143/500\n", + "Epoch 144: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5638 - accuracy: 0.7230 - val_loss: 0.6251 - val_accuracy: 0.6792 - lr: 2.6184e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 145/750\n", "\n", - "Epoch 143: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5615 - accuracy: 0.7127 - val_loss: 0.5570 - val_accuracy: 0.7468 - lr: 2.7804e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 144/500\n", + "Epoch 145: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5623 - accuracy: 0.7241 - val_loss: 0.6109 - val_accuracy: 0.6981 - lr: 2.5924e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 146/750\n", "\n", - "Epoch 144: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5614 - accuracy: 0.7130 - val_loss: 0.5569 - val_accuracy: 0.7468 - lr: 2.7527e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 145/500\n", + "Epoch 146: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5574 - accuracy: 0.7319 - val_loss: 0.6111 - val_accuracy: 0.6981 - lr: 2.5666e-04 - 74ms/epoch - 12ms/step\n", + "Epoch 147/750\n", "\n", - "Epoch 145: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5613 - accuracy: 0.7127 - val_loss: 0.5568 - val_accuracy: 0.7468 - lr: 2.7253e-04 - 181ms/epoch - 7ms/step\n", - "Epoch 146/500\n", + "Epoch 147: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5580 - accuracy: 0.7330 - val_loss: 0.6110 - val_accuracy: 0.7044 - lr: 2.5411e-04 - 80ms/epoch - 13ms/step\n", + "Epoch 148/750\n", "\n", - "Epoch 146: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5613 - accuracy: 0.7123 - val_loss: 0.5567 - val_accuracy: 0.7468 - lr: 2.6982e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 147/500\n", + "Epoch 148: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5571 - accuracy: 0.7330 - val_loss: 0.6104 - val_accuracy: 0.7044 - lr: 2.5158e-04 - 75ms/epoch - 13ms/step\n", + "Epoch 149/750\n", "\n", - "Epoch 147: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5612 - accuracy: 0.7123 - val_loss: 0.5567 - val_accuracy: 0.7468 - lr: 2.6713e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 148/500\n", + "Epoch 149: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5666 - accuracy: 0.7264 - val_loss: 0.6104 - val_accuracy: 0.6981 - lr: 2.4907e-04 - 78ms/epoch - 13ms/step\n", + "Epoch 150/750\n", "\n", - "Epoch 148: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5612 - accuracy: 0.7127 - val_loss: 0.5567 - val_accuracy: 0.7468 - lr: 2.6448e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 149/500\n", + "Epoch 150: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5573 - accuracy: 0.7341 - val_loss: 0.6110 - val_accuracy: 0.7044 - lr: 2.4660e-04 - 81ms/epoch - 13ms/step\n", + "Epoch 151/750\n", "\n", - "Epoch 149: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5611 - accuracy: 0.7130 - val_loss: 0.5564 - val_accuracy: 0.7468 - lr: 2.6184e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 150/500\n", + "Epoch 151: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5645 - accuracy: 0.7197 - val_loss: 0.6107 - val_accuracy: 0.6918 - lr: 2.4414e-04 - 77ms/epoch - 13ms/step\n", + "Epoch 152/750\n", "\n", - "Epoch 150: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5610 - accuracy: 0.7117 - val_loss: 0.5563 - val_accuracy: 0.7468 - lr: 2.5924e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 151/500\n", + "Epoch 152: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5617 - accuracy: 0.7297 - val_loss: 0.6100 - val_accuracy: 0.6981 - lr: 2.4171e-04 - 74ms/epoch - 12ms/step\n", + "Epoch 153/750\n", "\n", - "Epoch 151: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5609 - accuracy: 0.7123 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.5666e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 152/500\n", + "Epoch 153: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5620 - accuracy: 0.7264 - val_loss: 0.6139 - val_accuracy: 0.6918 - lr: 2.3931e-04 - 74ms/epoch - 12ms/step\n", + "Epoch 154/750\n", "\n", - "Epoch 152: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5609 - accuracy: 0.7136 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.5411e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 153/500\n", + "Epoch 154: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5573 - accuracy: 0.7364 - val_loss: 0.6101 - val_accuracy: 0.7107 - lr: 2.3693e-04 - 78ms/epoch - 13ms/step\n", + "Epoch 155/750\n", "\n", - "Epoch 153: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5608 - accuracy: 0.7123 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.5158e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 154/500\n", + "Epoch 155: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5604 - accuracy: 0.7264 - val_loss: 0.6104 - val_accuracy: 0.7107 - lr: 2.3457e-04 - 77ms/epoch - 13ms/step\n", + "Epoch 156/750\n", "\n", - "Epoch 154: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5608 - accuracy: 0.7130 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.4907e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 155/500\n", + "Epoch 156: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5617 - accuracy: 0.7264 - val_loss: 0.6144 - val_accuracy: 0.6918 - lr: 2.3223e-04 - 69ms/epoch - 11ms/step\n", + "Epoch 157/750\n", "\n", - "Epoch 155: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5607 - accuracy: 0.7123 - val_loss: 0.5561 - val_accuracy: 0.7468 - lr: 2.4660e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 156/500\n", + "Epoch 157: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5569 - accuracy: 0.7319 - val_loss: 0.6129 - val_accuracy: 0.7044 - lr: 2.2992e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 158/750\n", "\n", - "Epoch 156: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5606 - accuracy: 0.7130 - val_loss: 0.5560 - val_accuracy: 0.7468 - lr: 2.4414e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 157/500\n", + "Epoch 158: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5622 - accuracy: 0.7241 - val_loss: 0.6135 - val_accuracy: 0.6918 - lr: 2.2764e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 159/750\n", "\n", - "Epoch 157: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5606 - accuracy: 0.7123 - val_loss: 0.5559 - val_accuracy: 0.7468 - lr: 2.4171e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 158/500\n", + "Epoch 159: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5627 - accuracy: 0.7286 - val_loss: 0.6125 - val_accuracy: 0.6981 - lr: 2.2537e-04 - 63ms/epoch - 10ms/step\n", + "Epoch 160/750\n", "\n", - "Epoch 158: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5605 - accuracy: 0.7127 - val_loss: 0.5558 - val_accuracy: 0.7468 - lr: 2.3931e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 159/500\n", + "Epoch 160: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5662 - accuracy: 0.7241 - val_loss: 0.6113 - val_accuracy: 0.7044 - lr: 2.2313e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 161/750\n", "\n", - "Epoch 159: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5605 - accuracy: 0.7123 - val_loss: 0.5557 - val_accuracy: 0.7468 - lr: 2.3693e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 160/500\n", + "Epoch 161: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5654 - accuracy: 0.7230 - val_loss: 0.6098 - val_accuracy: 0.6981 - lr: 2.2091e-04 - 63ms/epoch - 11ms/step\n", + "Epoch 162/750\n", "\n", - "Epoch 160: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5604 - accuracy: 0.7130 - val_loss: 0.5556 - val_accuracy: 0.7468 - lr: 2.3457e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 161/500\n", + "Epoch 162: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5671 - accuracy: 0.7152 - val_loss: 0.6118 - val_accuracy: 0.6981 - lr: 2.1871e-04 - 64ms/epoch - 11ms/step\n", + "Epoch 163/750\n", "\n", - "Epoch 161: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5603 - accuracy: 0.7123 - val_loss: 0.5556 - val_accuracy: 0.7468 - lr: 2.3223e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 162/500\n", + "Epoch 163: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5632 - accuracy: 0.7341 - val_loss: 0.6105 - val_accuracy: 0.7044 - lr: 2.1653e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 164/750\n", "\n", - "Epoch 162: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5602 - accuracy: 0.7133 - val_loss: 0.5556 - val_accuracy: 0.7468 - lr: 2.2992e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 163/500\n", + "Epoch 164: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5608 - accuracy: 0.7275 - val_loss: 0.6315 - val_accuracy: 0.6667 - lr: 2.1438e-04 - 78ms/epoch - 13ms/step\n", + "Epoch 165/750\n", "\n", - "Epoch 163: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5602 - accuracy: 0.7130 - val_loss: 0.5555 - val_accuracy: 0.7468 - lr: 2.2764e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 164/500\n", + "Epoch 165: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5730 - accuracy: 0.7230 - val_loss: 0.6153 - val_accuracy: 0.6855 - lr: 2.1225e-04 - 81ms/epoch - 14ms/step\n", + "Epoch 166/750\n", "\n", - "Epoch 164: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5601 - accuracy: 0.7123 - val_loss: 0.5553 - val_accuracy: 0.7468 - lr: 2.2537e-04 - 186ms/epoch - 7ms/step\n", - "Epoch 165/500\n", + "Epoch 166: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5695 - accuracy: 0.7208 - val_loss: 0.6513 - val_accuracy: 0.5912 - lr: 2.1013e-04 - 108ms/epoch - 18ms/step\n", + "Epoch 167/750\n", "\n", - "Epoch 165: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5600 - accuracy: 0.7127 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.2313e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 166/500\n", + "Epoch 167: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5711 - accuracy: 0.7175 - val_loss: 0.6149 - val_accuracy: 0.7044 - lr: 2.0804e-04 - 83ms/epoch - 14ms/step\n", + "Epoch 168/750\n", "\n", - "Epoch 166: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5599 - accuracy: 0.7127 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.2091e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 167/500\n", + "Epoch 168: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5611 - accuracy: 0.7241 - val_loss: 0.6220 - val_accuracy: 0.6730 - lr: 2.0597e-04 - 76ms/epoch - 13ms/step\n", + "Epoch 169/750\n", "\n", - "Epoch 167: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5599 - accuracy: 0.7130 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.1871e-04 - 176ms/epoch - 7ms/step\n", - "Epoch 168/500\n", + "Epoch 169: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5611 - accuracy: 0.7219 - val_loss: 0.6171 - val_accuracy: 0.6981 - lr: 2.0392e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 170/750\n", "\n", - "Epoch 168: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5599 - accuracy: 0.7123 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.1653e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 169/500\n", + "Epoch 170: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5623 - accuracy: 0.7319 - val_loss: 0.6199 - val_accuracy: 0.6918 - lr: 2.0189e-04 - 74ms/epoch - 12ms/step\n", + "Epoch 171/750\n", "\n", - "Epoch 169: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5598 - accuracy: 0.7127 - val_loss: 0.5553 - val_accuracy: 0.7468 - lr: 2.1438e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 170/500\n", + "Epoch 171: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5641 - accuracy: 0.7275 - val_loss: 0.6131 - val_accuracy: 0.6918 - lr: 1.9989e-04 - 77ms/epoch - 13ms/step\n", + "Epoch 172/750\n", "\n", - "Epoch 170: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5597 - accuracy: 0.7130 - val_loss: 0.5552 - val_accuracy: 0.7468 - lr: 2.1225e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 171/500\n", + "Epoch 172: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5672 - accuracy: 0.7186 - val_loss: 0.6130 - val_accuracy: 0.6981 - lr: 1.9790e-04 - 77ms/epoch - 13ms/step\n", + "Epoch 173/750\n", "\n", - "Epoch 171: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5597 - accuracy: 0.7123 - val_loss: 0.5552 - val_accuracy: 0.7468 - lr: 2.1013e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 172/500\n", + "Epoch 173: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5732 - accuracy: 0.7141 - val_loss: 0.6179 - val_accuracy: 0.6981 - lr: 1.9593e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 174/750\n", "\n", - "Epoch 172: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5596 - accuracy: 0.7130 - val_loss: 0.5551 - val_accuracy: 0.7468 - lr: 2.0804e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 173/500\n", + "Epoch 174: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5679 - accuracy: 0.7208 - val_loss: 0.6176 - val_accuracy: 0.6981 - lr: 1.9398e-04 - 69ms/epoch - 12ms/step\n", + "Epoch 175/750\n", "\n", - "Epoch 173: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5595 - accuracy: 0.7136 - val_loss: 0.5550 - val_accuracy: 0.7468 - lr: 2.0597e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 174/500\n", + "Epoch 175: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5608 - accuracy: 0.7275 - val_loss: 0.6131 - val_accuracy: 0.6981 - lr: 1.9205e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 176/750\n", "\n", - "Epoch 174: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5595 - accuracy: 0.7133 - val_loss: 0.5550 - val_accuracy: 0.7468 - lr: 2.0392e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 175/500\n", + "Epoch 176: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5665 - accuracy: 0.7253 - val_loss: 0.7011 - val_accuracy: 0.5346 - lr: 1.9014e-04 - 77ms/epoch - 13ms/step\n", + "Epoch 177/750\n", "\n", - "Epoch 175: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5594 - accuracy: 0.7130 - val_loss: 0.5549 - val_accuracy: 0.7468 - lr: 2.0189e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 176/500\n", + "Epoch 177: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5953 - accuracy: 0.7019 - val_loss: 0.6109 - val_accuracy: 0.6981 - lr: 1.8825e-04 - 80ms/epoch - 13ms/step\n", + "Epoch 178/750\n", "\n", - "Epoch 176: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5594 - accuracy: 0.7127 - val_loss: 0.5547 - val_accuracy: 0.7468 - lr: 1.9989e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 177/500\n", + "Epoch 178: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5651 - accuracy: 0.7264 - val_loss: 0.6113 - val_accuracy: 0.6918 - lr: 1.8637e-04 - 69ms/epoch - 11ms/step\n", + "Epoch 179/750\n", "\n", - "Epoch 177: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5593 - accuracy: 0.7127 - val_loss: 0.5548 - val_accuracy: 0.7468 - lr: 1.9790e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 178/500\n", + "Epoch 179: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5595 - accuracy: 0.7297 - val_loss: 0.6133 - val_accuracy: 0.6981 - lr: 1.8452e-04 - 69ms/epoch - 11ms/step\n", + "Epoch 180/750\n", "\n", - "Epoch 178: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5593 - accuracy: 0.7130 - val_loss: 0.5547 - val_accuracy: 0.7468 - lr: 1.9593e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 179/500\n", + "Epoch 180: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5631 - accuracy: 0.7308 - val_loss: 0.6224 - val_accuracy: 0.6667 - lr: 1.8268e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 181/750\n", "\n", - "Epoch 179: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5592 - accuracy: 0.7133 - val_loss: 0.5546 - val_accuracy: 0.7468 - lr: 1.9398e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 180/500\n", + "Epoch 181: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5674 - accuracy: 0.7230 - val_loss: 0.6616 - val_accuracy: 0.6038 - lr: 1.8086e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 182/750\n", "\n", - "Epoch 180: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5592 - accuracy: 0.7133 - val_loss: 0.5545 - val_accuracy: 0.7468 - lr: 1.9205e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 181/500\n", + "Epoch 182: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5637 - accuracy: 0.7152 - val_loss: 0.6208 - val_accuracy: 0.6918 - lr: 1.7906e-04 - 68ms/epoch - 11ms/step\n", + "Epoch 183/750\n", "\n", - "Epoch 181: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5591 - accuracy: 0.7127 - val_loss: 0.5545 - val_accuracy: 0.7468 - lr: 1.9014e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 182/500\n", + "Epoch 183: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5586 - accuracy: 0.7286 - val_loss: 0.6118 - val_accuracy: 0.6981 - lr: 1.7728e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 184/750\n", "\n", - "Epoch 182: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5591 - accuracy: 0.7127 - val_loss: 0.5544 - val_accuracy: 0.7468 - lr: 1.8825e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 183/500\n", + "Epoch 184: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5697 - accuracy: 0.7152 - val_loss: 0.6124 - val_accuracy: 0.6981 - lr: 1.7552e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 185/750\n", "\n", - "Epoch 183: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5590 - accuracy: 0.7130 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8637e-04 - 180ms/epoch - 7ms/step\n", - "Epoch 184/500\n", + "Epoch 185: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5775 - accuracy: 0.7208 - val_loss: 0.6690 - val_accuracy: 0.6541 - lr: 1.7377e-04 - 70ms/epoch - 12ms/step\n", + "Epoch 186/750\n", "\n", - "Epoch 184: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5590 - accuracy: 0.7120 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8452e-04 - 185ms/epoch - 7ms/step\n", - "Epoch 185/500\n", + "Epoch 186: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5878 - accuracy: 0.7230 - val_loss: 0.6145 - val_accuracy: 0.6667 - lr: 1.7204e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 187/750\n", "\n", - "Epoch 185: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5589 - accuracy: 0.7123 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8268e-04 - 180ms/epoch - 7ms/step\n", - "Epoch 186/500\n", + "Epoch 187: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5570 - accuracy: 0.7264 - val_loss: 0.6119 - val_accuracy: 0.6981 - lr: 1.7033e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 188/750\n", "\n", - "Epoch 186: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5589 - accuracy: 0.7127 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8086e-04 - 183ms/epoch - 7ms/step\n", - "Epoch 187/500\n", + "Epoch 188: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5664 - accuracy: 0.7208 - val_loss: 0.6138 - val_accuracy: 0.6792 - lr: 1.6864e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 189/750\n", "\n", - "Epoch 187: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5589 - accuracy: 0.7127 - val_loss: 0.5541 - val_accuracy: 0.7468 - lr: 1.7906e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 188/500\n", + "Epoch 189: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5589 - accuracy: 0.7253 - val_loss: 0.6137 - val_accuracy: 0.6981 - lr: 1.6696e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 190/750\n", "\n", - "Epoch 188: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5588 - accuracy: 0.7127 - val_loss: 0.5540 - val_accuracy: 0.7468 - lr: 1.7728e-04 - 185ms/epoch - 7ms/step\n", - "Epoch 189/500\n", + "Epoch 190: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5567 - accuracy: 0.7275 - val_loss: 0.6259 - val_accuracy: 0.6667 - lr: 1.6530e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 191/750\n", "\n", - "Epoch 189: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5587 - accuracy: 0.7123 - val_loss: 0.5541 - val_accuracy: 0.7468 - lr: 1.7552e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 190/500\n", + "Epoch 191: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5672 - accuracy: 0.7230 - val_loss: 0.6136 - val_accuracy: 0.6792 - lr: 1.6365e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 192/750\n", "\n", - "Epoch 190: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5587 - accuracy: 0.7127 - val_loss: 0.5540 - val_accuracy: 0.7468 - lr: 1.7377e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 191/500\n", + "Epoch 192: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5576 - accuracy: 0.7286 - val_loss: 0.6150 - val_accuracy: 0.6918 - lr: 1.6202e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 193/750\n", "\n", - "Epoch 191: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5586 - accuracy: 0.7127 - val_loss: 0.5539 - val_accuracy: 0.7468 - lr: 1.7204e-04 - 187ms/epoch - 7ms/step\n", - "Epoch 192/500\n", + "Epoch 193: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5618 - accuracy: 0.7253 - val_loss: 0.6229 - val_accuracy: 0.6667 - lr: 1.6041e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 194/750\n", "\n", - "Epoch 192: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5586 - accuracy: 0.7120 - val_loss: 0.5538 - val_accuracy: 0.7468 - lr: 1.7033e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 193/500\n", + "Epoch 194: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5605 - accuracy: 0.7208 - val_loss: 0.6151 - val_accuracy: 0.6855 - lr: 1.5882e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 195/750\n", "\n", - "Epoch 193: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5586 - accuracy: 0.7120 - val_loss: 0.5539 - val_accuracy: 0.7468 - lr: 1.6864e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 194/500\n", + "Epoch 195: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5623 - accuracy: 0.7241 - val_loss: 0.6210 - val_accuracy: 0.6855 - lr: 1.5724e-04 - 73ms/epoch - 12ms/step\n", + "Epoch 196/750\n", "\n", - "Epoch 194: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5585 - accuracy: 0.7123 - val_loss: 0.5537 - val_accuracy: 0.7468 - lr: 1.6696e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 195/500\n", + "Epoch 196: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5705 - accuracy: 0.7230 - val_loss: 0.6129 - val_accuracy: 0.6918 - lr: 1.5567e-04 - 74ms/epoch - 12ms/step\n", + "Epoch 197/750\n", "\n", - "Epoch 195: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5585 - accuracy: 0.7120 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.6530e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 196/500\n", + "Epoch 197: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5678 - accuracy: 0.7264 - val_loss: 0.6150 - val_accuracy: 0.6918 - lr: 1.5412e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 198/750\n", "\n", - "Epoch 196: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5584 - accuracy: 0.7123 - val_loss: 0.5537 - val_accuracy: 0.7468 - lr: 1.6365e-04 - 191ms/epoch - 8ms/step\n", - "Epoch 197/500\n", + "Epoch 198: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5577 - accuracy: 0.7275 - val_loss: 0.6114 - val_accuracy: 0.6981 - lr: 1.5259e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 199/750\n", "\n", - "Epoch 197: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5584 - accuracy: 0.7123 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.6202e-04 - 204ms/epoch - 8ms/step\n", - "Epoch 198/500\n", + "Epoch 199: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5660 - accuracy: 0.7286 - val_loss: 0.6095 - val_accuracy: 0.6981 - lr: 1.5107e-04 - 75ms/epoch - 13ms/step\n", + "Epoch 200/750\n", "\n", - "Epoch 198: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5583 - accuracy: 0.7127 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.6041e-04 - 189ms/epoch - 8ms/step\n", - "Epoch 199/500\n", + "Epoch 200: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5546 - accuracy: 0.7330 - val_loss: 0.6240 - val_accuracy: 0.6730 - lr: 1.4957e-04 - 73ms/epoch - 12ms/step\n", + "Epoch 201/750\n", "\n", - "Epoch 199: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5583 - accuracy: 0.7130 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.5882e-04 - 203ms/epoch - 8ms/step\n", - "Epoch 200/500\n", + "Epoch 201: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5727 - accuracy: 0.7186 - val_loss: 0.6156 - val_accuracy: 0.6730 - lr: 1.4808e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 202/750\n", "\n", - "Epoch 200: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5583 - accuracy: 0.7127 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.5724e-04 - 192ms/epoch - 8ms/step\n", - "Epoch 201/500\n", + "Epoch 202: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5588 - accuracy: 0.7341 - val_loss: 0.6111 - val_accuracy: 0.6981 - lr: 1.4661e-04 - 70ms/epoch - 12ms/step\n", + "Epoch 203/750\n", "\n", - "Epoch 201: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5582 - accuracy: 0.7130 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.5567e-04 - 189ms/epoch - 8ms/step\n", - "Epoch 202/500\n", + "Epoch 203: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5580 - accuracy: 0.7297 - val_loss: 0.6118 - val_accuracy: 0.6981 - lr: 1.4515e-04 - 70ms/epoch - 12ms/step\n", + "Epoch 204/750\n", "\n", - "Epoch 202: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5582 - accuracy: 0.7127 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.5412e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 203/500\n", + "Epoch 204: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5570 - accuracy: 0.7286 - val_loss: 0.6151 - val_accuracy: 0.6918 - lr: 1.4370e-04 - 70ms/epoch - 12ms/step\n", + "Epoch 205/750\n", "\n", - "Epoch 203: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5582 - accuracy: 0.7127 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.5259e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 204/500\n", + "Epoch 205: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5613 - accuracy: 0.7253 - val_loss: 0.6129 - val_accuracy: 0.6918 - lr: 1.4227e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 206/750\n", "\n", - "Epoch 204: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5581 - accuracy: 0.7127 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.5107e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 205/500\n", + "Epoch 206: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5596 - accuracy: 0.7230 - val_loss: 0.6161 - val_accuracy: 0.6730 - lr: 1.4086e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 207/750\n", "\n", - "Epoch 205: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5581 - accuracy: 0.7133 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.4957e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 206/500\n", + "Epoch 207: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5602 - accuracy: 0.7286 - val_loss: 0.6166 - val_accuracy: 0.6730 - lr: 1.3946e-04 - 67ms/epoch - 11ms/step\n", + "Epoch 208/750\n", "\n", - "Epoch 206: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5580 - accuracy: 0.7140 - val_loss: 0.5534 - val_accuracy: 0.7468 - lr: 1.4808e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 207/500\n", + "Epoch 208: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5648 - accuracy: 0.7208 - val_loss: 0.6142 - val_accuracy: 0.6918 - lr: 1.3807e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 209/750\n", "\n", - "Epoch 207: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5580 - accuracy: 0.7127 - val_loss: 0.5534 - val_accuracy: 0.7468 - lr: 1.4661e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 208/500\n", + "Epoch 209: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5587 - accuracy: 0.7297 - val_loss: 0.6192 - val_accuracy: 0.6667 - lr: 1.3669e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 210/750\n", "\n", - "Epoch 208: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5580 - accuracy: 0.7140 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4515e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 209/500\n", + "Epoch 210: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5593 - accuracy: 0.7264 - val_loss: 0.6123 - val_accuracy: 0.6981 - lr: 1.3533e-04 - 68ms/epoch - 11ms/step\n", + "Epoch 211/750\n", "\n", - "Epoch 209: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5579 - accuracy: 0.7143 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4370e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 210/500\n", + "Epoch 211: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5623 - accuracy: 0.7297 - val_loss: 0.6153 - val_accuracy: 0.6855 - lr: 1.3399e-04 - 68ms/epoch - 11ms/step\n", + "Epoch 212/750\n", "\n", - "Epoch 210: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5579 - accuracy: 0.7143 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4227e-04 - 189ms/epoch - 8ms/step\n", - "Epoch 211/500\n", + "Epoch 212: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5597 - accuracy: 0.7253 - val_loss: 0.6122 - val_accuracy: 0.6981 - lr: 1.3265e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 213/750\n", "\n", - "Epoch 211: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5579 - accuracy: 0.7146 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4086e-04 - 228ms/epoch - 9ms/step\n", - "Epoch 212/500\n", + "Epoch 213: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5630 - accuracy: 0.7386 - val_loss: 0.6112 - val_accuracy: 0.6981 - lr: 1.3133e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 214/750\n", "\n", - "Epoch 212: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5578 - accuracy: 0.7140 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.3946e-04 - 184ms/epoch - 7ms/step\n", - "Epoch 213/500\n", + "Epoch 214: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5588 - accuracy: 0.7286 - val_loss: 0.6117 - val_accuracy: 0.6981 - lr: 1.3003e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 215/750\n", "\n", - "Epoch 213: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5578 - accuracy: 0.7143 - val_loss: 0.5532 - val_accuracy: 0.7468 - lr: 1.3807e-04 - 193ms/epoch - 8ms/step\n", - "Epoch 214/500\n", + "Epoch 215: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5583 - accuracy: 0.7241 - val_loss: 0.6104 - val_accuracy: 0.7044 - lr: 1.2873e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 216/750\n", "\n", - "Epoch 214: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5578 - accuracy: 0.7143 - val_loss: 0.5532 - val_accuracy: 0.7486 - lr: 1.3669e-04 - 186ms/epoch - 7ms/step\n", - "Epoch 215/500\n", + "Epoch 216: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5632 - accuracy: 0.7275 - val_loss: 0.6151 - val_accuracy: 0.6855 - lr: 1.2745e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 217/750\n", "\n", - "Epoch 215: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5577 - accuracy: 0.7140 - val_loss: 0.5532 - val_accuracy: 0.7486 - lr: 1.3533e-04 - 183ms/epoch - 7ms/step\n", - "Epoch 216/500\n", + "Epoch 217: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5547 - accuracy: 0.7319 - val_loss: 0.6233 - val_accuracy: 0.6667 - lr: 1.2618e-04 - 66ms/epoch - 11ms/step\n", + "Epoch 218/750\n", "\n", - "Epoch 216: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5577 - accuracy: 0.7143 - val_loss: 0.5532 - val_accuracy: 0.7486 - lr: 1.3399e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 217/500\n", + "Epoch 218: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5625 - accuracy: 0.7330 - val_loss: 0.6148 - val_accuracy: 0.6792 - lr: 1.2493e-04 - 65ms/epoch - 11ms/step\n", + "Epoch 219/750\n", "\n", - "Epoch 217: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5577 - accuracy: 0.7153 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.3265e-04 - 181ms/epoch - 7ms/step\n", - "Epoch 218/500\n", + "Epoch 219: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5582 - accuracy: 0.7297 - val_loss: 0.6126 - val_accuracy: 0.6981 - lr: 1.2369e-04 - 68ms/epoch - 11ms/step\n", + "Epoch 220/750\n", "\n", - "Epoch 218: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5577 - accuracy: 0.7143 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.3133e-04 - 176ms/epoch - 7ms/step\n", - "Epoch 219/500\n", + "Epoch 220: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5579 - accuracy: 0.7275 - val_loss: 0.6140 - val_accuracy: 0.7044 - lr: 1.2245e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 221/750\n", "\n", - "Epoch 219: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5576 - accuracy: 0.7156 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.3003e-04 - 176ms/epoch - 7ms/step\n", - "Epoch 220/500\n", + "Epoch 221: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5637 - accuracy: 0.7319 - val_loss: 0.6131 - val_accuracy: 0.6981 - lr: 1.2124e-04 - 69ms/epoch - 11ms/step\n", + "Epoch 222/750\n", "\n", - "Epoch 220: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5576 - accuracy: 0.7156 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.2873e-04 - 180ms/epoch - 7ms/step\n", - "Epoch 221/500\n", + "Epoch 222: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5604 - accuracy: 0.7219 - val_loss: 0.6174 - val_accuracy: 0.6918 - lr: 1.2003e-04 - 93ms/epoch - 16ms/step\n", + "Epoch 223/750\n", "\n", - "Epoch 221: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5575 - accuracy: 0.7156 - val_loss: 0.5530 - val_accuracy: 0.7486 - lr: 1.2745e-04 - 177ms/epoch - 7ms/step\n", - "Epoch 222/500\n", + "Epoch 223: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5581 - accuracy: 0.7286 - val_loss: 0.6134 - val_accuracy: 0.6855 - lr: 1.1884e-04 - 73ms/epoch - 12ms/step\n", + "Epoch 224/750\n", "\n", - "Epoch 222: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5575 - accuracy: 0.7153 - val_loss: 0.5530 - val_accuracy: 0.7486 - lr: 1.2618e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 223/500\n", + "Epoch 224: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5597 - accuracy: 0.7297 - val_loss: 0.6123 - val_accuracy: 0.6918 - lr: 1.1765e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 225/750\n", "\n", - "Epoch 223: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5575 - accuracy: 0.7156 - val_loss: 0.5530 - val_accuracy: 0.7486 - lr: 1.2493e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 224/500\n", + "Epoch 225: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5663 - accuracy: 0.7264 - val_loss: 0.6133 - val_accuracy: 0.7044 - lr: 1.1648e-04 - 73ms/epoch - 12ms/step\n", + "Epoch 226/750\n", "\n", - "Epoch 224: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5575 - accuracy: 0.7156 - val_loss: 0.5529 - val_accuracy: 0.7486 - lr: 1.2369e-04 - 183ms/epoch - 7ms/step\n", - "Epoch 225/500\n", + "Epoch 226: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5584 - accuracy: 0.7241 - val_loss: 0.6133 - val_accuracy: 0.7044 - lr: 1.1532e-04 - 73ms/epoch - 12ms/step\n", + "Epoch 227/750\n", "\n", - "Epoch 225: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5574 - accuracy: 0.7153 - val_loss: 0.5529 - val_accuracy: 0.7486 - lr: 1.2245e-04 - 191ms/epoch - 8ms/step\n", - "Epoch 226/500\n", + "Epoch 227: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5614 - accuracy: 0.7297 - val_loss: 0.6117 - val_accuracy: 0.6981 - lr: 1.1418e-04 - 69ms/epoch - 11ms/step\n", + "Epoch 228/750\n", "\n", - "Epoch 226: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5574 - accuracy: 0.7149 - val_loss: 0.5528 - val_accuracy: 0.7468 - lr: 1.2124e-04 - 182ms/epoch - 7ms/step\n", - "Epoch 227/500\n", + "Epoch 228: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5556 - accuracy: 0.7286 - val_loss: 0.6194 - val_accuracy: 0.6604 - lr: 1.1304e-04 - 69ms/epoch - 12ms/step\n", + "Epoch 229/750\n", "\n", - "Epoch 227: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5573 - accuracy: 0.7156 - val_loss: 0.5528 - val_accuracy: 0.7486 - lr: 1.2003e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 228/500\n", + "Epoch 229: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5621 - accuracy: 0.7341 - val_loss: 0.6187 - val_accuracy: 0.6667 - lr: 1.1192e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 230/750\n", "\n", - "Epoch 228: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5573 - accuracy: 0.7153 - val_loss: 0.5528 - val_accuracy: 0.7486 - lr: 1.1884e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 229/500\n", + "Epoch 230: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5564 - accuracy: 0.7197 - val_loss: 0.6111 - val_accuracy: 0.6981 - lr: 1.1080e-04 - 69ms/epoch - 12ms/step\n", + "Epoch 231/750\n", "\n", - "Epoch 229: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5573 - accuracy: 0.7153 - val_loss: 0.5528 - val_accuracy: 0.7486 - lr: 1.1765e-04 - 204ms/epoch - 8ms/step\n", - "Epoch 230/500\n", + "Epoch 231: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5599 - accuracy: 0.7308 - val_loss: 0.6119 - val_accuracy: 0.6981 - lr: 1.0970e-04 - 72ms/epoch - 12ms/step\n", + "Epoch 232/750\n", "\n", - "Epoch 230: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5573 - accuracy: 0.7156 - val_loss: 0.5527 - val_accuracy: 0.7486 - lr: 1.1648e-04 - 180ms/epoch - 7ms/step\n", - "Epoch 231/500\n", + "Epoch 232: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5636 - accuracy: 0.7230 - val_loss: 0.6184 - val_accuracy: 0.6855 - lr: 1.0861e-04 - 69ms/epoch - 12ms/step\n", + "Epoch 233/750\n", "\n", - "Epoch 231: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5572 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1532e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 232/500\n", + "Epoch 233: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5608 - accuracy: 0.7286 - val_loss: 0.6118 - val_accuracy: 0.6981 - lr: 1.0753e-04 - 69ms/epoch - 11ms/step\n", + "Epoch 234/750\n", "\n", - "Epoch 232: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5572 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1418e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 233/500\n", + "Epoch 234: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5560 - accuracy: 0.7286 - val_loss: 0.6125 - val_accuracy: 0.6981 - lr: 1.0646e-04 - 71ms/epoch - 12ms/step\n", + "Epoch 235/750\n", "\n", - "Epoch 233: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5572 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1304e-04 - 176ms/epoch - 7ms/step\n", - "Epoch 234/500\n", + "Epoch 235: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5571 - accuracy: 0.7253 - val_loss: 0.6114 - val_accuracy: 0.6981 - lr: 1.0540e-04 - 78ms/epoch - 13ms/step\n", + "Epoch 236/750\n", "\n", - "Epoch 234: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5571 - accuracy: 0.7156 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1192e-04 - 175ms/epoch - 7ms/step\n", - "Epoch 235/500\n", + "Epoch 236: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5589 - accuracy: 0.7297 - val_loss: 0.6133 - val_accuracy: 0.6855 - lr: 1.0435e-04 - 73ms/epoch - 12ms/step\n", + "Epoch 237/750\n", "\n", - "Epoch 235: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5571 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1080e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 236/500\n", + "Epoch 237: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5635 - accuracy: 0.7230 - val_loss: 0.6103 - val_accuracy: 0.7044 - lr: 1.0331e-04 - 75ms/epoch - 13ms/step\n", + "Epoch 238/750\n", "\n", - "Epoch 236: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5571 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.0970e-04 - 174ms/epoch - 7ms/step\n", - "Epoch 237/500\n", + "Epoch 238: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5623 - accuracy: 0.7230 - val_loss: 0.6318 - val_accuracy: 0.6667 - lr: 1.0228e-04 - 76ms/epoch - 13ms/step\n", + "Epoch 239/750\n", "\n", - "Epoch 237: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5571 - accuracy: 0.7149 - val_loss: 0.5525 - val_accuracy: 0.7486 - lr: 1.0861e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 238/500\n", + "Epoch 239: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5650 - accuracy: 0.7197 - val_loss: 0.6133 - val_accuracy: 0.7044 - lr: 1.0127e-04 - 76ms/epoch - 13ms/step\n", + "Epoch 240/750\n", "\n", - "Epoch 238: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5570 - accuracy: 0.7153 - val_loss: 0.5525 - val_accuracy: 0.7486 - lr: 1.0753e-04 - 171ms/epoch - 7ms/step\n", - "Epoch 239/500\n", + "Epoch 240: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5614 - accuracy: 0.7330 - val_loss: 0.6123 - val_accuracy: 0.6981 - lr: 1.0026e-04 - 74ms/epoch - 12ms/step\n", + "Epoch 241/750\n", "\n", - "Epoch 239: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5570 - accuracy: 0.7149 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0646e-04 - 180ms/epoch - 7ms/step\n", - "Epoch 240/500\n", + "Epoch 241: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5589 - accuracy: 0.7208 - val_loss: 0.6109 - val_accuracy: 0.6981 - lr: 9.9260e-05 - 74ms/epoch - 12ms/step\n", + "Epoch 242/750\n", "\n", - "Epoch 240: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5570 - accuracy: 0.7159 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0540e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 241/500\n", + "Epoch 242: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5582 - accuracy: 0.7286 - val_loss: 0.6198 - val_accuracy: 0.6604 - lr: 9.8272e-05 - 73ms/epoch - 12ms/step\n", + "Epoch 243/750\n", "\n", - "Epoch 241: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5570 - accuracy: 0.7153 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0435e-04 - 178ms/epoch - 7ms/step\n", - "Epoch 242/500\n", + "Epoch 243: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5600 - accuracy: 0.7297 - val_loss: 0.6239 - val_accuracy: 0.6730 - lr: 9.7294e-05 - 74ms/epoch - 12ms/step\n", + "Epoch 244/750\n", "\n", - "Epoch 242: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5570 - accuracy: 0.7159 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0331e-04 - 172ms/epoch - 7ms/step\n", - "Epoch 243/500\n", + "Epoch 244: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5597 - accuracy: 0.7264 - val_loss: 0.6187 - val_accuracy: 0.6792 - lr: 9.6326e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 245/750\n", "\n", - "Epoch 243: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5569 - accuracy: 0.7153 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0228e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 244/500\n", + "Epoch 245: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5614 - accuracy: 0.7230 - val_loss: 0.6111 - val_accuracy: 0.7107 - lr: 9.5368e-05 - 64ms/epoch - 11ms/step\n", + "Epoch 246/750\n", "\n", - "Epoch 244: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5569 - accuracy: 0.7153 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0127e-04 - 173ms/epoch - 7ms/step\n", - "Epoch 245/500\n", + "Epoch 246: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5578 - accuracy: 0.7264 - val_loss: 0.6128 - val_accuracy: 0.6981 - lr: 9.4419e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 247/750\n", "\n", - "Epoch 245: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5569 - accuracy: 0.7153 - val_loss: 0.5523 - val_accuracy: 0.7486 - lr: 1.0026e-04 - 179ms/epoch - 7ms/step\n", - "Epoch 246/500\n", + "Epoch 247: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5572 - accuracy: 0.7275 - val_loss: 0.6117 - val_accuracy: 0.6981 - lr: 9.3479e-05 - 67ms/epoch - 11ms/step\n", + "Epoch 248/750\n", "\n", - "Epoch 246: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5569 - accuracy: 0.7159 - val_loss: 0.5523 - val_accuracy: 0.7486 - lr: 9.9260e-05 - 179ms/epoch - 7ms/step\n", - "Epoch 247/500\n", + "Epoch 248: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5556 - accuracy: 0.7264 - val_loss: 0.6224 - val_accuracy: 0.6730 - lr: 9.2549e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 249/750\n", "\n", - "Epoch 247: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5568 - accuracy: 0.7156 - val_loss: 0.5523 - val_accuracy: 0.7486 - lr: 9.8272e-05 - 175ms/epoch - 7ms/step\n", - "Epoch 248/500\n", + "Epoch 249: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5639 - accuracy: 0.7253 - val_loss: 0.6115 - val_accuracy: 0.7107 - lr: 9.1628e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 250/750\n", "\n", - "Epoch 248: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5568 - accuracy: 0.7153 - val_loss: 0.5522 - val_accuracy: 0.7486 - lr: 9.7294e-05 - 174ms/epoch - 7ms/step\n", - "Epoch 249/500\n", + "Epoch 250: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5673 - accuracy: 0.7241 - val_loss: 0.6119 - val_accuracy: 0.7044 - lr: 9.0717e-05 - 64ms/epoch - 11ms/step\n", + "Epoch 251/750\n", "\n", - "Epoch 249: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5568 - accuracy: 0.7149 - val_loss: 0.5522 - val_accuracy: 0.7486 - lr: 9.6326e-05 - 175ms/epoch - 7ms/step\n", - "Epoch 250/500\n", + "Epoch 251: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5581 - accuracy: 0.7275 - val_loss: 0.6126 - val_accuracy: 0.6855 - lr: 8.9814e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 252/750\n", "\n", - "Epoch 250: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5567 - accuracy: 0.7159 - val_loss: 0.5522 - val_accuracy: 0.7486 - lr: 9.5368e-05 - 178ms/epoch - 7ms/step\n", - "Epoch 251/500\n", + "Epoch 252: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5581 - accuracy: 0.7308 - val_loss: 0.6169 - val_accuracy: 0.6730 - lr: 8.8920e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 253/750\n", "\n", - "Epoch 251: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5567 - accuracy: 0.7159 - val_loss: 0.5522 - val_accuracy: 0.7468 - lr: 9.4419e-05 - 172ms/epoch - 7ms/step\n", - "Epoch 252/500\n", + "Epoch 253: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5616 - accuracy: 0.7275 - val_loss: 0.6111 - val_accuracy: 0.6981 - lr: 8.8036e-05 - 70ms/epoch - 12ms/step\n", + "Epoch 254/750\n", "\n", - "Epoch 252: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5567 - accuracy: 0.7156 - val_loss: 0.5522 - val_accuracy: 0.7468 - lr: 9.3479e-05 - 172ms/epoch - 7ms/step\n", - "Epoch 253/500\n", + "Epoch 254: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5587 - accuracy: 0.7253 - val_loss: 0.6123 - val_accuracy: 0.6918 - lr: 8.7160e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 255/750\n", "\n", - "Epoch 253: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5567 - accuracy: 0.7159 - val_loss: 0.5521 - val_accuracy: 0.7486 - lr: 9.2549e-05 - 181ms/epoch - 7ms/step\n", - "Epoch 254/500\n", + "Epoch 255: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5610 - accuracy: 0.7330 - val_loss: 0.6133 - val_accuracy: 0.6855 - lr: 8.6292e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 256/750\n", "\n", - "Epoch 254: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5567 - accuracy: 0.7162 - val_loss: 0.5521 - val_accuracy: 0.7486 - lr: 9.1628e-05 - 179ms/epoch - 7ms/step\n", - "Epoch 255/500\n", + "Epoch 256: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5584 - accuracy: 0.7241 - val_loss: 0.6126 - val_accuracy: 0.6918 - lr: 8.5434e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 257/750\n", "\n", - "Epoch 255: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5566 - accuracy: 0.7159 - val_loss: 0.5521 - val_accuracy: 0.7468 - lr: 9.0717e-05 - 174ms/epoch - 7ms/step\n", - "Epoch 256/500\n", + "Epoch 257: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5595 - accuracy: 0.7319 - val_loss: 0.6121 - val_accuracy: 0.6981 - lr: 8.4584e-05 - 63ms/epoch - 11ms/step\n", + "Epoch 258/750\n", "\n", - "Epoch 256: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5566 - accuracy: 0.7153 - val_loss: 0.5520 - val_accuracy: 0.7468 - lr: 8.9814e-05 - 174ms/epoch - 7ms/step\n", - "Epoch 257/500\n", + "Epoch 258: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5596 - accuracy: 0.7275 - val_loss: 0.6116 - val_accuracy: 0.6981 - lr: 8.3742e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 259/750\n", "\n", - "Epoch 257: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5566 - accuracy: 0.7153 - val_loss: 0.5520 - val_accuracy: 0.7468 - lr: 8.8920e-05 - 172ms/epoch - 7ms/step\n", - "Epoch 258/500\n", + "Epoch 259: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5601 - accuracy: 0.7308 - val_loss: 0.6120 - val_accuracy: 0.6981 - lr: 8.2909e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 260/750\n", "\n", - "Epoch 258: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5566 - accuracy: 0.7149 - val_loss: 0.5520 - val_accuracy: 0.7468 - lr: 8.8036e-05 - 177ms/epoch - 7ms/step\n", - "Epoch 259/500\n", + "Epoch 260: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5572 - accuracy: 0.7241 - val_loss: 0.6137 - val_accuracy: 0.6981 - lr: 8.2084e-05 - 64ms/epoch - 11ms/step\n", + "Epoch 261/750\n", "\n", - "Epoch 259: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5566 - accuracy: 0.7159 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.7160e-05 - 171ms/epoch - 7ms/step\n", - "Epoch 260/500\n", + "Epoch 261: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5576 - accuracy: 0.7330 - val_loss: 0.6177 - val_accuracy: 0.7044 - lr: 8.1267e-05 - 64ms/epoch - 11ms/step\n", + "Epoch 262/750\n", "\n", - "Epoch 260: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5565 - accuracy: 0.7159 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.6292e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 261/500\n", + "Epoch 262: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5627 - accuracy: 0.7286 - val_loss: 0.6155 - val_accuracy: 0.6792 - lr: 8.0458e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 263/750\n", "\n", - "Epoch 261: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5565 - accuracy: 0.7156 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.5434e-05 - 172ms/epoch - 7ms/step\n", - "Epoch 262/500\n", + "Epoch 263: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5611 - accuracy: 0.7275 - val_loss: 0.6161 - val_accuracy: 0.6981 - lr: 7.9658e-05 - 67ms/epoch - 11ms/step\n", + "Epoch 264/750\n", "\n", - "Epoch 262: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5565 - accuracy: 0.7159 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.4584e-05 - 172ms/epoch - 7ms/step\n", - "Epoch 263/500\n", + "Epoch 264: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5679 - accuracy: 0.7286 - val_loss: 0.6136 - val_accuracy: 0.6792 - lr: 7.8865e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 265/750\n", "\n", - "Epoch 263: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5565 - accuracy: 0.7153 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.3742e-05 - 172ms/epoch - 7ms/step\n", - "Epoch 264/500\n", + "Epoch 265: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5595 - accuracy: 0.7275 - val_loss: 0.6245 - val_accuracy: 0.6792 - lr: 7.8081e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 266/750\n", "\n", - "Epoch 264: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5565 - accuracy: 0.7149 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.2909e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 265/500\n", + "Epoch 266: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5630 - accuracy: 0.7208 - val_loss: 0.6121 - val_accuracy: 0.6918 - lr: 7.7304e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 267/750\n", "\n", - "Epoch 265: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5564 - accuracy: 0.7162 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.2084e-05 - 183ms/epoch - 7ms/step\n", - "Epoch 266/500\n", + "Epoch 267: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5611 - accuracy: 0.7275 - val_loss: 0.6114 - val_accuracy: 0.6981 - lr: 7.6534e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 268/750\n", "\n", - "Epoch 266: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5564 - accuracy: 0.7159 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.1267e-05 - 179ms/epoch - 7ms/step\n", - "Epoch 267/500\n", + "Epoch 268: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5588 - accuracy: 0.7230 - val_loss: 0.6283 - val_accuracy: 0.6667 - lr: 7.5773e-05 - 69ms/epoch - 12ms/step\n", + "Epoch 269/750\n", "\n", - "Epoch 267: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5564 - accuracy: 0.7156 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.0458e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 268/500\n", + "Epoch 269: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5662 - accuracy: 0.7275 - val_loss: 0.6122 - val_accuracy: 0.6918 - lr: 7.5019e-05 - 68ms/epoch - 11ms/step\n", + "Epoch 270/750\n", "\n", - "Epoch 268: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5564 - accuracy: 0.7156 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 7.9658e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 269/500\n", + "Epoch 270: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5592 - accuracy: 0.7319 - val_loss: 0.6162 - val_accuracy: 0.6981 - lr: 7.4272e-05 - 69ms/epoch - 12ms/step\n", + "Epoch 271/750\n", "\n", - "Epoch 269: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5564 - accuracy: 0.7143 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.8865e-05 - 172ms/epoch - 7ms/step\n", - "Epoch 270/500\n", + "Epoch 271: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5611 - accuracy: 0.7286 - val_loss: 0.6120 - val_accuracy: 0.6981 - lr: 7.3533e-05 - 64ms/epoch - 11ms/step\n", + "Epoch 272/750\n", "\n", - "Epoch 270: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5564 - accuracy: 0.7149 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.8081e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 271/500\n", + "Epoch 272: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5580 - accuracy: 0.7275 - val_loss: 0.6137 - val_accuracy: 0.6855 - lr: 7.2802e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 273/750\n", "\n", - "Epoch 271: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5563 - accuracy: 0.7153 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.7304e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 272/500\n", + "Epoch 273: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5591 - accuracy: 0.7286 - val_loss: 0.6122 - val_accuracy: 0.6981 - lr: 7.2077e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 274/750\n", "\n", - "Epoch 272: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5563 - accuracy: 0.7149 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.6534e-05 - 177ms/epoch - 7ms/step\n", - "Epoch 273/500\n", + "Epoch 274: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5587 - accuracy: 0.7286 - val_loss: 0.6115 - val_accuracy: 0.6981 - lr: 7.1360e-05 - 85ms/epoch - 14ms/step\n", + "Epoch 275/750\n", "\n", - "Epoch 273: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5563 - accuracy: 0.7156 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.5773e-05 - 201ms/epoch - 8ms/step\n", - "Epoch 274/500\n", + "Epoch 275: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5586 - accuracy: 0.7275 - val_loss: 0.6143 - val_accuracy: 0.6981 - lr: 7.0650e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 276/750\n", "\n", - "Epoch 274: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5563 - accuracy: 0.7149 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.5019e-05 - 175ms/epoch - 7ms/step\n", - "Epoch 275/500\n", + "Epoch 276: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5531 - accuracy: 0.7241 - val_loss: 0.6166 - val_accuracy: 0.6730 - lr: 6.9947e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 277/750\n", "\n", - "Epoch 275: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5563 - accuracy: 0.7149 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.4272e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 276/500\n", + "Epoch 277: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5632 - accuracy: 0.7330 - val_loss: 0.6119 - val_accuracy: 0.6918 - lr: 6.9251e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 278/750\n", "\n", - "Epoch 276: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5562 - accuracy: 0.7156 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.3533e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 277/500\n", + "Epoch 278: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5578 - accuracy: 0.7275 - val_loss: 0.6122 - val_accuracy: 0.6918 - lr: 6.8562e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 279/750\n", "\n", - "Epoch 277: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5562 - accuracy: 0.7149 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.2802e-05 - 181ms/epoch - 7ms/step\n", - "Epoch 278/500\n", + "Epoch 279: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5603 - accuracy: 0.7241 - val_loss: 0.6126 - val_accuracy: 0.6981 - lr: 6.7880e-05 - 65ms/epoch - 11ms/step\n", + "Epoch 280/750\n", "\n", - "Epoch 278: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5562 - accuracy: 0.7156 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.2077e-05 - 174ms/epoch - 7ms/step\n", - "Epoch 279/500\n", + "Epoch 280: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5643 - accuracy: 0.7208 - val_loss: 0.6123 - val_accuracy: 0.6918 - lr: 6.7204e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 281/750\n", "\n", - "Epoch 279: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5562 - accuracy: 0.7153 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.1360e-05 - 176ms/epoch - 7ms/step\n", - "Epoch 280/500\n", + "Epoch 281: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5577 - accuracy: 0.7297 - val_loss: 0.6125 - val_accuracy: 0.6981 - lr: 6.6536e-05 - 66ms/epoch - 11ms/step\n", + "Epoch 282/750\n", "\n", - "Epoch 280: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5562 - accuracy: 0.7153 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.0650e-05 - 179ms/epoch - 7ms/step\n", - "Epoch 281/500\n", - "\n", - "Epoch 281: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5562 - accuracy: 0.7149 - val_loss: 0.5516 - val_accuracy: 0.7486 - lr: 6.9947e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 282/500\n", - "\n", - "Epoch 282: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5562 - accuracy: 0.7149 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.9251e-05 - 179ms/epoch - 7ms/step\n", - "Epoch 283/500\n", - "\n", - "Epoch 283: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.8562e-05 - 177ms/epoch - 7ms/step\n", - "Epoch 284/500\n", - "\n", - "Epoch 284: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5561 - accuracy: 0.7146 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.7880e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 285/500\n", - "\n", - "Epoch 285: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.7204e-05 - 172ms/epoch - 7ms/step\n", - "Epoch 286/500\n", - "\n", - "Epoch 286: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5561 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.6536e-05 - 170ms/epoch - 7ms/step\n", - "Epoch 287/500\n", - "\n", - "Epoch 287: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.5874e-05 - 170ms/epoch - 7ms/step\n", - "Epoch 288/500\n", - "\n", - "Epoch 288: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.5218e-05 - 174ms/epoch - 7ms/step\n", - "Epoch 289/500\n", - "\n", - "Epoch 289: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.4569e-05 - 172ms/epoch - 7ms/step\n", - "Epoch 290/500\n", - "\n", - "Epoch 290: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5560 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.3927e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 291/500\n", - "\n", - "Epoch 291: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5560 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.3291e-05 - 170ms/epoch - 7ms/step\n", - "Epoch 292/500\n", - "\n", - "Epoch 292: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.2661e-05 - 169ms/epoch - 7ms/step\n", - "Epoch 293/500\n", - "\n", - "Epoch 293: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.2038e-05 - 168ms/epoch - 7ms/step\n", - "Epoch 294/500\n", - "\n", - "Epoch 294: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5560 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.1420e-05 - 171ms/epoch - 7ms/step\n", - "Epoch 295/500\n", - "\n", - "Epoch 295: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.0809e-05 - 174ms/epoch - 7ms/step\n", - "Epoch 296/500\n", - "\n", - "Epoch 296: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.0204e-05 - 173ms/epoch - 7ms/step\n", - "Epoch 297/500\n", - "\n", - "Epoch 297: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5559 - accuracy: 0.7153 - val_loss: 0.5513 - val_accuracy: 0.7486 - lr: 5.9605e-05 - 170ms/epoch - 7ms/step\n", - "Epoch 298/500\n", - "\n", - "Epoch 298: val_accuracy did not improve from 0.75229\n", - "25/25 - 0s - loss: 0.5559 - accuracy: 0.7156 - val_loss: 0.5513 - val_accuracy: 0.7486 - lr: 5.9012e-05 - 168ms/epoch - 7ms/step\n" + "Epoch 282: val_accuracy did not improve from 0.72956\n", + "6/6 - 0s - loss: 0.5567 - accuracy: 0.7308 - val_loss: 0.6119 - val_accuracy: 0.6918 - lr: 6.5874e-05 - 66ms/epoch - 11ms/step\n" ] } ], "source": [ - "BATCH_SIZE = 128 #24 #4\n", - "history = model.fit(x, y, callbacks=[callback_mc, callback_es, callback_lr], batch_size=BATCH_SIZE, epochs=500, validation_split=0.15, verbose=2)" + "BATCH_SIZE = int(len(y)/6.6125) #128 #24 #4\n", + "print(f'BATCH SIZE = {BATCH_SIZE}')\n", + "history = model.fit(x, y, callbacks=[callback_mc, callback_es, callback_lr], batch_size=BATCH_SIZE, epochs=750, validation_split=0.15, verbose=2)" ] }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABaEAAAFqCAYAAAADXpY3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAD5RElEQVR4nOzdd1hU19YG8HcYeu9dKYoIdkEQUMCGLWqsmChqjKAxMRrUGKPGGI2aaBTFFqIG21UTa6Imigas2GvsDRUBAZXemfP9QZjPcagKDML7e555bjizZ5+1B657zjp71hYJgiCAiIiIiIiIiIiIiKgaKCk6ACIiIiIiIiIiIiKqu5iEJiIiIiIiIiIiIqJqwyQ0EREREREREREREVUbJqGJiIiIiIiIiIiIqNowCU1ERERERERERERE1YZJaCIiIiIiIiIiIiKqNkxCExEREREREREREVG1YRKaiIiIiIiIiIiIiKoNk9BEREREREREREREVG2YhCYiIiIiIiIiIiKiasMkNBERERERERERERFVGyahiYiIiIiIiIiIiKjaMAlNRERERERERERERNWGSWgiIiIiIiIiIiIiqjZMQhMRERERERERERFRtWESmoiIiIiIiIiIiIiqDZPQRERERERERERERFRtmIQmIiIiIiIiIiIiomrDJDQRERERERERERERVRsmoYmIiIiIiIiIiIio2jAJTURERERERERERETVhkloIiIiIiIiIiIiIqo2TEITERERERERERERUbVhEpqIiIiIiIiIiIiIqg2T0ERERERERERERERUbZiEJiIiIiIiIiIiIqJqwyQ0EREREREREREREVUbJqGp1ouKioJIJEJUVJSiQyEiIqIawvmfiIiIarPw8HCIRCLExMQoOhSidwKT0PTGRCJRhR7h4eGKDrVMc+bMgUgkQpcuXRQdSp2xZcsWtGzZEurq6rCxscHs2bORn59f7uuKEw6lPQIDA2Xaz58/H++//z4sLS0hEokwbty4Evst/nBQ0uPevXsybUeNGlViO2tra7l+s7OzMX/+fDg7O0NTUxOWlpbo168fzp8/L9e2orG+bt68eRCJRGjatGmJz2/btg3u7u7Q19eHoaEhPD098dtvv1WobyKiN/Euz//ffvstRCIREhISFB3KG3v27BkCAgJgZGQEbW1tdO7cGRcuXKjQa6trPrS1tS2x7fDhw+XaPnjwAEOHDoWRkRE0NDTQrl077NmzR65dREQE3nvvPTRo0ADq6uowNzdHjx49cOzYsXLH2a1btzLn2vT0dEybNg329vZQV1eHlZUVBg0ahKysLGmb4r+V0h5btmwpNw4iIipf8dx0+vRpRYfyznl9btLV1YWPjw/279//xn3u27cP3377bdUFSfQKZUUHQO+uTZs2yfwcFhaG06dPY/369TLHPT093+o83t7eyM7Ohqqq6lv1U5otW7bA1tYWUVFRePr0KaysrKrlPPXFhg0bMGrUKPTu3RsTJkzAtWvXMG/ePDx58kTub+N1Tk5Ocn9XALBnzx7s3LkT3bt3lzk+Y8YMmJqaol27dhWaaL/99ls0atRI5pi5ublcOxUVFblYtbS05NoNHToU+/fvx+jRo/HFF1/g2bNnWL16NTp06IAzZ86gVatWbxwrADx58gQLFiwo8dwAsHTpUgQHB8PPzw/z589Hfn4+Nm/eDH9/f7x48aLCiW4iosqoK/P/uyg7OxudO3dGQkICgoODoa+vj1WrVsHX1xdnzpyBs7Nzhfqp6vkQAFq2bImpU6fKHLO3t5f5OTY2Fh4eHpBIJJg4cSIMDQ2xbds29O/fH9u3b8eQIUOkbW/evAk1NTWMHz8epqamePHiBbZs2YJOnTphz5496NOnT4lx7Nq1C9HR0aWOPTU1FT4+PoiNjUVQUBAaN26MpKQkHD9+HLm5udDU1AQADBgwAI0bN5Z7/YIFC3D79m0uXiAiIgQEBGDo0KFQU1NTWAydO3fGRx99BEEQ8OjRI6xevRp9+vTBX3/9JXf9XBH79u3Dzz//zEQ0VQ+BqIqMHDlSUFNTK7ddZmZmDURTMadPnxYACIcOHRI0NTWFH3/8UdEhlao2vW+lycnJEUxMTIQuXbrIHJ89e7YAQLh48eIb9evm5ibo6ekJ2dnZMscfPHgg/W8AwtixY0t8/a+//ioAEKKjo8s9V0X/jh89eiQAEL744guZ45cvXxYACF9++eUbxfqqIUOGCF26dBF8fHwER0dHueft7OwEFxcXQSKRSI9lZWUJFhYWgpubW7n9ExFVhXdp/i+ej+Lj4xUdyhtZsmSJAEA4duyY9FhycrJgZGQk9OvXr9zXV8d8KAiCYGNjI3Tv3r3cduPHjxfEYrFw7do16bGCggLBxcVFsLCwEPLy8sp8fWZmpmBubi73OaNYdna2YGtrK8ydO7fUufaTTz4RDAwMhIcPH5Yb7+tevnwpqKmpVWisRERUMZWZm6pbVlaWokOolJLmuhs3bggAhJ49e75Rn2PHjhWYKqTqwnIcVK1GjRoFdXV1PHr0CO+//z709PTQq1cvAMDVq1cxatQoNGrUCOrq6jAxMcEHH3yAJ0+eyPRRUk3I4n6fPXsGf39/6OrqwsDAAEFBQcjJyalwfJs3b4aNjQ26du2KPn36YPPmzSW2S01NxdSpU2Fvbw81NTVYWVnhww8/xNOnT6Vt8vLyMG/ePDRt2hRqamowMzNDv379cP369VLHUUwkEsncaSz+CuiNGzcwcuRIGBkZoVmzZgCAR48eYfz48WjatCk0NTWhr6+PPn36SM/zqrJikkgkaNiwIfr16yf3usLCQlhYWGDQoEEAgPv37+P+/fvlvp+RkZFISkrCZ599JnP8008/hUgkeqMyEXfv3sXZs2cxaNAgqKuryzxnZ2dX6f7S09NRWFhYbjuJRIK0tDQIglDi82lpaQAAS0tLmePFPxevpHrTWI8ePYqdO3di6dKlpbZJS0uDubk5RCKR9JiGhgYMDAzkzk9EVJNq+/xfnhMnTqBz587Q1taGjo4OunXrhjNnzsi0KSgowLx589CkSRNoaGjA2NgYnp6e2LFjh7TNs2fPMGbMGDRo0ABqamqwtLTEe++9h2vXrknbpKam4tatW0hNTS03ru3bt6NVq1bo2LGj9JiRkRE++OADHDhwAOnp6RUeY1XNh6/Kz89HZmZmqc8fP34cLVq0QPPmzaXHxGIxhg4divj4+HLrf2tqasLQ0LDU9+qHH36ARCLB5MmTS3w+JSUFv/76K4KCgmBra4u8vDzk5uaWO65iv//+O3Jzc0ssM0JERNUrPj4eQUFBsLS0hJqaGhwcHPDjjz/KzU+LFy+Gl5cXjI2Noa6ujhYtWmDdunVy/dna2qJHjx6IjIxE+/btoa6ujh9++AExMTEQiURYuHAhNm7cKL2WbtmyJQ4fPizTR0k1oX19fdG0aVPcvXsXPXr0gJaWFszMzDB9+nRIJBKZ1798+RIfffQR9PX1oauri0GDBiE+Pl4uP1AZTk5OMDY2lrt+/+OPP/Dee+/BysoKampqsLGxwbRp02TmwVGjRuHnn38GIFvq49XxFZeD1NTUhJ6eHvr06YMbN268UaxU/zAJTdVOIpHAz88P2tra+PHHHxEQEACgqNbfrVu3MHz4cISGhmL06NE4cOAAOnXqhOzs7Ar3q6qqih9//BHvv/8+fvnlF3z33XcViqugoADbt2+Hv78/RCIRPvzwQ1y9elXmwhAAMjMz4ePjgyVLlsDX1xchISEYP348Hj16JK2fKJFI0LdvX8yaNQvNmzfHTz/9hMmTJyMvL6/CdRpLMmTIEDx//hxz587FxIkTAQDnzp3D0aNHMWDAAISEhGDSpEk4d+4cvL29ZWpclheTkpISAgIC8Ndff+H58+cy5z18+DASEhKkv6suXbpU6GunFy9eBAC4ubnJHDcxMYG9vb30+coovjFQFRd83bp1g66uLjQ0NNCzZ89SJ8u8vDzo6upCT09PmtxISUmRadOkSRNYWlpi0aJF2LNnD2JjY3Hx4kWMHDkSZmZmGDNmzBvHWVhYiAkTJiAwMBAtWrQotV2nTp3w119/ISQkBA8fPsTdu3cxbdo03L17F19++eUbn5+IqCrU1vm/PMeOHUOXLl3w6NEjzJw5E9OnT8ft27fh4+Mjk4ieM2cOvvnmG/j4+GD58uWYOXMmHBwcZNoMGjQIO3bswMiRI7Fq1Sp8/vnnkEgkuH37trTN7t274eTkhN27d5c77itXrsjNsQDg7u6O/Px8/PvvvxUaY1XOh8WOHj0KTU1NaGtro0GDBvjxxx/lLrbz8vJKvElafKykz0ypqalITk7GjRs3MGXKFNy4cQN+fn5y7R49eoQffvgBP/74IzQ0NEqM8cSJE8jJyUGjRo3Qv39/aGhoQENDAx06dMDVq1dLfM2rNm/eDC0tLfTv37/ctkREVHUSExPRvn177Nu3D0FBQVi+fDnc3d0xbdo0fPHFFzJtly5dCicnJ8yaNQs//vgjjI2NMWbMGISFhcn1e+/ePQwcOBDe3t5Yvnw52rdvL31ux44d+OabbzBy5Ej88MMPSEtLQ//+/fHixYty401NTUXXrl3RqFEj/PTTT/Dw8MDChQuxdu1aaZvi6/UNGzbA398fCxcuhCAI6N2791u8U0XnfvnyJQwNDWWOr1+/HsrKypgwYQKWL18OX19fLF68GB999JG0zdixY9G5c2cAReXXih8mJiYAim72fvDBB7C2tsaiRYvw9ddf4+rVq/Dy8sLDhw/fKm6qJxS7EJvqkpK+tjly5MgSSxYIQslfyz1+/LgAQNi8ebP0WGRkpABAiIyMlOt3xowZMq/v16+fYGxsXKF4//zzT5kSEbm5uYKBgYFcGYXir+6+GlOx4jIIxV8hmjdvXqltShpHMQDC7Nmz5c45YMAAubYlvW93794V1NTUZM5fkZhu374tABBWrlwp8/zw4cMFIyMj6ddibWxsBBsbG7l+Xvfpp58KAITCwkK55zp27Cg0b9683D5e17hxY6Fhw4YyJSdKgjJKXGzfvl0YNWqUEB4eLuzevVuYNWuWoKWlJejp6Ql3796VafvVV18J06ZNE7Zt2yZs27ZN+OijjwSRSCS0bdtWyMnJkWkbHR0tNGrUSAAgfTRt2lS4d+/eG8cqCIIQGhoq6OvrC0lJSYIgCKWW40hISBA6d+4sc35dXV3hwIEDZZ6fiKgqvUvzf0XKcbi4uAiGhoZCYmKi9FhsbKygra0teHl5SY+1bt1a6N27d6n9pKSkCACERYsWlRlT8Xz966+/ltkuKSlJACB88803cs8dOXJEACDs2LGjzD6qaz7s06eP8MMPPwh79uwR1q1bJ/j4+AgAhPHjx8u069u3r6CjoyO8fPlS5viQIUMEAMJnn30mF7OXl5d0jlNXVxfGjx8v5ObmyrUbOHCgzO+npLm2uJyJkZGR0L59e+F///ufsHr1asHc3FwwMjIS4uLiSn3vHj9+LIhEImH48OGltiEiosqrSDmOwMBAwdTUVEhISJA5PnXqVEFJSUmmxFJJnzO6du0qNG7cWOaYjY2NAEDYu3evzPGHDx8KAAR9fX2ZzwKXLl0SAAgrVqyQi/3V8xfPgb/88otMv61atRJcXV2lP+/atUsAICxcuFCmXUBAgFx+oDQAhJEjRwpJSUlCYmKicP78eaFHjx4CAGHp0qUybUt6X+bOnSuIRCLhyZMn0mOlleN49OiRoKysLBdXXFycoKenJ4wePbrceImYhKYqU9ZF6OsXNq9LT08XkpOThaSkJEFfX1/morWsi9CnT5/K9FN8cZGWllZuvP7+/kKTJk1kjo0ZM0awtraWSaI2a9ZMcHZ2LrOv3r17C/r6+nIXZa96kyR0REREmefNzMyUvm8tWrQQ+vfvX6mYBEEQ2rdvL7Rv3176c0ZGhqClpSV34VgRo0ePFlRUVEp8rlu3bkKjRo0q1V90dLQAQPjqq6/KbVteYrekvpWUlIRhw4aV2/aHH34o8YPEzZs3hb59+wrBwcHC7t27hZUrVwo2NjaCo6Oj3AekisaalJQkGBgYCEuWLJEeKy0JnZaWJgQFBQlDhw4Vtm3bJmzatEnw8fERtLW1hePHj5c7LiKiqvAuzf/lJaHj4+NLTZ4HBQUJIpFIePHihSAIguDt7S3Y2toKt2/fLrGvnJwcQUVFRejdu7fw/PnzMuOqiMePHwsAhO+//17uuZMnTwoAhE2bNlW636qYD18nkUiE3r17CyKRSOb9OXjwoABA6NKli3D27Fnh3r17wnfffSeoqqoKAISPP/5Yrq9z584JBw8eFH755RfBw8NDGDlypNzv+ciRI4KSkpJw/vx56bGS5trvvvtOACCYmJgIGRkZ0uNnz54VAAjTp08vdUwLFiwQAAh///13mWMnIqLKKS8JLZFIBAMDA2H06NFCUlKSzOPw4cMCACE8PFzudXl5ecLz58+FpKQkYf78+QIAISUlRfq8jY2NYG1tLfe64iR0YGCg3HO6urpCcHCwXOyvJ6HV1dWFgoICmdd+/vnngqGhofTnwMBAQUlJSW5OO3fuXKWS0K8/VFVVhZkzZ5a6iKuwsFBISUkRkpKShKNHj8ol4ktLQi9dulQAINy8eVPu9+Dn5yfY2tqWGy8Ry3FQtVNSUoKtra3c8ZcvX2Ls2LEwMjKCjo4OjI2NYWJigpSUlFK/6vkqFRUVuXq8BgYGAFDuV2TS09Pxxx9/oGvXroiJiZE+OnbsiNjYWBw9elTa9v79+zK1C0ty//59NGnSpMp3xX1953oAyMnJwZdffglLS0toaWlJ37dr167JvG8VjWnkyJE4ffq0tGbU7t27kZmZKf3adGVoaGggPz+/xLqROTk5pX49tjRVWYrjde3bt0eHDh3k6nqVZNKkSVBRUZFpm5KSAm9vb7Rv3x4//fQT3n//fYwfPx6RkZGIiYnBvHnz3iiuGTNmwMTERK6udkkGDhyImJgYbN26Ff7+/hg+fDgOHz6Mhg0b4pNPPnmj8xMRVZXaOP+Xp7jmYdOmTeWec3Z2hiAIePz4MYCichwpKSlwdHREs2bNEBwcjHPnzknbq6mpYeHChfj7779hZmaGDh06YP78+dLXV1bxHFpSDePietiVnWeBt58PSyISiTB58mQIgoB//vlHetzPzw9r1qzB2bNn4ebmhsaNG2P16tVYtmwZAEBHR0euL1dXV/j5+WHMmDH4559/cPr0aZmvDhcUFODzzz/HiBEj4OLiUmZcxe9Pnz59oKWlJT3erl072Nvb48SJE6W+dsuWLTA3N0fXrl3LPAcREVWtpKQkvHz5EuvXr4eJiYnMo/jf5MTERGn7vXv3wtXVFRoaGjAyMoKJiQm+/vprAJDbU8De3r7U89rY2MgdMzAwqNBnDWtra4jF4jJf++jRI5ibm8vNfU2aNCm3/1e99957iIiIwIEDBzB79mwAReN8dd8gALh+/Tp69eoFbW1t6Ovrw8TEBD4+PgBQoc9fd+7cAVBUc/r138OhQ4dkfgdEpVFWdABU96moqEBZWf5PbejQoTh27BimTJmCNm3aQEdHByKRCEOHDpWrIVgSJaXS76GUlAR91Y4dO5CdnY1Vq1Zh1apVcs9v3rwZnTp1kv78+j/gJZ2vvDalPV/WpkAlXUxOnDgRa9euxYQJE+Dl5QU9PT0oKSlh0qRJMu9bRWICAH9/f0yaNAmbN2/G7NmzsXnzZjRu3FimHlZFWVhYACjaNOL1BEFcXFyJSfXSFBQU4LfffkPr1q2lmzJWNRsbG0RHR5fbTlVVFebm5jIfGnbt2oWkpCS8//77Mm3t7OzQsmVLHD9+vNLx3LlzB2vXrsXSpUvx6NEj6fHs7Gzk5+fj3r170NPTg4mJCR48eICIiAi5v19lZWX07t0bixYtQkpKCvT19SsdBxFRVaiN8//beL1vX19fPHjwAH/++ScOHTqEjRs3IiQkBN9//z2mT58OAAgODkb//v2xd+9eREREYO7cuZg/fz727t1bob0WXmVoaAg1NTXEx8fLPRcXFwdAfrPcinqb+bCsPgH5GwNjx47FiBEjpDWY27Rpg8jISADlX3irq6ujb9++WLx4MbKzs6GhoYHw8HDcuXMHq1evlu7VUSwtLQ337t2Dubk5tLW1pe+PqampXN+mpqZ4+fJliee9fPky/v33X0yaNEkuqUBERNWr+LPBBx98gNGjR5fYxsHBAQBw8uRJ9O/fHx06dMDPP/8MCwsLqKqq4sCBA1i6dKnc54yybt6W9u99RT5r1ORcYWVlJU3G9+zZE2ZmZhg/fjw6deok3cMgNTUVnTp1gqamJubPn49GjRpBQ0MDT58+xahRoyr0+au4zV9//VXi5zvOj1QRTEKTQqSkpODQoUP49ttvpXfrgKKVPKVdAFSlzZs3o2nTpliwYIHcc1u3bsXOnTuxcuVKqKuro1GjRnKbFb6ucePGOHXqFPLy8qCqqlpim+JVWq/fZXx1p9mK2L59O0aMGIGQkBCZ4y9fvoSxsXGlYiqOq2/fvti8eTPGjh2Lw4cP45tvvqlUTMWKVyCdPXtWJjmbnJyMBw8eYPDgwRXu6+DBg0hKSsJXX331RrFUxIMHD6SbLJQlJycH8fHx6Nixo/TYs2fPABQly19XUFBQ4vHyxMXFQSKRYOLEidKNKF/l4OCAsWPHYs2aNeWev7TniIgUSdHzf3mKV27funVL7rlbt25BJBKhYcOG0mMGBgYYMWIERowYgezsbPTs2RNz5szBl19+Kb0Ys7Ozw6RJkzBp0iQ8efIEbdq0wcKFCyudhFZSUkLr1q1x9uxZuefOnDkDFRWVcr+5VZq3mQ/L6hNAif1qaGjA3d1d+vOhQ4cAoEKrjLOzsyEIAtLT06GhoYHY2Fjk5+fD29tbru3WrVulj6FDh0o/pzx9+lSu7dOnT9G4ceMSz7llyxYAeKNviRER0dsxMTGBrq4uCgoKyp0nfv/9d6irq+PQoUNQV1eXHi++2Vmb2NjY4PDhw0hPT5dZDV284vhNBQUFISQkBF9//TX69esHJSUlREZGIikpCVFRUdLVz0DRZtGvK20hW/GCsoYNG8LZ2fmtYqT6i+U4SCGKVzG9fhexpLuTVe3p06eIiorCoEGD8P7778s9xo0bh9TUVPz5558Aina2v3HjBrZt2ybXV3H8gwYNwsuXL7FkyZJS29ja2kIsFstNgCtWrKhU/GKxWO5927p1q3QVVLGKxFRs5MiRuHfvHiZOnIjCwkK5i6z79+9Ly3WUxdfXF8bGxli5cqXM8RUrVkAQBJkkdFZWFm7duoXk5OQS+9q8eTPEYjE++OCDcs9bnpJWbB05cgQnT55Ejx49pMdyc3ORlZUl13b+/PkoKCiQaevo6AgA+N///ifT9urVq7h27Vq5XwkuSbNmzfD777/LPZydnWFpaYnff/8dY8eOBVCUkFZSUsK2bdtk/j+TlZWF3bt3o2HDhjI3JYiIagNFzv8VYW5uDhcXF2zcuFFmfoqLi8OWLVvg6ekpvan8/PlzmddqaGjAyclJOpdkZWUhOztbpk2DBg3kVtympqbi1q1bcl8RLsngwYNx5coVmbIRz58/x9atW9GjRw+Zi9jHjx/LJdOrYz5MSUmR+30WFBRgwYIFEIvF5SYMbt++jbCwMPTr10+6kg1AiV/rffHiBXbv3i19HwFgyJAhJc6dANCtWzf8/vvv6NChA4CiubtVq1b4448/ZN6Lw4cP48mTJ+jWrZvcOSUSCbZu3QonJye0bdu2zLEQEVHVE4vFGDRoEHbv3o2LFy/KPZ+amor8/HxpW5FIJPOZoriUR23Ts2dPSCQSuW+2Ll++/K36FYvFmDx5Mm7duoVdu3ZJjwGyn78kEkmJuYLiclWvLw4YNGgQlJWVMXv27BI/syUlJb1V3FQ/cCU0KYSuri58fX3x448/Ii8vDzY2Njhx4gSOHj0KIyOjaj33li1bIJFI0Ldv3xKf79ixI/T19bF582YMHjwYU6dOxc6dOzFs2DBERESgXbt2SElJwV9//YXvvvsOPj4+CAgIwObNmzF9+nRcvHgRPj4+yMnJQWRkJPz9/REQEABdXV188MEHWLlyJUQiERwdHREZGSldKVRRffv2xcaNG6Grq4vmzZvj8uXL2L59u1w9q4rEVKx79+4wMzPDb7/9hg4dOsDOzk6mr+LVWuWt2lZXV8cPP/yAjz/+GH369EG/fv1w9epVrFy5EiNGjJC5eDt79iw6deqE2bNn49tvv5XpJyMjA3/88Qc6d+4sLfFRkk2bNsmUrbh48aK0FnNAQID0q8AdOnRAmzZt0LJlS+jr6+Py5ctYt24dzMzMZM4dHx8PDw8PDBgwAE2aNIFIJMLhw4fx559/wsfHRyYh3qdPHzRv3hwLFy7E48eP0bFjR8TFxWHFihVQVVXF1KlTKx2riYkJBg0aJDfOFStWoLCwUOY5Y2NjBAYG4ueff4a3tzeGDBmC/Px8rF+/HjExMbXygxYRkSLn/1eFhIRAW1tb7vjUqVOxZMkSdO3aFe3bt0dgYCAEQcDq1auRn5+PxYsXS9s6OTnB29sb7dq1g7GxMa5cuYK1a9eid+/e0NHRweXLl9G5c2cMHjwYzZo1g5qaGg4cOICbN29i0aJF0n52796Njz76CL/++itGjRpVZtyffPIJ1q5di379+mHy5MnQ09PDqlWrkJOTg/nz58u0HTFiBI4ePSpzwVkd8+GePXvw008/oXfv3rCzs8PLly+xbds2XLlyBV9//bXMZ4pHjx5h0KBB6Nu3L6ysrHDnzh2sWbMGpqamWL16tUz8Xl5eaNWqFVxdXWFsbCyd2549e4bt27dL2zk7O5e6Isve3l5uXl26dCm6desGLy8vBAUFIS0tDUuWLEHjxo3x6aefyvURGRmJp0+fYvz48WX8ZoiI6G2Fh4eXuOdAYGAgFi5ciKNHj8LLywsff/wxWrRogbS0NPz777/YuXOntPRSnz59sGTJEnTr1g0BAQF48eIFfvnlF5ibmyMhIUEBoypdv3794OHhgenTp+Phw4do2bIljhw5Is0PVKS0ZmlGjBiBWbNmYcGCBRg0aBC8vLxgZGSEkSNHYsKECVBRUcGOHTuQkZEh91pXV1cAwGeffYaePXtCWVkZffr0gZ2dHX788UcEBwejffv2GDBgAAwNDfHo0SMcOHAA7u7uWLNmzRvHTPVEjW6DSHXayJEjBTU1tXKPFYuLixMGDx4sGBoaCjo6OkLv3r2Fu3fvCjY2NsLIkSOl7SIjIwUAQmRkZLn9lrQ77etatGghWFpalrpbrCAIwtChQwUVFRUhOTlZEARBePHihfD5558L1tbWgoqKimBlZSV8+OGHwtOnT6Wvyc7OFmbNmiU0atRIUFFREczMzIR+/foJ169fl7Z5/vy54O/vL2hrawu6urrCBx98ICQmJsrtfjt79mwBgBAfHy8XW2pqqhAYGCiYmpoKmpqagre3t3D27FnBx8dH8PHxkWlbkZiKBQcHCwCEn3/+We45GxsbwcbGptT363UbN24UmjdvLqiqqgrW1tbCzJkzhdzcXJk2xb/Xknb93bBhgwBA2LBhQ5nn8fHxKXFH4Nf/XmbMmCG0adNG0NfXF1RUVIQGDRoIgYGBQmxsrEx/L1++FAICAgQHBwdBS0tLUFNTE5ycnIQ5c+YI2dnZcud/+fKl8OWXXwpNmzYV1NXVBX19feG9994TLl68+MaxljZOR0dHueMFBQXCmjVrhLZt2wp6enqChoaG4O7uLvz2229l9kdEVJXelflfEP5/fi3t8fLlS0EQBOHYsWOCr6+voKmpKWhpaQldunQRoqOjZfr6/vvvBXd3d8HAwEBQV1cXHBwchJkzZwrp6emCIAhCcnKy8NlnnwlOTk6Ctra2oKOjI7i4uAjr1q0rMfZff/21zNiLxcfHC8OGDRMMDAwETU1NwdfXVzh79qxcu+J551XVMR9euHBB6Nu3r2BtbS2oqqoK2tragoeHh7B582a5mF68eCG8//77goWFhfT8EyZMkH7eetWPP/4oeHh4CEZGRoKysrJgamoq9OvXTzh27FiF3icAwtixY0t8LiIiQmjfvr2grq4uGBgYCMOGDRPi4uJKbPvRRx8JIpFIiImJqdB5iYiocornwdIely5dEgShaF6dNGmSYGtrK6ioqAgmJiaCl5eXsGjRIplrzQ0bNghNmzYV1NTUhEaNGgk//fSTsH79ernPCTY2NkL37t3l4nn48KEAQFiwYIHcc69/Vinp80dp127Fn0Fe9fz5c2HEiBGCrq6uoKOjIwwcOFC4c+eOAEBYuHBhue9dWXPdnDlzBADC33//LQiCIJw+fVrw8vISNDU1BVNTU+GTTz4Rrl69KvcZpKCgQPj8888FMzMzQSQSyY1v3759gq+vr6CjoyNoaGgIjRs3FkaNGlXiZxGi14kEoRp3cCGid8b06dOxdOlSxMfHS79qTEREREREREQ149KlS2jbti02b96MYcOGKTocoirFmtBEhLy8PGzYsAF9+/ZlApqIiIiIiIiomr2+dwQALFmyBEpKSjIbCBLVFawJTVSPJSYm4vDhw9i7dy/i4+MRHBys6JCIiIiIiIiI6rwJEyYgNTUVXl5eEIlE2L9/PyIiIvDJJ5/A2tpa0eERVbkaXwm9atUq2NnZQV1dHS4uLjh+/Hipbb/99luIRKISH8U7Zu/atQt+fn4wMTGBjo4O3N3d8ccff8j0Ex4eXmIfOTk51TpWotruxo0bGDZsGCIjI7FkyRK0b99e0SERERERERER1XmdO3dGTEwMvv32W0ydOhUxMTH4/vvvERoaqujQiKpFjdaE3r59O4YPH45Vq1ahQ4cOWLVqFX799VfcuHEDDRs2lGufkZEht1vn0KFDIRKJEBkZCQCYOHEiLCws0LlzZxgaGmLLli347rvvEBUVhY4dOwIoSkJ/+umnuH//vkxf5ubm1TRSIiIiIiIiIiIiIgJqOAnt7u6Oli1b4pdffpEec3BwwKBBg7BgwYJyX//kyRPY2tpi06ZN+PDDD0tt5+bmho4dO+Knn34CUJSE/uyzz+QS2kRERERERERERERUvWqsJnReXh4uXLiAKVOmyBz38/PDqVOnKtTHunXroK+vj4EDB5bZLj09XW5ztezsbNjY2KCwsBCtW7fG3Llz0aZNm3LPaWxsDFtb2wrFV5rMzExoaWm9VR/vgvowzvowRoDjrEvqwxiBNxtnTEwMkpOTqykiUgTO2RVXH8ZZH8YIcJx1SX0YI8A5m4pwzq64+jDO+jBGgOOsS+rDGIGqn7NrLAmdnJyMwsJCmJmZyRw3MzPD4cOHy329RCLB+vXrMWLECKipqZXabuXKlYiNjUVAQID0mKOjI9avX49WrVohPT0dy5Ytg5eXF65cuQIHBwe5PsLCwhAWFgYAUFZWxuLFiys6zBJlZGRAW1v7rfp4F9SHcdaHMQIcZ11SH8YIvNk4X78pSu8+W1tbnD9//q36iIqKgq+vb9UEVIvVh3HWhzECHGddUh/GCLzZOF1dXasnGFIYztkVVx/GWR/GCHCcdUl9GCNQ9XN2jSWhi4lEIpmfBUGQO1aSv/76C0+ePMGYMWNKbbNz505MnToV27Ztg42NjfS4h4cHPDw8pD97enqidevWCA0NxfLly+X6CQoKQlBQEICiN+9t/7D4x1l31IcxAhxnXVIfxgjUn3ESERERERERvYuUaupExsbGEIvFSEhIkDmemJgotzq6JGFhYfD09ESzZs1KfH7nzp0ICAjAxo0b0bdv3zL7EovFcHV1xd27dys+ACIiIiIiIiIiIiKqtBpLQquqqsLFxQUREREyxyMiIuDp6Vnma+Pi4rB//34EBgaW+Pxvv/2G4cOHIzw8HIMGDSo3FkEQcPXqVVhYWFR8AERERERERERERERUaTVajiM4OBgBAQFwc3ODl5cX1qxZg7i4OIwbNw4AMH36dJw9exZHjhyRed369euhpaWFIUOGyPW5bds2BAQEYPHixfD29pautFZVVYWhoSEAYM6cOWjfvj0cHByQlpaG5cuX4+rVq1i9enU1j5iIiIiIiIiIiIiofqvRJLS/vz+eP3+OefPmIT4+Hs2bN8eBAwek9Zvj4+Nx//59mdcIgoB169Zh2LBh0NTUlOtzzZo1KCgowKRJkzBp0iTpcR8fH0RFRQEAUlJSEBQUhISEBOjp6aFNmzY4duwY3Nzcqm2sRERERERERERERKSAjQnHjx+P8ePHl/hceHi43DGRSISHDx+W2l9xorksS5cuxdKlSysaIhERERERvQWJRILk5GSkpKSgsLDwrfvT09PDzZs3qyCy2qs+jBEoeZzq6uqwtraGioqKgqIiIqrbqnpeLkt9mM/qwxiBqp+zazwJTUREREREdVtsbCxEIhFsbW2hoqICkUj0Vv2lp6dDR0eniqKrnerDGAH5cQqCgOfPnyM2NhZ2dnYKjKz2WrVqFRYtWoT4+Hg0a9YMISEh6NixY6ntr127hs8++wxnz56FoaEhxo4di1mzZsn8//Do0aMIDg7G9evXYWlpiS+//FJaJhMArl+/jtmzZ+PixYt4+PAhZs+ejW+//fatYyMixajqebks9WE+qw9jBKp+zq6xjQmJiIiIiKh+yMzMhJWVFVRVVav1QpfefSKRCEZGRsjJyVF0KLXS9u3bMXHiRHz99de4dOkSPD090bNnTzx+/LjE9mlpaejWrRvMzMxw7tw5LF++HIsWLcKSJUukbR4+fIhevXrB09MTly5dwvTp0zFhwgTs3LlT2iYrKwu2traYN29eqYmGysZGRIrDeZmqwtvO2UxCExERERFRlVNS4qUGVQwTIqVbsmQJRo0ahcDAQDg5OSE0NBQWFhZYvXp1ie23bNmCrKwsbNiwAc2bN8fAgQMxbdo0LFmyBIIgACjaV8nS0hKhoaFwcnJCYGAgRo4cicWLF0v7adeuHRYvXowPP/ywxL2Z3iQ2IlIszstUFd5mzmY5DiKiKvLkRRZyCwohEolgY6iJrPxCJKblwFBLDYZaqgCA1Ox86KgpQ0lJhKy8AhRKBOio/38tpaT0XBhqqUKsJPsPe2ZuATZGP0LP5uY4eT8ZDQw04d3EBAAQl5KNPZefok0DA7jbGUJJSYTo+88RceMZXj7LQ6HZMxy5lYjIW4lobKqNsd6N0MHBGACQnJGL8JMxyCuUwMXGAE9fZsPeRAu+jqbYdzUO8/bdhHcTY7zX0hJWBhqwM9KC0muxPc8oilkkEiE7rxASQYCmqhhp2QXQ06z62o6FEgH/Pk1Fqwb6Vd431W8rI+9haUQm7voITIgQEZHC5eXl4cKFC5gyZYrMcT8/P5w6darE10RHR6Njx47Q0NCQHuvevTtmzZqFmJgY2NnZITo6Gn5+fjKv6969OzZs2ID8/PwK1fl8k9iq0k+HbuPnqEwoHfnrjfsw1lbDH591kH5OJyKi6sUkNBHRWwg/+RDxaTnQVVfBooO3pccNtVSRkVOAvEIJlESARyMjWOhpYMeFWFjoqcNSXwP/Pk1FoURAC2s9qCgpISU7D3eeZcBERw12RlqwNdaEvqYqHj/PQlJGLi48eokfD97Cf4tY0LqBPlTFSriZkIb0nAIAgJmuGjo5mmLnxVgoiUTIK5Bg973z0FARo4ODMW7EpWH4ujNo01AflnoauJeYgbuJ6VAWKyHs2ANp/H7OZjh1/zn0NFSw/2o8fjsfCwDo3dICX/Vois1nHuFRcha01JSx82IsujczQ0cHE6z45x4KJBLYGWvhXMxLOJrpwEBLBW62hrAz0QIAmOtqwMZIEweuxeP0g+do3UAfVgb/f6EEAHEpOTh5LxkSQYCrjSEev8hCQmrRV34evcjEs7RcHJ3qCxsjrWr73VL9oyIWoUACZOUVQkuNH5GIiEixkpOTUVhYCDMzM5njZmZmOHz4cImvSUhIgLW1tVz74ufs7OyQkJCArl27yrUpKChAcnIyLCwsqiW2sLAwhIWFASiqTxsVFVXueUqjnFoAbwsBKqriN3p9gURAxKNszN0ahX6Na3cSOiMj463eq3dBfRgjoNhx6unpIT09vUbOVVhYWGPnUpT6MEag9HHm5OS80d8yr7CI3gE5+YXYGB2D7s3Mcer+cziYasPV1lDRYdU5giBIV+/GvszCvqvxeJaWg6uxqcgvlGCkhy3uJKZDIhHgYmOIi49fyiRuuzqZoV9rS+TkF+LkvWQYaauhVQN93H2Wjj+uxOHkvecY7GKNjNwCpGTlY2i7BlBTEePfp6kQBMBcTwN9Wlri1rN0JKfn4sC1BOTkF8JYWw2J6TmY2dsJN+LS4NHICI+eZ+HCo5cAAO8mJpjQuTHuPsvAH1fisOviUzQx08H/Atsj8thxGNi1QDtbA2iqKiMnvxDLjtzF5ccpOBvzAqnZ+dg42h1udoY4H/MC5nrq2HM5DpuiYyBWEmH72PYw1lZD9P3nOH43GetPPsSh6wkQhKLVIwlpOfBzNkPkrSQcvP4MjUy0oKasihtxaQjsaIfbzzKQmp2P0Mh70uT5q6z0NXD4ZmKJv4/mVroQi0RYGXUPhpqqcDDThggiuNoYokdzc5jpqlfL3wHVX9pqRSu/MnILmIQmoiozatQoJCcnY9++fRV+ja+vL5o3b44VK1ZUY2T0rnj92zmCUPY3dkpq//rxirSp6tiCgoIQFBQEAHB1dYWvr2+lzvUqXwBRUVFv1cfo8HM49iQFC0Z2hLrKmyWza8LbjvNdUB/GCCh2nDdv3qyxjfTqw6Z96enp+Omnn7Bjxw78+++/ig6n2pT2u1RXV0ebNm0q3R+vsKjOi32ZhZx8CRqbatfI+fILJTjz4AWSM3Klx8z11NHe3kj6syAIuPY0FQ+SMmFloIF2toa4n5SB5UfuoqGhJhqZaMPWWAt3nqXjxN1kKCuJsOvSUyz4q2gVrJqyEvq3scKDpExoqYnh62gKPQ0V5BVKcOpeMuJS/r9IvIaqGF2dTDHYtUGFP1xdSSrAP3v/xTfvOUNZXH7dqLMPX8BMV63Cq1KP3HyGnRdj4W5nhF4tLGCioyZ97smLLFx8/BLqKmJ0bmoKlQqcvyokZ+Tiq53XEHk7EdN7NsXiQ7eRky+BjpoyrA01kZqVh8m/X4GqWAkQAb8cfwgAGNDWCjaGWjh6JxE/DWkFPY2iJNZg1wYy/Qd3a4LMvEJoVyKxlZNfiPxCCbTVlJGSlQ+Dcr4q2NRcF31aWSIjtwAqYhHUlMXQV1OCz39lOwBAXUWMaT2aAigqa5GR8/8lMzwbG0tjndC5MXLyC6WlQjo1NYVPExM8S89BTl4h5r7fHBZ66tIxvczMQ2p2PqwMNKAkKio18mqZkReZeUjLzocA4GZ8Gp68yEI3ZzPYm2gjKT0XmbkFMmPRUlOW/l2kZuVDS01cob9ForehrV70/8/0nAKY6So4GCKqceUl30aOHInw8PBK97ts2TJpgq+idu3aVaGSCG/r22+/rfMX0O8yY2NjiMViJCQkyBxPTEyUW4FczNzcvMT2wP+viC6tjbKyMoyMjFARbxJbbRPkbY+hYaex82IshrnbKDocIirBm9zIrSlTpkzBhAkTqv08UVFR6NSpk/RnQ0NDtGrVCnPnzoWXl1el+0lKSoKxsXF1hFouJqHpnZedVwiRCNIE673EdHwUfg5NzXXh08QEiw/dRm6+BBs/dkO7/1YPv8zMg76mCiQCMHPPNdyIT8fCAS3Q0FAT4adiYKmvjvUnYtCqgR6+69tcrgauIAj4bOsl/PPfCk4DTRV0b26OpuY6WBJxB8/ScvG6wS7WOBfzArbGWniYnIlHz7Okz7nYGODfp6lQVhIhO78QkleuU5REgEQoen2hREAbGwNsio7BrktP0cpaDzHPszD7j+vS9gaaKnA014EIRTHHvszCrL3Xsen0I3g2MsbpB88BAL1bWKBTU1Nk5RXiwLV4HL75DB952aGbkxlWX85FTuEjPHmRhTvPMjCgrRUibjyDk4UuPOyNkJaTj6y8Qmw/9wQdGhtj+/knAIpKOPg1M8fN+DTEp2bj36dpCGhvg4zcAvz9bwIaGGrAWFsN2849gY66Mg5cS8CcP6/Dq7ExHEx1cPnJS1x8nCIdS0trPbRuoI+T95LRylof8we0wMl7yTjz8AUKJQKURECbhgZ4lpaD2P9qGQ9t1xBiJRGS0nNhpKWKtJx8JGfk4mpsKv68EodbCelobqWHf5+mwkQ1H8czbkAiCPjjchzScwtgqqOGeftvwkRHDQcneUgT62k5+bgRl4bWDfQhVhLhXMwLWOlrSJ+f2NWhzL9TkUhUqQQ0UPQ3Xfx3XV4C+lUVPY9YSVRqzWYVsZLcDQAlJRFWfti2xHMZaKnKxPhqAhooKk9SXG/Pzlj2ZoWJjprMjYjXVUddaaKS6Pz395zx2k0RIqof4uPjpf+9b98+BAYGyhx7tcYugArXztXT06t0LIaG/MYbAaqqqnBxcUFERAQGDx4sPR4REYGBAweW+BoPDw9MmzYNOTk5UFdXl7a3tLSEra2ttM2ePXtkXhcREQFXV9cK3/x4k9hqG3c7Q7S01sPa4w+l1xBERHl5eVBVLf/6W1tbG9raNbPYEQCuX78OQ0NDJCUlYd68eejduzfu3LkDU1PTGovhbTEJTe+E4g3fGpsWfQ0gO68QZx4W1audtP0ycvIL0buFJeJSsnEvKQNp2QW48iQFETeewUxXDYaaqghYdwYTOjsgNTsfa48/gGcjY6gqK+GfW4nQUVNG3xUnYG+sjdvPiurd6Kgp49rTVGTlFWLe+81x5UkqVl7OwT3xAygribD/ajz6tLKEhZ46YpIzseX0Y+QVStDUXAdz+zWHg1lRrIIgYNHB2/j9QiycLHTxMDkTDQw08alvY7jYGmDPpafYdzUeg1ysMbGLA1TESniRlYdLj1MgVgJcGhoi4uYzDG/fEGrKRQnJ4oS0lpoyBEHA05Rs5BcKEAGwMtCQSx5G3k7EnD+uY8eFWDQ1L4rrp4g7+CniDgBAVVkJlnrqWHDgJtYdfwCRqKi0xOGbz2Clr4HQf+7BVEcNf16Jw+5LT6X9WulrYPv5J+jqZIoWVvpYGXUPh248g7qKEvQ0VGCuq47vD9yESAS42hjg1P3nyM4vxDifRviimwNikrPw55U47L8Wj0uPU9DAUBNf9nBEJ0dT3HmWjh/+uoXdF5/CzkQLuy49xb5r8cgrkEBVWQmqYiXkFUqkK5I1VcXIyivE+hNFP99PyoSJjhpeZOah8L+svpW+Blr8l4BuYaWHSw8Tsf1cUQK9sak2fhjYEgIETNp2Gd+85yyzsltXXUVmNbtnI8XcOSSi6lO8Ejojh0loovrI3Nxc+t/6+voyx2JiYmBhYYH//e9/+OWXXxAdHY1Fixbhgw8+wGeffYbjx4/j+fPnsLe3x5QpU/DRRx9J+3p9FZevry+cnZ2hr6+PsLAwKCkpYcSIEZg1a5b0Na+X47C1tcWYMWPw5MkTbN26Fbq6upg4cSKmTp0qfc2dO3cQGBiIM2fOwMbGBkuXLsWQIUOwYsUKjBo16o3ek2vXruGLL77AyZMnoaGhgb59+2LZsmXSxPq1a9cwadIknDt3DoIgwN7eHiEhIejUqRPy8/MxefJk7NixA8+fP4epqSmGDRuGGTNmvFEs9VVwcDACAgLg5uYGLy8vrFmzBnFxcRg3bhwAYPr06Th79iyOHDkCAPjwww8xZ84cjBo1CjNnzsSdO3ewcOFCzJ49W7raf9y4cVixYgUmTZqEsWPH4uTJkwgPD8fWrVul583Ly8ONGzcAFNX+TEhIwOXLl6GtrY3GjRtXKLbaTiQSIcjbHp/97xIO33yG7s3My38REdUqN27cwNSpU3Hs2DFoaGigS5cuWLp0qXT+PnfuHGbMmIGLFy8iLy8PLVu2xKJFi+Dh4SHtQyQSYcWKFThy5AgOHjyITz75BNra2tixYwdmzpyJGTNmIDExEV26dMHatWulq4hf/zZR8XzfrVs3/Pjjj8jKysL777+PlStXQlNTEwCQmZmJTz75BLt27YKWlhYmTZqEkydPwtjYuNxvW5mamsLY2Bjm5uaYOXMmfvvtN5w5cwZ9+vQBAGzevBnLli3DrVu3oKGhAR8fH4SEhMDKygoxMTHS1dQmJkXflC7+hpcgCFi0aBF+/vlnxMXFoXHjxpg2bRqGDx9edb+o/zAJTbVWXoEEm04/woOkDOy4EAsVsRLG+dhj7YmHyMgpQMF/iUUtVTHM9dSxIToGJv/Vzl070hU+TUxx8fFLWBtoQKwkwtTfr0o3juvS1BSn7j+HqrISvurZFENcG+DrXddw6EYCfhzYEg0MNeFsoYv1Jx9i+T93se9KPPIKJdBQBs7tvwkAcLbQRYh/a+kd87ScfPwbmwoXWwNpsrjY8g/a4FzMC7jbGcndYZ/s54jJfo4yxwy0VNHI5P/vqH3cwU7m+VfLaohEIlgbaJb5XnZyNEWnqbJ3x56mZOPio5dQVVaCRyMjCALQJ/QElETAVFd1DHuvDS49ToGbrSHOxrxAM0tdJGfkITO3AHoaKkjKyEUra32cefgcrjaGUFVWwoC2VniemYdW1noQiUQQBAHnH71EAwNNmOupI/ZlFtKyC+BsWfQ9d0dzHTiaO2JKd0e5mJ0sdNGvtZX05/UnHuJ6XBp6tzRHh8YmUFVWQkGhBOcfvYSxthoamWhh96Wn2Hmx6G+lfxsr3IxPh42RJhzNdWBtoIk2DfRlVrWXVpPr70neZb6fRFQ3aUtXQucrOBKiumnOn9dxIy7tjV5bWFgIsbjyNVudLXUxu0+zNzpnSaZPn47Fixdj3bp1UFFRQU5ODtq2bYtp06ZBV1cXhw8fxtixY9GwYUN06dKl1H62bNmCiRMn4tSpU7h8+TI+/PBDODs7Y/To0aW+ZunSpZgzZw6mTp2Kv/76C59//jk6dOgADw8PSCQS9O/fH+bm5jh9+jSys7MxadIk5ObKfzuvorKystCjRw+0a9cOZ8+exYsXLxAYGIjRo0dj586dAIoSnq1atcLZs2ehrKyMa9euSVffLl++HLt378a2bdtga2uL2NhY3L59u6xTUgn8/f3x/PlzzJs3D/Hx8WjevDkOHDgAG5ui8hHx8fG4f/++tL2enh4iIiLw6aefwtXVFQYGBpg8eTKCg4Olbezs7HDgwAF88cUXWL16NSwtLbF8+XKZFcxxcXEy9T7v37+Pn3/+GT4+PtLNqMqL7V3Qo5k5GhhqIOzYAyahqd55m3m5LGXN2VU5L8fHx8Pb2xsff/wxFi9ejPz8fMyYMQN9+/bF6dOnoaSkhPT0dAQEBGDZsmXSZHOvXr1w9+5dmZIUc+bMwfz587F48WKIRCJs2LABMTEx2L59O3bv3o3MzEwMHToUM2bMwM8//1xqTMePH4eFhQUOHz6MJ0+eYMiQIWjSpAmmT58OAJg8eTKOHj2K3bt3w9LSEnPnzsXx48fRv3//Co87KysLv/76KwDIfHslLy8Pc+bMQdOmTZGcnIxp06bhgw8+wLFjx9CgQQPs3LkTAwcOlK6oLv6G18yZM7Fjxw6sXLkSjo6OiI6ORmBgIAwMDODtXbW5ESahqdrdjE+Dpb4G9DRUkJqdj2N3kqClJoZPE1NE3krE/mvxcLbQxegOdtIEbXpOPoaGncb1uDRoqymjQ2NjnI15gcWH7sDVxgBudoZoZ2uIe4kZaGdniBZWesjJL4Smqlimdm67VzbvC/+oHWJfZkNZLIKFngZy8guhJBJBVblo1fDq4W2RnlsA3VfKCHzRrQm8Ghvj8M1nMNBUhX3BYzi0aofDN5+hc1NTmYSyrrqKtKbu61TESrVu5ayVvgas9GW/VnpwkjeUxSKcPH4Maspi6crf4v99tcRCA8OixPer42pgqCk9DhQlyF/9HVgbaAIGbxbv6NcS8QCgLFaSWZ08oK01BrS1lmtHRFQRxUnodK6EJqJSTJgwAYMGDZI59upq5KCgIPzzzz/YunVrmUloZ2dnfPfddwCAJk2a4JdffsHRo0fLTEL7+fnhs88+k8axfPlyHDlyBB4eHoiIiMDt27dx6NAhWFkV3cRfunRppWpFvm7Lli3IyMjApk2bpJsShYWFoVOnTrh37x4aN26MR48eYcqUKWjatGi/ieIVsgDw6NEjNGnSBB07doRIJELDhg3h6emJ9PT0N46pvho/fjzGjx9f4nMlrZxr0aIFjh07VmafPj4+uHjxYqnP29raVqiWeVmxvQuUxUr42MsO3/55AxcevYCLDUvhEL0rVq9ejVatWuGHH36QHtu4cSMMDQ1x/vx5uLm5oXPnzjKvCQ0Nxc6dO/H333/LrPT19/fHmDFjZNoWFBQgPDxc+u2foKAgafK3NLq6uli9ejWUlZXh5OSEwYMH48iRI5g+fToyMjKwfv16bNy4Ed26dQMArFu3DtbWFcthFJdUysrKgiAIcHV1lfms8epnCHt7e6xevRpOTk6IjY2FtbW1tNRX8YpqoGhl9pIlS3Do0CF07NgRQNGNyrNnz2LlypVMQtO75eLjlxi8JhotrPTwywhXBKw7g1sJRR88LfTUEZ+aAx01Zey+9BSLD92GWEkEM111tLDSw/W4NKwZ3hY9mlsAAI7dScLB6wmY2dsZGqpFd9U6Nf3/1b1ar9SmLYlIJJJJkL6+SZ9IJJJJQBdzszOEm13R/1mjop7A3kQbQSY1V/enJhW/r0RE9ZGOOmtCE1Wnt1n5VNru7DXN1dVV5ufCwkIsXLgQ27dvx9OnT5Gbm4u8vLwSv2n1qpYtW8r8bGlpiaSkpEq/pnjDuVu3bsHS0lKagAaAdu3aQUnpzTf1vXnzJlq2bCnzvnt6ekJJSQk3btxA48aNERwcjDFjxmDDhg3o0qULBg4cKE1Ijxo1Ct26dUOTJk3g5+eHXr16oWfPnm8cD1F1GdKuAZYevouwYw/wcwCT0FR/VOU3hV5VU3P2hQsXcOzYsRLrMt+/fx9ubm5ITEzErFmzEBkZiWfPnqGwsBDZ2dl4/PixTPvX53cAsLGxkdnX4dV5tzTOzs5QVv7/VKulpSXOnDkjjSk/Px9ubm7S57W0tNC8efMKjTcyMhJ6enq4dOkSpk+fjg0bNsishL548SLmzJmDy5cv48WLF9IbiY8fPy410X3jxg3k5OSgR48eMhs05+fnS5PeVYlJaKpyOfmF2BT9CMfuJuHGfyuZLz9JgceCI1BSEmHN8LZIzc7Hish7mN6zKT7uYIeIG89w8fFLCAKw53Ic/rgSh0Eu1tIENAB4NzGBdxMTBY6MiIjqsuKbmawJTUSl0dKS3Vx38eLF+Omnn7Bs2TK0aNEC2tra+Prrr8u9SH198zeRSASJRPLGrxEEQebisSqU1Wfx8W+//RbDhg3DX3/9hYMHD2LOnDlYs2YNRo8ejbZt2yImJgZ///03/vnnH4wcORKtWrXCrl27qjROorelqaqMgPY2WBl1Dw+SMmBfRxccEdU1EokEvXv3xuLFi+WeMzMzA1BU9/jZs2dYunQpbG1toaamhi5duiAvL0+m/evzO1A9c3XxsTdhZ2cHY2NjNGnSBDk5ORgwYACuXLkCNTU1ZGZmonv37ujatSs2bdoEU1NTJCcno2PHjnJjfVVxbH/++ScaNmxY5liqApPQVGW23szFH4mXYaKthp+PPUBTcx00s9LDVD9HRN1ORFxqDj50a4gW1kV3kvzb/f8feM8WFujZoijhPKRdA/x89AG+7CFfJ5iIiKi6qIiVoKrEldBEVHEnTpxAnz59EBAQAKDoAvPOnTvSjQ1ripOTE54+fYq4uDhYWloCAM6fP1/uxXJZnJ2dsX79epkVbadOnYJEIoGTk5O0nYODAxwcHPD555/jk08+wdq1a6VfCdbR0cHgwYMxePBgjBo1Cu3bt8f9+/fRtm3btxgtUdUb6WmLsGMPsO7EQ3zfv4WiwyGiCmjbti1+++032NjYlJowPXHiBJYvX47evXsDAJ49e4b4+PiaDFOqcePGUFFRwdmzZ2FnV1RuNCsrC//++y8aNWpUqb4CAgLw3XffYeXKlQgODsatW7eQnJyM+fPnS/t+/aavqmpR1YDCwkLpMWdnZ6ipqeHRo0dypUsAVHkJLSahqUqci3mBg48KgEdPIVYSoW8rSyz/4P83sihOPFdEEzMd/DSkVXWESUREVCZ1ZRHSmYQmogpq0qQJtm/fjhMnTsDY2BihoaF4+PChzIZuNaFbt25wdHTEyJEjsXjxYmRnZyM4OBjKysrlrrjKycnB5cuXZY5pampi2LBhmD17NkaMGIHvvvsOL1++xNixYzFgwAA0btwY2dnZmDJlCgYPHgxbW1s8e/YMJ06cgLu7OwBgyZIlsLCwQOvWraGiooL//e9/0NXVlSkZQlRbmOioYUBbK+y4EIsvujWBsbaaokMiov+kpaXJzVP6+vr49NNP8csvv8Df3x/Tpk2DiYkJHjx4gN9++w0//fQTdHR00KRJE2zevBnu7u7IzMzEl19+KU3G1jRtbW2MHj0a06ZNg7GxMSwsLDBv3jxIJJJKr45WUlLCpEmTMHfuXOmGyGpqalixYgU+/fRT3Lx5E7NmzZJ5jY2NDUQiEfbv348+ffpAQ0MDOjo6mDJlCqZMmQJBEODt7Y2MjAzpxo4ffPBBVb4FePMiYfTOKpQIyHzLC2xBEHDx8Ut8+8d1eC44gg9/OQ0DNREam2qjUCJgfKfK3cUhIiKqDTSUWY6DiCpu5syZcHNzQ8+ePeHt7Q0tLS0MGzasxuNQUlLC7t27kZubCzc3N4wcORIzZsyASCSCurp6ma+9f/8+2rRpI/P48MMPoampiYMHDyItLQ1ubm7o168fPDw8sH79egCAWCzGy5cvMXLkSDg6OqJ///7w8PDAkiVLABStgl60aBHc3NzQtm1bXL58GX/99Rc0NTXLCodIYcZ0tEdugQQbox8pOhQiesXx48fl5qkpU6bA0tISJ0+ehJKSEnr06IFmzZrh008/hZqaGtTUim4krV+/HhkZGXBxccHQoUMxevToaql1XFGLFy9Gx44d0bdvX3Tq1AktW7aEq6truXN1SUaPHo2CggIsW7YMJiYm2LBhA/bs2QNnZ2fMmTNHOh8Xs7Kywpw5czBjxgyYmZlJNzueO3cuvv32WyxevBjNmjVDt27dsHPnTumK6qokEiqy5W095urqivPnz79VH1FRUeVuTlJTsvMK8VH4WdxOSMfWoPZoaq4r1yY1Ox8PkjLQpqFBiX1E3k7EN3v/xZMX2VBVVkInRxM0MNBEA0k83N3a4frTNAx0qdjunu+a2vS7rE4cZ91RH8YIvNk4q+Lfd6pdquJ36jv/L9hbGmP9qHZVFFXtVB/+bagPYwRq7zhv3rwpU7LhbdWWjQmrU1WP8cqVK2jdujXOnz8PFxeXKuv3bZU2zrL+Zjhn1z219Tp7zIbzOP/oBU5O6yzdK0LRauu/81WpPowRUOw4q3peLgvn7IrLzc2FjY0Npk6dismTJ1dBZFWrqufs2vGvKtWYGbuv4czDFzDQVMXwtWexYXQ7fLXzGqb1aIoODsYoKJTg4/BzOP/oJQa5WGN2H2e8zMzHwesJMNZRRVZeIeb8cQN2xlpYPLgV/JqZQVe9qPZOVFQimprrlpjYJiIiehdwJTQRvat2794NLS0tODg4ICYmBsHBwWjVqhXrLxNVwvhOjTBg1TNsPfsYYzraKzocIqpjLl26hJs3b8LNzQ3p6en44YcfkJ6eDn9/f0WHViOYhK5HUrLy8OfVOIz0sMUQ1wZ4L/Q4hqyJRmZeIWbuuQZfR1Oci3mB63Fp6N7MDLsuxuLgvwlytTFbWethw2g36Gsqpo4OERFRdWFNaCJ6V6Wnp2PatGl48uQJDAwM4Ovri6VLl1a6ziRRfda2oQE87I0QduwBhre3gbqKWNEhEVEds2TJEty+fRvKyspo3bo1jh07BmvrullN4HWsCV1H/XbuCXqEHEP0/ecAgKy8Avx5JQ75hQIGuVjD2VIXw9xtkJlXiI4Oxoh5noWN0THQUBEjuFsT/Bzgit/HecK7iQmm92yKE9M6Ydd4T+z51At7PvViApqIqB5YtWoV7OzsoK6uDhcXFxw/frzUtt9++y1EIlGJj8TERABFOzT7+fnBxMQEOjo6cHd3xx9//CHTT3h4eIl95OTkVOtYi2koi5CRm18j5yIiqkojRozAnTt3kJ2djbi4OPzvf/+DmZmZosMieud81rkxEtNzseNCrKJDIaI6pk2bNjh//jzS09Px8uVLREZG1qqSWdWtxpPQVX1BCwBHjx6Fi4sL1NXVYW9vjzVr1sj1tXPnTjg7O0NNTQ3Ozs7YvXt3tYyvNniekYu5+2/gzrN0fLj2NAI3nkfLbw9h1t7raGyqjWaWReUyvuzhiLnvN8cvI1zx48CW2PmJJ3Z84onPuzgAAFxsDLByWFuM9WkEawNNtG1ogNYN9LmagoioHti+fTsmTpyIr7/+GpcuXYKnpyd69uyJx48fl9h+ypQpiI+Pl3n4+PjA19cXpqamAIrm686dO2P//v24dOkSevXqhf79+8t9FtDU1JTr600263gTLMdBRERUv3k2MkLrBvpYc/Q+Cgolig6HiKjOqNEkdHVc0D58+BC9evWCp6cnLl26hOnTp2PChAnYuXOntJ/o6Gj4+/tj2LBhuHz5MoYNG4bBgwfjzJkzNTLumlQoEfDN3uvIzivE3k874EO3hoi48QxdnEzRt5Ulpvg1kSaRddRVEPDfV4yGtGtQ6kaERERU/yxZsgSjRo1CYGAgnJycEBoaCgsLC6xevbrE9tra2jA3N5c+8vPzcfz4cQQGBkrbLFu2DF999RXc3NzQuHFjzJ49Gy4uLtizZ49MXyKRSKYvc3Pz6hyqjKKV0AXgvs1Eb4//P6KK4t8K1SYikQifdmqM2JfZ+ONKnKLDIaoy/LeWqsLb/B3VaE3oVy9oASA0NBR///03Vq9ejQULFsi119bWhra2tvTnJ0+e4Pjx49i0aZP02Jo1a2BpaYnQ0FAAgJOTE86cOYPFixdj4MCBAICQkBB06tQJM2bMAADMmDEDkZGRCAkJwdatW6ttvDWpUCJg7r4bOPvwBW7Ep2F6z6ZoYa2HFtYtMNnPEQaaKlzBTEREFZKXl4cLFy5gypQpMsf9/Pxw6tSpCvWxbt066OvrS+fi0qSnp8PAQPYmaHZ2NmxsbFBYWIjWrVtj7ty5aNOmTeUG8YbUlYH8QgG5BRLWgSR6CyoqKsjOzoampqaiQ6F3QH5+PpSVuV0R1R5dmpqiqbkOVkXdx/utraCkxGtperdxXqaq8jZzdo3N9NV1QRsdHQ0/Pz+Zdt27d8eGDRuQn58PFRUVREdHY8KECXJtVqxY8YajqV0SUnOw+fQjhJ+KQesG+pjZ20lmJ19DLdZvJiKiiktOTkZhYaFcLVEzMzMcPny43NdLJBKsX78eI0aMgJqaWqntVq5cidjYWAQEBEiPOTo6Yv369WjVqhXS09OxbNkyeHl54cqVK3BwcJDrIywsDGFhYQCA2NhYREVFVXCUJVMqzAMgwqF/jkFXre5ecGZkZLz1e1Xb1YcxArV3nGKxGJmZmbCysoKqqupbL4YoLCxEenp6FUVXO9WHMQLy45RIJHj27BmSk5Px9OlTBUZG9P+UlEQY36kxPt96CYduJKBHcwtFh0T0VkxNTfH06VNYWVlBQ0ODixTpjRTP2Xp6em/0+hpLQlfXBW1CQgK6du0q12dBQQGSk5NhYWGBhISEEs+bkJBQ4rmq+oK2qi8OTjzNR3YB0M1GBbdeFGLh2aLNmjwsxBjbLB8ofIyoqJJLnFSn2noRVJXqwxgBjrMuqQ9jBOrPOGva6x9OBUGo0AfWv/76C0+ePMGYMWNKbbNz505MnToV27Ztg42NjfS4h4cHPDw8pD97enqidevWCA0NxfLly+X6CQoKQlBQEADA1dUVvr6+5cZXllNxhwHkooWLG+yMtd6qr9osKirqrd+r2q4+jBGo3eNMS0tDYmIi8vPffrPPnJycGqsNryj1YYxAyePU0tJC+/btoaRU41sWEZWqdwsLLDl0Gysi76F7M3Mm7eidpqtbtDdYXFxclczLZakP81l9GCNQ+pxtbGz8Rv3V+HeequOCtqQ+Xz9emfNW9QVtVV8cfLc4CnGp2Zg+tBP+2PsvdNSf4YeBLdG5qalCvzpcmy+Cqkp9GCPAcdYl9WGMQP0ZZ00xNjaGWCyWu1mbmJgod1O3JGFhYfD09ESzZs1KfH7nzp0ICAjAxo0b0bdv3zL7EovFcHV1xd27dys+gLeg+d8no9Ts6v1wTlQf6OrqSi9631ZUVFSNleVRlPowRqD+jJPefWIlET7xbYRpO6/h6J0k+DqaKjokordSlfNyWerDv/P1YYxA1Y+zxm41V9cFrbm5eYl9Kisrw8jIqMw2FTlvbfMyMw8PkjORky/BnktPcfDfBPRuYYFeLSxYu5KIiKqEqqoqXFxcEBERIXM8IiICnp6eZb42Li4O+/fvl9mQ8FW//fYbhg8fjvDwcAwaNKjcWARBwNWrV2FhUTNfg9VWKbpB/TIrr0bOR0RERLVX/zbWsNBTx6rI+4oOhYjonVdjSejquqD18PCQK+cREREBV1dXqKioSNu8yXlro8tPUgAAKmIR5h+4icy8QrzfxkqxQRERUZ0THByM8PBwrF27Fjdv3sTEiRMRFxeHcePGAQCmT5+OLl26yL1u/fr10NLSwpAhQ+Se27ZtG4YNG4aFCxfC29sbCQkJSEhIwIsXL6Rt5syZg4MHD+LBgwe4fPkyPv74Y1y9elV63uqmrVqUhE5hEpqIiKjeU1VWQpC3Pc7GvMDZhy/KfwEREZWqRotuVccF7bhx4xAbG4tJkybh5s2bWLt2LcLDw2U2QJw4cSL++ecfLFiwALdu3cKCBQsQGRmJSZMmVdtYq4ogCLjyJEVaYuTS45dQEgHB3RxhrK2GSV0d4GZrqOAoiYiorvH390dISAjmzZuH1q1b48SJEzhw4IC0fnN8fDzu35ddFSQIAtatW4dhw4aVuPP2mjVrUFBQgEmTJsHCwkL6GDBggLRNSkoKgoKC4OTkBD8/Pzx9+hTHjh2Dm5tb9Q74P8UroVOyWI6DiIiIgKHtGsJYWxWh/9RMaTAiorqqRmtC+/v74/nz55g3bx7i4+PRvHnzt76gtbOzw4EDB/DFF19g9erVsLS0xPLlyzFw4EBpG09PT2zbtg0zZ87E7Nmz0ahRI2zfvh3u7u7VO+AqsP3cE3y16xreb22Ju4kZePwiC03NdfGJbyN84ttI0eEREVEdNn78eIwfP77E58LDw+WOiUQiPHz4sNT+KrJ55NKlS7F06dKKhljlNFUAkQh4ySQ0ERERAdBQFSPI2x7zD9zC+ZgXcOUiMCKiN1LjGxNW9QUtAPj4+ODixYtlthk0aFCFak/WNjsvxkJFLMKey3FoaKgJE2019GllqeiwiIiI6iQlkQi66iosx0FERERSw9vbIOzYAyw9fAdbxrRXdDhERO+kGk9CU8U9eZGFczEvMcWvCVo3MEBbG31oqvJXRkREVJ0MNFW4EpqIiIikNFWVMc6nEebtv4mzD1/AzY6roYmIKqtGa0JTxcWlZCP4t8sQiYD321ihg4MxE9BEREQ1QF9TlSuhiYiISMYwdxsYa6thacQdRYdCRPROYhK6ljl4PQGn7idj1K9ncTM+HUuGtIK1gXwtbCIiIqoeRSuhmYQmIiKi/6ehKsYnvo0Q/eA5Tj94ruhwiIjeOUxC1yJpOfkYv+UiPvzlDO48y8CqYW3Rv421osMiIiKqV4pWQrMcBxEREcka5t4QpjpcDU1E9CaYhK5FTtxNRqFEQI9m5pjZ2wneTUwUHRIREVG9o6+pwiQ0ERERyVFXKVoNfebhC0Tf52poIqLKYBK6Fom8lQg9DRWs+LANxnS0V3Q4RERE9ZKBpioycguQVyBRdChERERUy3zg1hBmumpYevgOBEFQdDhERO8MJqFrCYlEQNSdJHR0MIaymL8WIiIiRTHQVAEApGSzLjQRERHJUlcRY7xvY5zlamgiokphtrOWiE/LQVJ6LtrbGyk6FCIionpNX1MVAFiSg4iIiErk364BzHXVuRqaiKgSmISuJRJSswEAVgYaCo6EiIioftP/byX0y0yuhCYiIiJ56ipijO/UCOdiXuLEvWRFh0NE9E5gErqWSEjNBQCY66orOBIiIqL6zeC/ldAvuRKaiIiISuHfrgGs9DWw6OBtroYmIqoAJqFriYS0HABMQhMRESmaiY4aACApI1fBkRAREVFtpaYsxqSuDrgam4q//01QdDhERLUek9C1REJqNtSUlaRfASYiIiLFMNJShUgEJKUzCU1ERESlG9DWGo1NtbH40G0UFEoUHQ4RUa3GJHQtkZCWC3M9dYhEIkWHQkREVK8pi5VgpKXKJDQRERGVSawkwhQ/R9xPysSui08VHQ4RUa3GJHQt8Sw1B2YsxUFERFQrGGurISk9R9FhEBERUS3XvZkZWjXQR8jhO8jJL1R0OEREtRaT0LVEfFo260ETERHVEiY6alwJTUREROUSiUSY1t0Rcak52Hz6kaLDISKqtZiErgUEQcCz/8pxEBERkeKZ6qgzCU1EREQV4tnYGB0djLEy8h7Sc/IVHQ4RUa3EJHQt8DIrH3kFEq6EJiIiqiVMdNSQlJELQRAUHQoRERG9A6Z2d8TLrHysPf5Q0aEQEdVKTELXAgmpRTUnuRKaiIiodjDRUUN+oYCULK5mIiIiovK1tNZHrxbmWHv8AZ5n8NtURESvYxK6Fkj6b4Iy0VFTcCREREQEAKb/zclJvIgkIiKiCgru5ojs/EKsjLyv6FCIiGodJqFrgReZRRe4RlqqCo6EiIiIgP+/MZyYxiQ0ERERVUxjU20MdmmAzacf4cmLLEWHQ0RUq9R4EnrVqlWws7ODuro6XFxccPz48TLbC4KAkJAQNG3aFGpqarCwsMBXX30lfX7UqFEQiURyDy0tLWmb8PDwEtvk5ORU2zgr43lGHgDASIsroYmIiGoDE+lK6NrxWYGIiIjeDZO6OUAkAhYdvK3oUIiIapUaTUJv374dEydOxNdff41Lly7B09MTPXv2xOPHj0t9zeTJk7Fq1Sr88MMPuHnzJg4cOABvb2/p88uWLUN8fLzMw97eHkOGDJHpR1NTU66dunrtqMH8IjMPykoi6GooKzoUIiIiqcrcOP72229LvOErEomQmJgobXf06FG4uLhAXV0d9vb2WLNmjVxfO3fuhLOzM9TU1ODs7Izdu3dXy/jKYsqV0EREVEtUdiHXtWvX4OPjAw0NDVhZWeG7776T22i3KubjwsJCzJo1SxqbnZ0dZs6ciYKCgrcf9DvMQk8DgR3t8ceVOFx+kqLocIiIao0aTUIvWbIEo0aNQmBgIJycnBAaGgoLCwusXr26xPa3b99GaGgo9u7di379+sHe3h5t2rRBr169pG309PRgbm4ufdy/fx8PHjxAYGCgTF8ikUimnbm5ebWOtTJeZObBQEsVIpFI0aEQEREBqPyN4ylTpsjd7PXx8YGvry9MTU0BAA8fPkSvXr3g6emJS5cuYfr06ZgwYQJ27twp7Sc6Ohr+/v4YNmwYLl++jGHDhmHw4ME4c+ZMjYy7mLaaMlTFSniRmVej5yUiInpVZefjtLQ0dOvWDWZmZjh37hyWL1+ORYsWYcmSJdI2VTUf//DDD1i5ciWWL1+OW7duYdmyZVi5ciUWLFhQfW/IO2KcbyMYa6vi+/035G4AEBHVVzWWhM7Ly8OFCxfg5+cnc9zPzw+nTp0q8TV79+6Fvb09/v77b9jb28PW1hYjR46UWVH1ul9++QXNmjWDp6enzPHs7GzY2NjA2toa7733Hi5duvT2g6oizzPzWA+aiIhqlcreONbW1pa50Zufn4/jx4/L3BRes2YNLC0tERoaCicnJwQGBmLkyJFYvHixtE1ISAg6deqEGTNmwMnJCTNmzICvry9CQkKqe8gyRCIRDLVU8ZxJaCIiUqDKzsdbtmxBVlYWNmzYgObNm2PgwIGYNm0alixZIk2GVtV8fOrUKfTp0wd9+vSBra0t+vbti759+9b4jePaSFtNGV90a4JzMS9x8HqCosMhIqoVaqz+Q3JyMgoLC2FmZiZz3MzMDIcPHy7xNQ8ePMCjR4+wbds2aV3nKVOmoE+fPoiOjoaSkmwOPTU1Fb///jvmz58vc9zR0RHr169Hq1atkJ6ejmXLlsHLywtXrlyBg4OD3HnDwsIQFhYGAIiNjUVUVNRbjBzIyMgos4+HcdlQUcJbn0fRyhtnXVAfxghwnHVJfRgjUH/GWVOKbxxPmTJF5nhZN45ft27dOujr62PgwIHSY9HR0XI3o7t3744NGzYgPz8fKioqiI6OxoQJE+TarFix4g1H8+YMtVS5EpqIiBTmTebj6OhodOzYERoaGtJj3bt3x6xZsxATEwM7O7sqm487dOiAVatW4datW2jatClu3LiBf/75B9OnT3/bodcJ/q4NEH4yBgv/uoXOTc2gqlzjW3IREdUqNV6E+PWSE4IglFqGQiKRIDc3F5s2bUKTJk0AAJs2bYKjoyPOnTsHd3d3mfabN29GYWEhAgICZI57eHjAw8ND+rOnpydat26N0NBQLF++XO68QUFBCAoKAgC4urrC19e30uN8VVRUVJl9zDkfhaaWuvD1bftW51G08sZZF9SHMQIcZ11SH8YI1J9x1pQ3uXH8KolEgvXr12PEiBFQU/v/TXcTEhLQtWtXuT4LCgqQnJwMCwsLJCQklHjehISSVxFV541jUV42YuLr5g2O+nDjpj6MEeA465L6MEag/oyzKrzJfJyQkABra2u59sXP2dnZVdl8PG3aNKSnp8PZ2RlisRgFBQWYMWMGxo8fX2JsNb3YqzZ4r0EBll7IxZzNR9DNVuWN+ngXxvm26sMYAY6zLqkPYwSqfpw1loQ2NjaGWCyWu4hMTEyUm9yKWVhYQFlZWZqABgAHBwcoKyvj8ePHcknoX375BQMHDoShoWGZsYjFYri6uuLu3btvOJqq9Twjl+U4iIio1qnMjeNX/fXXX3jy5AnGjBlToT5fP16Z81bnjePdCZdw6XFKnbzBUR9u3NSHMQIcZ11SH8YI1J9xVqXKzsdvOtdWpM2rx7Zv346NGzfif//7H5o1a4bLly9j4sSJsLOzw8cffywXV00v9qoNfAQB51LPYv/jVHw5xAt6mpVPRL8L43xb9WGMAMdZl9SHMQJVP84a+z6IqqoqXFxcEBERIXM8IiJCrn5zMS8vLxQUFOD+/fvSYw8ePEBBQQFsbGxk2p49exZXrlyR25CwJIIg4OrVq7CwsHiDkVSt/EIJ0nIKYKilVn5jIiKiGvAmN45fFRYWBk9PTzRr1kzmuLm5eYl9Kisrw8jIqMw2FTlvVWM5DiIiUqQ3mY9Lm0eB/18RXVXz8dSpUzFlyhQMHToULVq0QEBAAIKDg7kx4StEIhG+7uWE1Ox8rIy6p+hwiIgUqkaLEgUHByM8PBxr167FzZs3MXHiRMTFxWHcuHEAgOnTp6NLly7S9l27dkXbtm0xevRoXLp0CZcuXcLo0aPh7u4OV1dXmb7DwsLg4OAAHx8fufPOmTMHBw8exIMHD3D58mV8/PHHuHr1qvS8ivTyv4tbQ22uhCYiotrhTW4cF4uLi8P+/ftLvCns4eEh9/XhiIgIuLq6QkVFRdrmTc5bHYy0VJGRW4DcgsIaPzcREdGbzMceHh44fvw4cnJyZNpbWlrC1tZW2qYq5uOsrCyIxWKZNmKxGBKJpHIDreOcLXUxqK01wk/G4MmLLEWHQ0SkMDWahPb390dISAjmzZuH1q1b48SJEzhw4IB0VXN8fLzMqmclJSXs27cPpqam8Pb2Rvfu3WFtbY29e/fKbEqYnp6Obdu2YcyYMSV+LSklJQVBQUFwcnKCn58fnj59imPHjsHNza36B12O5/8loY1ZjoOIiGqRyt44LrZ+/XpoaWlhyJAhcs+NGzcOsbGxmDRpEm7evIm1a9ciPDxcZsOliRMn4p9//sGCBQtw69YtLFiwAJGRkZg0aVK1jbU0xd9S4mpoIiJSlMrOxx9++CE0NTUxatQo/Pvvv9i1axcWLlyI4OBg6bVyVc3Hffr0wcKFC7F//37ExMRg9+7dWLJkCfr3718zb847ZLKfI8RKIiz8+5aiQyEiUpga35hw/PjxpW5UEB4eLnfMwsICv//+e5l96ujoICMjo9Tnly5diqVLl1YqzppSfGFryCQ0ERHVIv7+/nj+/DnmzZuH+Ph4NG/evMwbx0BRuat169Zh2LBh0NTUlOvTzs4OBw4cwBdffIHVq1fD0tISy5cvx8CBA6VtPD09sW3bNsycOROzZ89Go0aNsH37drl9IGqCoVbRarDnGXmw0NOo8fMTERFVdj7W09NDREQEPv30U7i6usLAwACTJ09GcHCwtE1VzcehoaGYNWsWxo8fj8TERFhYWCAwMBDffPNNDbwz7xZzPXUEedtj2ZG7GOnxAm52Ze9jRURUF9V4EppkFa+ENmI5DiIiqmUqe+NYJBLh4cOHZfbp4+ODixcvltlm0KBBGDRoUIXjrC5cCU1ERLVBZefjFi1a4NixY2X2WRXzsY6ODkJCQhASElJmP1RknE8j/H7+CWb/cR37JnSAWKn8zZ6JiOqSGi3HQfIycwsAANpqld8ll4iIiKpP8beUmIQmIiKit6WhKsaM3s64GZ+GrWcfKzocIqIaxyS0ghUUFm3aoCzmXVAiIqLaxOi/JPRzJqGJiIioCvRqYY729oZYfOg2UrL4+YKI6hcmoRWsQCIAAJT5VRwiIqJaRU9DBWIlEV5k5io6FCIiIqoDRCIRZvdphrTsfCyNuKPocIiIahST0ApWUPhfElrMXwUREVFtoqQkgoGmCl5k5is6FCIiIqojnCx0Mby9DTadfoRbCWmKDoeIqMYw86lgXAlNRERUexlqqXIlNBEREVWp4G5NoKuhgm//uA5BEBQdDhFRjWASWsGkNaGZhCYiIqp1ipLQrNlIREREVUdfUxVT/Bxx+sELHLiWoOhwiIhqBJPQCla8ElrMJDQREVGtY6Slxo0JiYiIqMp94NYQTha6mH/gJrLzChUdDhFRtWMSWsEKJBIoK4kgEjEJTUREVNtwJTQRERFVB7GSCHP6NsPTlGysPnpf0eEQEVU7JqEVrKBQgLKYCWgiIqLayFBLFSlZ+dLyWURERERVxc3OEP1aW2JN1H08TM5UdDhERNWKSWgFK5AIUFbir4GIiKg2MtJWBQC8zMpXcCRERERUF83o7QQ1FSXM2vMvNykkojqN2U8FKyiUcCU0ERFRLWWgWZSEZkkOIiIiqg6mOuqY2t0RJ+4l48+r8YoOh4io2jAJrWBFK6GZhCYiIqqNjLSKktDPM3MVHAkRERHVVcPcbdDSWg9z991AWg6/fUVEdROT0ApWUMhyHERERLWVYXE5jkxeEBIREVH1ECuJ8P37LfA8Ixc/Hbyt6HCIiKoFs58Kli9hOQ4iIqLaylCruBwHV0ITERFR9WlhrYeA9jbYePoRrsamKDocIqIqxyS0ghWyHAcREVGtVVwT+jlrQhMREVE1m9zdEcbaapix+18USrhJIRHVLUxCK1hBoQBlMX8NREREtZGKWAl6GircmJCIiIiqna66Cma954xrT1Ox+fQjRYdDRFSlmP1UsAKJhCuhiYioyrz//vvYt28fJBKJokOpM4y0VLkSmoiIiGpEn5YW6OhgjMUHbyMxLUfR4RARVRkmoRWsaCU0k9BERFQ1tLS04O/vD2tra3z99de4e/euokN65xlqqeJFBpPQREREVP1EIhG+69ccuYUSfPvndUWHQ0RUZZiEVrACiQCxEn8NRERUNbZs2YL4+HjMmjULhw8fhqOjI7y9vbFx40ZkZ2crOrx3kr6mClKz8xUdBhEREdUTdsZamNjFAQeuJeB8QoGiwyEiqhI1nv1ctWoV7OzsoK6uDhcXFxw/frzM9oIgICQkBE2bNoWamhosLCzw1VdfSZ+PioqCSCSSe9y6dUumn507d8LZ2RlqampwdnbG7t27q2V8lVUgkUCF5TiIiKgK6erq4pNPPsHZs2dx7do1uLi4YOzYsTA3N8fYsWNx8+ZNRYf4TtFRV0F6LpPQREREVHOCvO3hbKGLTTfzkJrFzyFE9O6r0ST09u3bMXHiRHz99de4dOkSPD090bNnTzx+/LjU10yePBmrVq3CDz/8gJs3b+LAgQPw9vaWa3f9+nXEx8dLHw4ODtLnoqOj4e/vj2HDhuHy5csYNmwYBg8ejDNnzlTLOCsjn+U4iIiomsTFxWHv3r3Yt28flJWVMWjQIDx58gQtW7bE4sWLFR3eO0NHXRlp2VyFRERERDVHRayEHwe1RHqegPkHuICAiN59NZqEXrJkCUaNGoXAwEA4OTkhNDQUFhYWWL16dYntb9++jdDQUOzduxf9+vWDvb092rRpg169esm1NTU1hbm5ufQhFoulz4WEhKBTp06YMWMGnJycMGPGDPj6+iIkJKS6hlphhRIByizHQUREVSQ/Px87duxAr169YGNjgz179uDLL79EfHw81q1bhwMHDmDLli2YN2+eokN9Z+iqqyAjtwCCICg6FCIiIqpHmlvpoYetCraff4KT95IVHQ4R0VupsexnXl4eLly4AD8/P5njfn5+OHXqVImv2bt3L+zt7fH333/D3t4etra2GDlyJBITE+Xaurq6wsLCAl26dEFkZKTMc9HR0XLn7d69e6nnrUkFhRKuhCYioipjYWGBsWPHolGjRrhw4QLOnj2LwMBAaGtrS9t069YNBgYG5fZV1SW0Ro0aVWIJLS0tLWmb8PDwEtvk5Chud3gddWUUSgRk5RUqLAYiIiKqn95vrAI7Yy1M33UNWXn8ZhYRvbuUa+pEycnJKCwshJmZmcxxMzMzHD58uMTXPHjwAI8ePcK2bdukF6VTpkxBnz59EB0dDSUlJelK6nbt2iEvLw+bNm1Cly5dEBUVJS3bkZCQUOJ5ExISSjxvWFgYwsLCAACxsbGIiop6q7FnZGSU2kdKWjZEuaK3PkdtUNY464r6MEaA46xL6sMYgfozzopYunQpBg8eDHV19VLbGBgY4OHDh2X2U1xCa9WqVejQoQNWrVqFnj174saNG2jYsGGJr5k8eTL27duHRYsWoUWLFkhNTUV8fLz0+WXLlmHhwoUyr/Hy8pIrs6WpqYn79+/LHCtrPNVNR10FAJCWkw8ttRr76EREREQEVbEICwa0wNCw01hy6A5mvues6JCIiN5IjV9JiUSyq34FQZA7VkwikSA3NxebNm1CkyZNAACbNm2Co6Mjzp07B3d3dzg6OsLR0VH6Gg8PD8TExGDx4sUyF7WVOW9QUBCCgoIAFK2w9vX1rfQ4XxUVFVVqH+qXjsHcWAu+vi5vdY7aoKxx1hX1YYwAx1mX1IcxAvVnnBUREBAAAMjOzpYmchs1agQNDY1K9fNqCS0ACA0Nxd9//43Vq1djwYIFcu2LS2hdvXoVTk5O0uNt2rSR/reenh709PSkP588eRIPHjzApk2bZPoSiUQwNzevVLzVSUe96ONSek4BLPTKaUxERERUxdrbG2GYe0OsP/kQ77WyROsG+ooOiYio0mqsHIexsTHEYrHc6uPExES5VcrFLCwsoKysLE1AA4CDgwOUlZXL3MzQ3d0dd+/elf5sbm5eqfPWpAKJBGKW4yAioiqSm5uLSZMmwdDQEK1atULLli1haGiIiRMnVrikRXWX0Cr2yy+/oFmzZvD09JQ5np2dDRsbG1hbW+O9997DpUuXKhR3ddHVKFoJnZ7DnemJiIhIMb7q2RSmOuqYtuMq8gokig6HiKjSamwltKqqKlxcXBAREYHBgwdLj0dERGDgwIElvsbLywsFBQW4f/8+GjVqBKCoREdBQQFsbGxKPdfly5dhYWEh/dnDwwMRERGYOnWqzHlfv+hVhAKJABUlJqGJiKhqfPLJJzh06BDWrl0LDw8PAEV7I0yfPh3p6elYv359uX1UVwmtV6WmpuL333/H/PnzZY47Ojpi/fr1aNWqFdLT07Fs2TJ4eXnhypUrcHBwkDtvTZTQupdSVAv6xNmLSH9YN8px1IcSNvVhjADHWZfUhzEC9WecRFVNR10F3/dvjo83nEfoP3cx2c+x/BcREdUiNXolFRwcjICAALi5ucHLywtr1qxBXFwcxo0bBwCYPn06zp49iyNHjgAAunbtirZt22L06NEICQkBAEyaNAnu7u5wdXUFAISEhMDW1hbNmjVDXl4eNm/ejD179mDnzp3S806cOBHe3t5YsGAB+vfvj927dyMyMhInTpyoyeGXqKBQgFipxhakExFRHff7779j165d6Natm/SYvb09TE1NMXDgwAoloYtVdQmtV23evBmFhYXS8iHFPDw8pMlzAPD09ETr1q0RGhqK5cuXy523JkpoWSemY97pY7B1cIJva6u36r+2qA8lbOrDGAGOsy6pD2ME6s84iapDFyczDHKxxqqo++jiZMayHET0TqnR7Ke/vz9CQkIwb948tG7dGidOnMCBAwekq5rj4+NlNiJSUlLCvn37YGpqCm9vb3Tv3h3W1tbYu3evdEVVXl4epkyZgpYtW6Jjx444ceIE9u/fjwEDBkj78fT0xLZt27Bhwwa0bNkSGzduxPbt2+UuiBWhQCKBCstxEBFRFdHS0oKVlXyi1MrKqsJ1oWuihNYvv/yCgQMHwtDQsMxYxGIxXF1dZcps1TRd9eJyHNyRnoiIiBTrmz7OMNNRw+TfLiMnv1DR4RARVViNL8EdP348YmJikJubiwsXLshsHhgeHo6YmBiZ9hYWFvj999+Rnp6OxMREbNmyReYC+Msvv8S9e/eQnZ2NFy9e4Pjx4+jVq5fceQcNGoRbt24hLy8PN2/elElSK1JBoQBlJqGJiKiKTJgwAXPmzEF2drb0WHZ2NubOnYsJEyZUqI9XS2i9qqxSVq+W0CpWWgmts2fP4sqVK9JND8siCAKuXr0qU2arpukwCU1ERES1hK66Cn4c1Ar3kzKx+OBtRYdDRFRhdaOw4TusQCJAmeU4iIioipw+fRpHjx6FlZUVWrZsCQC4du0aCgoKkJmZib59+0rb/vHHH6X2Ux0ltIqFhYXBwcEBPj4+cuedM2cO2rdvDwcHB6SlpWH58uW4evUqVq9e/Vbvy9tQV1GCspIIadyYkIiIiGqBDg7GCGhvg3UnH6Kbsxnc7Y0UHRIRUbmYhFawgkIJlLkxIRERVRFjY2O5DX/t7Owq3Y+/vz+eP3+OefPmIT4+Hs2bN69QCa3PP/8c3t7e0NDQQLdu3bBkyRKZTQnT09Oxbds2fPPNNyXWl05JSUFQUBASEhKgp6eHNm3a4NixY3Bzc6v0GKqKSCSCjroy0pmEJiIiolpieq+mOHY3CVN2XMFfE72hrcb0DhHVbvxXSsEKJALELMdBRERV5Ndff62yvsaPH4/x48eX+Fx4eLjcseISWmXR0dFBRkZGqc8vXboUS5curVScNUFXQ4XlOIiIiKjW0FRVxk+DW2Hwz9GYf+Am5vdvoeiQiIjKVKE6EHv27EFhIQveV4cCiQAVluMgIqIq9uDBA+zbtw/79+/HgwcPFB3OO09HXRlp2VwJTURERLWHq60hgjra439nHuPonSRFh0NEVKYKZT+HDRsGKysrTJs2Dbdvs/B9VREEAYUSAWKW4yAioiqSlpaGwYMHo3Hjxnj//ffRr18/ODg4YMiQIUhPT1d0eO8sHTWuhCYiIqLa54tuTeBgqo0vd1zBy8w8RYdDRFSqCiWhExISMGfOHBw9ehTOzs7o0KEDfv31V2RmZlZ3fHVagUQAAKiwHAcREVWRiRMn4urVq4iMjER2djays7Nx5MgRXL16FZMmTVJ0eO8sXQ1lJqGJiIio1lFXEWOpf2u8yMzD9F3XIAiCokMiIipRhZLQOjo6GDt2LE6fPo1r167B3d0d06dPh4WFBQIDA3H69OnqjrNOKigsmhyUxSzHQUREVeOPP/7A2rVr4ePjAxUVFaioqMDX1xdhYWHYs2ePosN7Z+moqyCNGxMSERFRLdTcSg9Tuzvi7+sJ2H7uiaLDISIqUaWzn87Ozvjiiy8QFBSEvLw8bN++HR07doS7uzuuXr1aHTHWWQUSCQBAmeU4iIioimRnZ8PIyEjuuKGhIXJychQQUd2graaMjFyuhCYiIqLaaUwHe3g1NsKcP2/gflLpm0ATESlKhZPQ+fn5+O2339CjRw/Y2dnhn3/+wZo1a/Ds2TM8evQITZo0gb+/f3XGWudIV0IzCU1ERFXEy8sLs2bNQlZWlvRYZmYmZs+eDU9PTwVG9m7TUBUjJ5+bNBMREVHtpKQkwk+DW0NNRQmTtl1GXoFE0SEREclQrkijCRMmYOvWrRCJRAgICMCSJUvg7OwsfV5DQwPff/89bG1tqyvOOin/v5XQYpbjICKiKrJkyRL07NkTVlZWaNmyJUQiEa5cuQItLS0cPHhQ0eG9szRVxMgvFJBfKIEK520iIiKqhcz11PHDwJYYu+kCfoq4jek9nRQdEhGRVIWuom7cuIEVK1bg6dOncgnoYpaWloiMjKzyAOuywuKNCbkSmoiIqkiLFi1w9+5d/Pjjj3B1dUXbtm2xaNEi3L17F82aNVN0eO8sDVUxACCbq6GJiKiGrVq1CnZ2dlBXV4eLiwuOHz9eZvtr167Bx8cHGhoasLKywnfffSe3Wd3Ro0fh4uICdXV12NvbY82aNXL97Ny5E87OzlBTU4OzszN2794t1yY+Ph4jR46EiYkJ1NXV4ezsjKNHj77dgOmtdG9mjg/cGiLs2AOcupes6HCIiKQqtBL6yJEj5XekrAwfH5+3Dqg+KS7HIWYSmoiIqkB+fj4aNGiAI0eOIDAwUNHh1CnSJHReIXTVVRQcDRER1Rfbt2/HxIkTsWrVKnTo0AGrVq1Cz549cePGDTRs2FCufVpaGrp16wZvb2+cO3cOt2/fxqhRo6ClpYXJkycDAB4+fIhevXph9OjR2Lx5M06cOIHx48fDxMQEAwcOBABER0fD398fc+bMwYABA7Br1y4MHjwYJ0+ehLu7OwAgJSUFXl5e6NChA/bv3w8TExM8ePAApqamNfcGUYlmveeEMw+fI/i3K/hrYkcYaKkqOiQiooqthJ4xY0aJd0bXrFmDWbNmVXlQ9UVB8Upofq2XiIiqgIqKClRUVCAS8eZmVdNQ+f8kNBERUU1ZsmQJRo0ahcDAQDg5OSE0NBQWFhZYvXp1ie23bNmCrKwsbNiwAc2bN8fAgQMxbdo0LFmyRLoaes2aNbC0tERoaCicnJwQGBiIkSNHYvHixdJ+QkJC0KlTJ8yYMQNOTk6YMWMGfH19ERISIm3z448/wsLCAhs3boSbmxvs7OzQpUsXODmxBISiaaoqY/nQNniemYsvd16VWwlPRKQIFcp+btq0CW3atJE77uLigo0bN1Z5UPVFQWFRTWhlMZMFRERUNSZMmIAFCxagoKBA0aHUKcVJ6CwmoYmIqIbk5eXhwoUL8PPzkznu5+eHU6dOlfia6OhodOzYERoaGtJj3bt3R1xcHGJiYqRtXu+ze/fuOH/+PPLz88ts8+p59+zZA3d3d/j7+8PU1BStW7fGihUrmPCsJZpb6WFaj6aIuPEM60/GKDocIqKKleNITEyEiYmJ3HEjIyM8e/asyoOqL4pXQiuzHAcREVWR48eP4+jRo7CyskLz5s2hpaUl8/wff/yhoMjebawJTURENS05ORmFhYUwMzOTOW5mZobDhw+X+JqEhARYW1vLtS9+zs7ODgkJCejatatcm4KCAiQnJ8PCwgIJCQklnjchIUH684MHD7Bq1Sp88cUX+Oqrr3D58mVMmDABAPDZZ5/JxRYWFoawsDAAQGxsLKKioirwLpQuIyPjrft4F7zNOBsJAtqYijF//w2Ikh/AXl9ctcFVEf4u65b6MM76MEag6sdZoSR0w4YNcfz4cdjb28scP3bsmNwERxVXXBNaWYnlOIiIqGoYGxtL6zlS1WE5DiIiUpTXy2wJglBm6a2S2r9+/E3bvHpMIpHA1dUVCxYsAAC0adMGd+/excqVK0tMQgcFBSEoKAgA4OrqCl9f31LHUBFRUVFv3ce74G3H2dY9H72WH8e6W8CBz72gp1n79rbg77JuqQ/jrA9jBKp+nBVKQo8dOxZffPEF8vLy0LlzZwBFmxVOnz4d06ZNq7Jg6pt8SVE5DjHLcRARURX59ddfFR1CnaSpWvSRiSuhiYiophgbG0MsFsusPgaKvqn8+irlYubm5iW2B/5/RXRpbZSVlWFkZFRmm1fPa2FhAWdnZ5k2Tk5OWLZsWUWHSDVAT1MFK4e1xeA1pzBlxxWEBbhw/xAiUogKLcGdPHkyxo4di88//xxNmjRBkyZNMHHiRAQGBuLLL7+s7hjrrMLijQm5EpqIiKpI586dkZKSInc8LS1NeiOZKk9DtWiuzspjrW0iIqoZqqqqcHFxQUREhMzxiIgIeHp6lvgaDw8PHD9+HDk5OTLtLS0tYWtrK23zejmPiIgIuLq6QkVFRdqmvPN6eXnh9u3bMm3u3LkDGxubyg2Uql3rBvr4qqcTIm48w7oTDxUdDhHVUxXOfi5YsADJyck4ffo0oqOjkZSUhIULF1ZnbHVe/n8bE4pZE5qIiKpIVFQU8vLy5I7n5OTg+PHjCoiobtD4byV0DldCExFRDQoODkZ4eDjWrl2LmzdvYuLEiYiLi8O4ceMAANOnT0eXLl2k7T/88ENoampi1KhR+Pfff7Fr1y4sXLgQwcHB0tWv48aNQ2xsLCZNmoSbN29i7dq1CA8Px5QpU6T9TJw4Ef/88w8WLFiAW7duYcGCBYiMjMSkSZOkbb744gucPn0a33//Pe7du4fff/8dy5cvx6efflozbw5VymgvW/g5m2HhX7dw8fFLRYdDRPVQpZbgamlpoV27dnBzc4O2tvYbnXDVqlWws7ODuro6XFxcyr0gFgQBISEhaNq0KdTU1GBhYYGvvvpK+vyuXbvg5+cHExMT6OjowN3dXW7TpfDwcIhEIrnHq3eHFUG6EprlOIiI6C1dvHgRFy9eBABcvXpV+vPFixdx7tw5hIWFwcrKSsFRvruKa0JnsSY0ERHVIH9/f4SEhGDevHlo3bo1Tpw4gQMHDkhXG8fHx+P+/fvS9np6eoiIiEBcXBxcXV3x6aefYvLkyQgODpa2sbOzw4EDB3Ds2DG0bt0a33//PZYvXy6zp4Snpye2bduGDRs2oGXLlti4cSO2b98Od3d3aZt27dphz549+O2339C8eXPMmDEDc+fOxfjx42vgnaHKEolEWDSoFcz11DHhf5eQkiW/aIGIqDpVqCY0AERGRmLr1q14/Pix3Aqrf/75p0J9bN++HRMnTsSqVavQoUMHrFq1Cj179sSNGzfQsGHDEl8zefJk7Nu3D4sWLUKLFi2QmpqK+Ph46fNHjx5F586dMW/ePBgaGmLLli3o378/oqKi0LFjR2k7TU1NmckZANTV1Ss6/Goh3ZhQzHIcRET0dlxdXaU3Wf38/OSe19DQQGhoqAIiqxs0Vf/bmJAroYmIqIaNHz++1MRueHi43LEWLVrg2LFjZfbp4+MjvXldmkGDBmHQoEFltunduzd69+5dZhuqPfQ0VbDyw7YYtOYUJm67jPWj2vGb2URUYyqUhA4PD8e4ceOkyd1+/frhzp07ePjwIYYPH17hky1ZsgSjRo1CYGAgACA0NBR///03Vq9eLd1R91W3b99GaGgorl69CicnJ+nxNm3aSP/79U0PZs+ejf3792PPnj0ySWiRSARzc/MKx1oTCv5bCa3Mf/SJiOgtPXz4EIIgwN7eHmfPnoWJiYn0OVVVVZiamkIsFiswwnebmrISRCIghyuhiYiI6B3WqoE+Zvdphpl7/sWyw3cQ7Oeo6JCIqJ6o0BLcxYsXY8WKFdi6dStUVFSwYMECXLp0CcOHD69wWY68vDxcuHBBbnWWn58fTp06VeJr9u7dC3t7e/z999+wt7eHra0tRo4cKd3dtzTp6ekwMDCQOZadnQ0bGxtYW1vjvffew6VLlyoUd3Uq+K8mtDLLcRAR0VuysbGBra0tJBIJXF1dYWNjI31YWFgwAf2WRCIRNFTELMdBRERE77xh7g0x2MUay/+5h4gbzxQdDhHVExVaCf3gwQN07doVAKCmpoaMjAwAwGeffQZfX98KbVCYnJyMwsJCmJmZyRw3MzOT25n31fM+evQI27Ztk9Z1njJlCvr06YPo6GgoKcnn0FeuXInY2FgEBARIjzk6OmL9+vVo1aoV0tPTsWzZMnh5eeHKlStwcHCoyFtQLfK5EpqIiKrBkydPcPz4cSQmJkIikcg892pNSKocDRUxy3EQERHRO08kEmHu+81x+1k6grdfxt7PvGBv8mb7fhERVVSFktBGRkZIT08HAFhZWeHff/9Fy5Yt8fz5c2RnZ1fqhMU78hYTBEHuWDGJRILc3Fxs2rQJTZo0AQBs2rQJjo6OOHfunMymCACwc+dOTJ06Fdu2bZNu1AAAHh4e8PDwkP7s6emJ1q1bIzQ0FMuXL5c7b1hYGMLCwgAAsbGxiIqKqtQYX5eRkVFiH//GFQAALpw7h1itd78udGnjrEvqwxgBjrMuqQ9jBOrPOCtiy5YtGD16NJSVlWFiYiIzx4pEIiah34KGqhjZXAlNREREdYC6ihirh7ugT+gJjN10AXs+9YKWWoW3DSMiqrQK/QvTsWNHHDp0CC1atMCQIUPw+eefIyIiAkeOHEG3bt0qdCJjY2OIxWIkJCTIHE9MTJRbHV3MwsICysrK0gQ0ADg4OEBZWRmPHz+WSULv3LkTAQEB2LhxI/r27VtmLGKxGK6urrh7926JzwcFBSEoKAhA0UZPvr6+FRliqaKiokrsI/H8E+DqVXh6tEcDQ823OkdtUNo465L6MEaA46xL6sMYgfozzor45ptvMHnyZMydO5clOKoYV0ITERFRXWKlr4HQD9ogYN0ZTN1xBSs/bFvqIkEiordVoeW3K1aswAcffAAAmD59OqZOnYrnz59jyJAhWLt2bYVOpKqqChcXF0RERMgcj4iIgKenZ4mv8fLyQkFBAe7fvy899uDBAxQUFMisdP7tt98wfPhwhIeHl7t7L1C0+vrq1auwsLCoUOzVpfC/chwq4nd/FTQREdUOz549w5gxY6okAb1q1SrY2dlBXV0dLi4uOH78eJntBUFASEgImjZtCjU1NVhYWOCrr76SPh8VFQWRSCT3uHXrlkw/O3fuhLOzM9TU1ODs7Izdu3e/9ViqgoYqa0ITERFR3eLV2BjTejTFgWsJCDv2QNHhEFEdVu5K6IKCAmzbtg3vv/8+AEBJSQnTpk17o5MFBwcjICAAbm5u8PLywpo1axAXF4dx48YBKEpwnz17FkeOHAEAdO3aFW3btsXo0aMREhICAJg0aRLc3d3h6uoKANi2bRsCAgKwePFieHt7S1daq6qqwtDQEAAwZ84ctG/fHg4ODkhLS8Py5ctx9epVrF69+o3GUVW4MSEREVW1Xr164cyZM7C3t3+rfrZv346JEydi1apV6NChA1atWoWePXvixo0baNiwYYmvmTx5Mvbt24dFixahRYsWSE1NRXx8vFy769evS+doADAxMZH+d3R0NPz9/TFnzhwMGDAAu3btwuDBg/+vvTsPi6ps/wD+nZUdZF9EWRQQxAVBCVDEDVOzcnupjPCtRKMF10rtl1mWWaQoqbxuoWZqpmalWbigoLijmFtuaAiI4Aayz5zfH+jkyCIqMDDz/VzXXHrOec45983ROcw9z3ke7N27t8owXI2NPaGJiIhIG0UGuyI98zZmbzsDT3tTBLtbP3onIqLH9MgitFQqxeTJkzFo0KCnPllYWBjy8/Mxc+ZMZGdnw9vbG1u3blX1as7Ozlbr9SwWi/Hbb7/hvffeQ3BwMAwMDNCvXz/MmTNHNSlhfHw8KioqMG7cOIwbN061b8+ePVXjg966dQuRkZHIycmBmZkZfHx8sGfPHnTr1u2pc3oaFZyYkIiI6lm/fv3wwQcf4OTJk+jQoQNkMpna9qFDh9bpOHPmzMGoUaMwevRoAEBcXBy2bduGRYsWYdasWVXanz17FnFxcUhPT4enp6dqvY+PT5W2NjY2sLKyqva8sbGx6NWrF6ZNmwYAmDZtGnbt2oXY2FisWbOmTrE3FAO5BPmFZRqNgYiItMNPP/2ETz75BH/99ZemQyGCSCTCV8M74sL1Qrz9w1H8/HYQ2nCiQiKqZ3UaE/qZZ57BkSNH1IbAeFJRUVGIioqqdltCQkKVdfb29li/fn2Nx6vLRFRz587F3Llz6xpio6lQ3CtCczgOIiKqJ2PGjAEAfPHFF1W2iUQiKBSP7slbVlaGI0eOYNKkSWrrQ0NDsW/fvmr32bx5M1xdXbFt2zYMGjQISqUSPXv2xNdffw0bGxu1tn5+figtLYWXlxc++ugj9OrVS7UtNTUV7777rlr7/v3749tvv31k3A3NUC5BJntCExFRHS1ZsgR//vknZDIZoqOj4e/vj927d2PcuHE4e/YswsPDNR0ikYqRnhRLI/zwwrd78eaKw9gUFYgWhnJNh0VEWqRORejRo0dj0qRJuHLlCnx9fWFkZKS2vUuXLg0SnLYrV94bjoM9oYmIqJ4o791bnkZeXh4UCkWViYNtbW2xffv2ave5ePEiLl++jLVr1yIhIQEikQiTJk3C4MGDkZqaCrFYDHt7eyxatAhdu3ZFWVkZVq1ahT59+iApKQnBwcEAgJycnGrP+/DExvctXrwYixcvBgBkZmbW6cvp2hQWFtZ4jNv5pbh5R/HU52gKastTW+hCjgDz1Ca6kCOgO3nGxMRg6tSp6NixI06fPo3Nmzdj+vTp+Prrr/HOO+/g7bffrvGpICJNcTQ3xP/CffHKkgN4+4ejSPhvN85hRUT1pk5F6FdeeQVA5ZjOD6trryqqSqHgcBxERNR0PTw7uiAINc6YrlQqUVpailWrVsHd3R0AsGrVKnh4eODQoUPw9/eHh4cHPDw8VPsEBAQgIyNDNa/Dk5w3MjISkZGRACp7WIeEhDx2ng9KSkqq8Rjbb53A6ds5T32OpqC2PLWFLuQIME9togs5ArqT57JlyxAfH4/XX38dSUlJ6N27N/7880+cO3cOLVq00HR4RDXyc7bA50O8MfmndHz22yl8+oK3pkMiIi1Rp6+0Ll26VOPr4kXOnvqkyu+NCS1hEZqIiJ5SYGAgbt26pVqeMmUKbty4oVrOy8urcULBh1lZWUEikVTpfZybm1ull/J99vb2kEqlqgI0ALi5uUEqleLKlSs1nsvf3x/nzp1TLdvZ2T3WeRuTgUyCorIKTYdBRETNwOXLl9G3b18AQEhICGQyGT7//HMWoKlZGOHXCpHBrliZehmr9l/WdDhEpCXqVIR2cnKq9UVPRqFUQioW1di7i4iIqK7279+PsrJ/J81bsGCBWlFaoVDg6tWrdTqWXC6Hr68vEhMT1dYnJiYiMDCw2n2CgoJQUVGhNsHwxYsXUVFRUevvCseOHYO9vb1qOSAg4LHO25gM5FKUlCuhvPclMhERUU1KSkqgr6+vWpbL5bC2ttZgRESP54Nn26F3Oxt88stJ7Dufp+lwiEgL1Gk4jo0bN9a6fejQofUSjK6pUAiQSliAJiKi+icIT1conTBhAsLDw9GtWzcEBQUhPj4eWVlZGDt2LIDKntYHDx7Ejh07AAB9+/ZFly5d8PrrryM2NhYAMG7cOPj7+8PPzw8AEBsbC2dnZ7Rv3x5lZWX4/vvv8fPPP2PDhg2q80ZHRyM4OBizZs3CkCFDsGnTJuzatQspKSlPlU99MJBJAAAlFQoYyuv0KxQREemw+Ph4GBsbAwAqKiqwbNkyWFpaqrWpbshLoqZAIhZh3kudMWzRPry1+ig2vBWItjbGmg6LiJqxOn2CGj58eLXr7/fg5ZjQT6ZCKUAq5iD/RETU9ISFhSE/Px8zZ85EdnY2vL29sXXrVlWv5uzsbLVez2KxGL/99hvee+89BAcHw8DAAP369cOcOXMgvnevKysrw6RJk3D16lUYGBigffv22LJlCwYOHKg6TmBgINauXYuPPvoI06dPR5s2bbBu3Tr4+/s37g+gGkZ6lUXowtIKFqGJiKhWrVu3xnfffadatrOzww8//KDWRiQSsQhNTZqJvgzLIrpiyMK9GPXdQWyKCoK1iZ6mwyKiZqpOn6CUSqXackVFBdLS0jB58mR8/vnnDRKYLqhQKNkTmoiI6oVIVHV4p6cd7ikqKgpRUVHVbktISKiyzt7eHuvXr6/xeO+//z7ef//9R553+PDhNX4BrklmBjIAwO2ictiY6D+iNRER6bKMjIxHbq/LPZFI01pZGGJZRFe8tHg/3lxxCGsin+GX8UT0RJ7onUMqlaJr16744osv8NZbb+H48eP1HZdOKFcKkHJSQiIiqgeCIODVV1+Fnl5l75SSkhKMHj0ahoaGAIDS0lJNhqcVzA3lAICbReUajoSIiJq727dvqw1HRdSUdWrVAvNf9sGYVYfx3po0/C/cDxLWMojoMT3V11ctWrRQexSXHo9CweE4iIiofkRERKgtv/rqq1XavPbaa40Vjlb6twhd9oiWRERERNqln5ctPnm+PT7efBIzfj2JGc+3f+qn7ohIt9SpCH306FG1ZUEQkJ2djdmzZ8PHx6dBAtMF5Uolvz0kIqJ68eC4k9QwWhhWDsdxi0VoIiIi0kGvBTgj82YxFu+5iFbmhhgd7KrpkIioGalTEdrPzw8ikQiCIKitf+aZZ/ih9ykolAJkHBOaiIioWTA34nAcREREpNs+fLYdrt4sxudbT8OhhQEGdbTXdEhE1EzUqQh96dIltWWxWAxra2vo63NSnqdRoRAglXA4DiIioubASC6BTCLicBxERPRIzz//fK3b79y500iRENUvsViEb/7TCdfulGD8umMwN5QhsK2VpsMiomagTkVoJyenho5DJ5UrlJyYkIiIqJkQiURoYSjHrbvsCU1ERLWztLR85HYXF5dGioaofunLJFgW0RX/+V8qRq88jDWRz6CjYwtNh0VETVyditDTpk1Dq1atMHbsWLX18fHxuHr1Kj777LMGCU7bKZQCpByOg4iIqNkwN5SxJzQRET0Sh60kbWdmKMPKN7ph2KJ9GPXdIawfG4A21saaDouImrA6jQWxatWqaicg9PX1xcqVK+s9KF1RrhQgEXM4DiIiouaihaEctzgmNBERERFsTfWx6g1/iEXAa8sOIud2iaZDIqImrE4V0NzcXFhbW1dZb2lpiWvXrtV7ULpCoVRCxuE4iIioHu3evRsHDhxQLSckJKB79+4YM2YMCgsLNRiZdjA3lOFWMXtCExEREQGAi5UREv7bDbeLyxG+7ABu8YkxIqpBnYrQrVu3RnJycpX1e/bsgaOjY70HpSvKFQIkLEITEVE9GjduHHJycgAAZ8+exZgxY9CxY0ekpqZi8uTJGo6u+TM3lOMme0ITERERqXi3NMOS1/xw+UYR/ptwCEVlFZoOiYiaoDoVoceMGYPx48djyZIluHDhAi5cuIDFixdj4sSJiIyMbOgYtZZCKUAm4XAcRERUfy5cuIAOHToAADZs2IB+/fph4cKFWLJkCX799VcNR9f8VQ7HUQZBEDQdChEREVGTEdDGEnEv++D4P7cQufIISsoVmg6JiJqYOk1MOHHiROTl5eG9995DWVnloxVyuRzR0dF4//33GzRAbVahUEKqX6dLQEREVCcikQgKReUv/Tt27MCQIUMAAHZ2dsjPz9dkaFrB3FCGcoWAu2UKGOvxHk5ERER0X//2dvh6eCdMXH8cUauPIv5VX8il7HhHRJXq/G4wa9Ys5OXlYf/+/UhNTcX169fx5ZdfNmRsWq9cIUDK4TiIiKgede3aFZ999hlWrVqF5ORkDBgwAACQkZEBOzs7DUfX/JkbygEAN+9yvEMiIiKihw3zdcTnQ7yx80wuotemoUKh1HRIRNRE1KkInZOTg8zMTBgZGaFr167o1q0bjI2NkZmZ+dgTEy5cuBAuLi7Q19eHr69vtWNNP0gQBMTGxqJdu3bQ09ODvb09PvzwQ7U2u3fvhq+vL/T19eHq6or4+Pgqx9mwYQO8vLygp6cHLy8vbNq06bHibggKpQCpmN8KEhFR/YmNjcWxY8fwzjvvYNq0aWjTpg0AYP369QgMDNRwdM1fC0MZAOAmJ90hIiIiqtZIfyd8/JwXfv8rBxPXH4dCyWHMiKiORejw8HD8/vvvVdb/8ccfCA8Pr/PJ1q1bh+joaEydOhVpaWkIDAzEgAEDcOXKlRr3mThxIhYuXIjZs2fj9OnT2Lp1K4KDg1XbL126hIEDByIwMBBpaWmYMmUK3n33XWzYsEHVJjU1FWFhYRg5ciSOHTuGkSNHYsSIEThw4ECdY28I5UolJBL2hCYiovrj7e2N9PR03L59G9OnT1etj4mJQUJCguYC0xIOLQwAAJk3izUcCREREVHT9Xp3F7z/rAc2H8vClI3pULIQTaTz6lSEPnTokFrh974ePXrg8OHDdT7ZnDlzMGrUKIwePRqenp6Ii4uDvb09Fi1aVG37s2fPIi4uDps3b8YLL7wAV1dX+Pj4YODAgao28fHxcHBwQFxcHDw9PTF69GhEREQgJiZG1SY2Nha9evXCtGnT4OnpiWnTpiEkJASxsbF1jr0hKJQCZByOg4iI6pFSqYRS+e9jjzk5OVi6dCmOHj0KmUymwci0g6u1EQDgQm6hhiMhIiIiatqiQtrivT5u+PFwJqb/cpITOxPpuDoVoSsqKlBaWlplfUlJSbXrq1NWVoYjR44gNDRUbX1oaCj27dtX7T6bN2+Gq6srtm3bBldXVzg7OyMiIgK5ubmqNqmpqVWO2b9/fxw+fBjl5eW1tqnpvI2lQiFAwuE4iIioHg0aNAhxcXEAgMLCQvj5+WHy5Mno2bMnVq5cqeHomj9DuRQtWxjgwnUWoYmIiIgeZXxfN4wJdsWq/Zcx49dTLEQT6bA6Tevu7++PRYsWVemxvGDBAnTt2rVOJ8rLy4NCoYCtra3aeltbW2zfvr3afS5evIjLly9j7dq1SEhIgEgkwqRJkzB48GCkpqZCLBYjJycHffv2rXLMiooK5OXlwd7eHjk5OdWeNycnp9rzLl68GIsXLwYAZGZmIikpqU451qSwsLDaY9wtLsH13BwkJd18quM3FTXlqU10IUeAeWoTXcgR0J086+LIkSP46quvAAAbN26EqakpLl26hNWrVyMmJgavvfaahiNs/lytjXDh+l1Nh0FERETU5IlEInw4oB2UgoAlyZdQoVTi0+e9IeZT4UQ6p05F6M8//xy9e/fG8ePH0adPHwDAzp07cfToUezYseOxTigSqb/RCIJQZd19SqUSpaWlWLVqFdzd3QEAq1atgoeHBw4dOgR/f/8aj/nw+sc5b2RkJCIjIwEAfn5+CAkJqWN21UtKSqr2GJLkRLR2tENISIenOn5TUVOe2kQXcgSYpzbRhRwB3cmzLgoKCtCiRQsAwJ9//okhQ4ZAJpOhd+/eePvttzUbnJZoY22MHw//U+vvEkRERERUSSQSYepAT4jFIvxv90UolMDnL7IQTaRr6jQWxDPPPIPU1FS4uLhg48aN2LBhA1xdXZGamoqioqI6ncjKygoSiaRK7+Pc3NwqvZTvs7e3h1QqVRWgAcDNzQ1SqVQ1maGdnV21x5RKpbC0tKy1TU3nbSzlCiWkHI6DiIjqUevWrbF3717cvXsXf/zxB/r16wcAuHHjBgwNDTUcnXZoY2OMojIFcu6UaDoUIiIiomZBJBLhw2fb4e1ebbDm4BV8yMkKiXROnSugnTp1wurVq3Hy5En8+eefcHd3x5AhQ9C/f/867S+Xy+Hr64vExES19YmJiQgMDKx2n6CgIFRUVODChQuqdRcvXkRFRQWcnJwAAAEBAVWG80hMTISfn59qAqaAgIDHOm9jUSgFSPnNHxER1aMJEyYgPDwcjo6OaNmypWpi4T179qBDB+148kbT2qgmJ+SQHERERER1JRKJMCnUQzVZ4eSf0qFgIZpIZ9S5CK1QKLBp0yYMGjQILi4u+Pnnn/HWW2/h/PnzdT7ZhAkTkJCQgKVLl+L06dOIjo5GVlYWxo4dCwCYMmWKargPAOjbty+6dOmC119/HWlpaUhLS8Prr78Of39/+Pn5AQDGjh2LzMxMjBs3DqdPn8bSpUuRkJCASZMmqY4THR2NnTt3YtasWThz5gxmzZqFXbt2Ydy4cXWOvSGUKwVIJCxCExFR/RkzZgxSU1OxfPlypKSkQHzviZs2bdrgs88+03B02qGtjTEA4Oy1Ag1HQkRERNS8iEQiTOjnjvF93bHhaCYmrT/OQjSRjnhkEfrs2bOYPHkyHBwcMHHiRPj4+EAQBKxatQrvv/8+XFxc6nyysLAwxMbGYubMmejcuTNSUlKwdetWVa/m7OxstV7PYrEYv/32G2xsbBAcHIz+/fvD0dERmzdvVn2odnFxwdatW7Fnzx507twZn3/+OebPn49hw4apjhMYGIi1a9dixYoV6NixI1auXIl169apxpTWFIVSgIzDcRARUT3z8/PDkCFDYGxsrFo3aNAgBAUFPdZxFi5cCBcXF+jr68PX1xfJycm1thcEAbGxsWjXrh309PRgb2+PDz/8ULV948aNCA0NhbW1NUxMTODv749ffvlF7Rj3JyJ++FVS0nSGvrA21oOVsRyns+9oOhQiIiKiZim6rxsm9/fAprSrWHCsFKUVCk2HREQNrNaJCXv06IG//voLw4cPx48//oiePXsCAGbPnv3EJ4yKikJUVFS12xISEqqss7e3x/r162s9Zs+ePXH06NFa2wwfPhzDhw+vc5wNTRAEKJQCJByOg4iI6tmWLVswe/ZsnDp1CiKRCF5eXvjggw8wcODAOh9j3bp1iI6OxsKFC9G9e3csXLgQAwYMwKlTp9C6detq95k4cSJ+++03fP311+jQoQNu376N7Oxs1fbdu3ejd+/emDlzJiwsLLB69WoMGTIESUlJ6NGjh6qdoaGh2pfSAKCvr/+YP4WGIxKJ4OVgxiI0ERER0VN4u1dbGMolmPHrKbyRcBj/C/eFkV6tZSoiasZq/d+dmpqKt99+G6NHj4a3t3djxaQTKu49biLjcBxERFSPli5diqioKIwcORIREREAgOTkZAwZMgSLFi3C66+/XqfjzJkzB6NGjcLo0aMBAHFxcdi2bRsWLVqEWbNmVWl/9uxZxMXFIT09HZ6enqr1Pj4+qr/PmzdPbZ/p06djy5Yt+Pnnn9WK0CKRCHZ2dnVPWgO87E2xPOUSyiqUkEv5VBMRERHRk/hvkAuuZpzH8r/y8OqyA0gY1Q1mhjJNh0VEDaDWT02HDx9GRUUFevToAR8fH8ydOxc5OTmNFZtWq1BUFqGlEn5wJSKi+jN79mzMmTMH3333Hd544w288cYbSEhIQExMDL788ss6HaOsrAxHjhxBaGio2vrQ0FDs27ev2n02b94MV1dXbNu2Da6urnB2dkZERARyc3NrPVdBQQHMzc3V1hUXF8PJyQmOjo547rnnkJaWVqe4G5OXgynKFEpcuF6o6VCIiEjLPe7wWCdOnEDPnj1hYGCAli1b4tNPP4UgqI+5u3v3bvj6+kJfXx+urq6Ij4+vcpwNGzbAy8sLenp68PLywqZNm2o85xdffAGRSIR33nnnyZIknda9pQwLR3bByat3ELY4FbkFTWcYNiKqP7X2hO7cuTMWLFiAb775BuvXr8eyZcvw/vvvQ6lUYsuWLbC3t6/ywZHqplypBABIORwHERHVoytXruDZZ5+tsn7AgAFqk/bWJi8vDwqFAra2tmrrbW1tsX379mr3uXjxIi5fvoy1a9eqxnWeNGkSBg8ejNTUVNVcDg9asGABMjMzER4erlrn4eGB5cuXo1OnTigoKMC8efMQFBSE48ePw83NrcoxFi9ejMWLFwMAMjMzkZSUVKcca1JYWFinYxQWVt7HN+48gKCWza+3Tl3zbM50IUeAeWoTXcgR0J0868vjDo91584d9OvXD8HBwTh06BDOnj2LUaNGwcjICBMnTgQAXLp0CQMHDsTrr7+O77//HikpKYiKioK1tbVqbqXU1FSEhYVhxowZGDp0KDZu3IgRI0Zg7969VeZW2r9/P5YsWYKOHTs2/A+EtNaz3vZYNkqKyJVH8J/4VHz/pj8czQ01HRYR1aM6Dbajr6+P8PBwhIeH4/z581i6dCnmzp2Ljz76CL1798bvv//e0HFqHcX9ntAsQhMRUT1q3bo1EhMT0bZtW7X1f/75p2oi4LoSidTvUYIgVFl3n1KpRGlpKVatWgV3d3cAwKpVq+Dh4YFDhw5V+cC6YcMGTJ48GWvXrlWLKyAgAAEBAarlwMBAdO7cGXFxcZg/f36V80ZGRiIyMhJA5YSMISEhj5Xjw5KSkup0DIVSwMyDf6DM2B4hIc1vyLK65tmc6UKOAPPUJrqQI6A7edaXxx0ea/Xq1SgqKsKKFStgYGAAb29vnD59GnPmzMGECRMgEokQHx8PBwcHxMXFAQA8PT1x4MABxMTEqIrQsbGx6NWrF6ZNmwYAmDZtGnbt2oXY2FisWbNGdb7bt29j5MiRWLZsGT799NOG/nGQluvhZo3v3+yG/353CMMW7cOK17uhnZ2ppsMionry2GNBtG3bFl9++SX++ecf/Pjjj5DL5Q0Rl9a73xNawuE4iIioHk2aNAnR0dEYPXo0vvvuOyQkJODNN9/E+PHj69wT2srKChKJpMoQXLm5uVV6R99nb28PqVSqKkADgJubG6RSKa5cuaLWdsOGDQgPD8fKlSvx/PPP1xqLRCKBn58fzp07V6fYG4tELIJP6xY4lHFT06EQEZGWepLhsVJTU9GjRw8YGBio1vXv3x9ZWVnIyMhQtXn4mP3798fhw4dRXl5ea5uHzxsZGYnhw4ejd+/eT5Qj0cN8nSywbkxlh4QRi1KReiFfwxERUX154mlHJRIJXnjhBbzwwgv1GY/OUNyfmJA9oYmIqB6NGTMGNjY2+Oabb7Bx40YAlT2cfvzxxzrfs+VyOXx9fZGYmIgRI0ao1icmJqp6SD0sKCgIFRUVuHDhAtq0aQOgcoiOiooKtZ7OP/74IyIiIrBixQoMHz78kbEIgoD09HR06tSpTrE3pq7OFpi34xzulJTDVL/5DclBRERN25MMj5WTkwNHR8cq7e9vc3FxQU5ODvr27VulTUVFBfLy8mBvb4+cnJxqz/vgF9RLlizB+fPnsWrVqjrlo6khtJo7Xcizuhzf9xHjm8NlCF+6H6M76sHf/onLV02GLlxLQDfy1IUcgfrPs/n/L26m7k9MKGERmoiI6kl5eTmmTZuGt99+GykpKU91rAkTJiA8PBzdunVDUFAQ4uPjkZWVhbFjxwIApkyZgoMHD2LHjh0AgL59+6JLly54/fXXERsbCwAYN24c/P394efnBwBYu3YtwsPDERMTg+DgYNUHWblcDgsLCwDAjBkz8Mwzz8DNzQ137tzB/PnzkZ6ejkWLFj1VPg2hm7MFBAE4knETvdrZaDocIiLSUo8zPFZN7R9e/6Rt7q87e/Yspk6diuTk5Do/Ha2pIbSaO13Is6Yc+/Qsw5srDmPR8ZuwatUGb3R3afzg6pEuXEtAN/LUhRyB+s+TY0FoSLmicjgOGYfjICKieiKTybBw4ULVB8mnERYWhtjYWMycOROdO3dGSkoKtm7dqurVnJ2djQsXLqjai8Vi/Pbbb7CxsUFwcDD69+8PR0dHbN68WTUpYXx8PCoqKjBu3DjY29urXkOHDlUd59atW4iMjISnpydCQ0Nx9epV7NmzB926dXvqnOqbT2tzSMUiHMy4oelQiIhICz3J8Fh2dnbVtgf+7RFdUxupVApLS8ta29w/RmpqKvLy8uDt7Q2pVAqpVIrdu3dj4cKFkEqlKC0tfcKsif7VwlCO79/0x7Pt7fDZb6fw+ZZTUCqf/vdcItIMVkA15P5wHOwJTURE9al///7YuXNnvRwrKioKGRkZKC0txZEjRxAcHKzalpCQoBpb8j57e3usX78eBQUFyM3NxerVq9U+JCclJUEQhCqvBx/xmjt3Li5fvozS0lLk5ubijz/+UJuosCkxkEvQxckcf/yVUy+FfyIiogc9ODzWgxITExEYGFjtPgEBAUhOTkZJSYlaewcHBzg7O6vaPDycR2JiIvz8/CCTyVRtajvviy++iBMnTuDYsWOql5+fH1566SUcO3aMc0dRvdGXSbBgZBe8FuCEJcmX8O7aNJSUKzQdFhE9AQ7HoSHl94bjkElYhCYiovrTp08fTJ06Fenp6fD19YWRkZHa9gd7HdPTC/NrhYnrjyP1Yj4C21hpOhwiItIyjzs81iuvvIIZM2Zg1KhR+Oijj/D333/jyy+/xPTp01VDaYwdOxbffvstxo0bhzFjxmDv3r1ISEjAmjVrVOeNjo5GcHAwZs2ahSFDhmDTpk3YtWuXarivFi1aoEWLFmqxGhkZwcLCAt7e3o3wkyFdIhGLMOP59mjZwgBfbjuDzJvFWPKaL2xM9DUdGhE9BhahNeR+T2ipmJ3RiYio/rzzzjsAgPnz51fZJhKJoFCw50h9GtTRHp9tOYXV+6+wCE1ERPUuLCwM+fn5mDlzJrKzs+Ht7V3r8FhmZmZITEzE22+/DT8/P5ibm2PixImYMGGCqo2Liwu2bt2K8ePHY9GiRXBwcMD8+fPVJh8ODAzE2rVr8dFHH2H69Olo06YN1q1bB39//8ZLnugBIpEIY3q2gbOVEcatPYYXv92LpRFd4eVgqunQiKiOWITWkHJl5ZjQEvaEJiKieqS8d3+hxqEvk2CojyO+338Zt4vKYWYo03RIRESkZaKiohAVFVXttoSEhCrrOnTogD179tR6zJ49e+Lo0aO1thk+fDiGDx9e5zgfHF6LqKH0b2+H9WMD8OaKwxgRvw/zX/ZBH8/qx0gnoqaF3XA15H5PaBl7QhMRETVrQ7u0RJlCid9OZGk6FCIiIiKt593SDJvfCYKrtTHeXHkYS5Mvcn4OomaAFVANKVfc6wnNiQmJiKge/P7773B2dsbt27erbLt9+zacnZ3x559/aiAy7dfewRRuNsbYdPSqpkMhIiIi0gm2pvr4cUwA+nvZYeaW05i66S9VnYWImiYWoTWkghMTEhFRPfr2228xefJkmJmZVdlmZmaGDz74APPmzdNAZNpPJBJhmK8jDl++ibM5BZoOh4iIiEgnGMglWDiyC6JC2mDNwSsYufQArheUajosIqoBi9Aacn84DvaEJiKi+pCeno6+ffvWuL137944fvx4I0akW8L8WkFfJsZ3ey9pOhQiIiIinSEWi/D+s+0QG9YZ6Zm3MDguBcf+uaXpsIioGixCa8j9x0RkEl4CIiJ6etevX4e4lnkGRCIR8vPzGzEi3WJuJMfQLo7YmHYV+YXsgUNERETUmF70aYkNbwVCKhHhP/GpWHfoiqZDIqKHsAKqIfd7Qks5HAcREdUDR0dHpKen17g9PT0dLVu2bMSIdM9/A51RVqHEmoP80ENERETU2No7mOHXd7qjm4sFPthwAtM2nUBZBceJJmoqWITWkPL7RWgOx0FERPVg0KBB+L//+z8UFxdX2VZUVISPP/4YgwYN0kBkusPN1gTB7tZYmXqZH3iIiIiINMDcSI4Vr3fD2J5tsPrAFby8ZD+u3SnRdFhEBBahNUahrPxwKq3l0WkiIqK6mjZtGm7fvg03NzfMnj0bmzdvxubNm/Hll1/C3d0dt2/fxtSpUzUdptZ7PcgZuQWl2HIiS9OhEBEREekkiViEDwe0w7ev+OB09h08F5eCAxc5LB2RpjV6BXThwoVwcXGBvr4+fH19kZycXGPbjIwMiESiKq9t27ap2owaNaraNkZGRqo2CQkJ1bYpKdHct2HlCk5MSERE9cfGxgb79u1Dx44dMXXqVAwZMgRDhgzBtGnT0LFjR+zduxe2traaDlPrBbtZo421EZalXIIgCJoOh4iIiEhnPdfRAZuigmCsJ8XLS/Zjwa7zUCr5+xmRpkgb82Tr1q1DdHQ0Fi5ciO7du2PhwoUYMGAATp06hdatW9e437Zt29CpUyfVsoWFherv8+bNw5dffqnWPigoCMHBwWrrDA0NceHCBbV1+vr6T5POU6m4V4TmxIRERFRfnJycsHXrVty8eRPnz5+HIAhwc3ODubm5pkPTGWKxCP8NcsFHP/+FQxk30c3F4tE7EREREVGD8LAzwS/vBGHqpr/w9R9nsf9iPmLDOsPSWE/ToRHpnEatgM6ZMwejRo3C6NGj4enpibi4ONjb22PRokW17mdpaQk7OzvVSy6Xq7aZmZmpbbtw4QIuXryI0aNHqx1DJBKptbOzs2uQHOvq/nAc7AlNRET1zdzcHF27dkW3bt1YgNaAoV1aooWhDEuSL2o6FCIiIiKdZ6Ivw/yXOuOLIR1w4NINDJyfzOE5iDSg0YrQZWVlOHLkCEJDQ9XWh4aGYt++fbXuO3ToUNjY2CAoKAg//fRTrW2XLFmC9u3bIzAwUG19cXExnJyc4OjoiOeeew5paWlPlkg9KVf1hGYRmoiISJsYyqV47RknbD99DReuF2o6HCIiIiKdJxKJ8Ip/a/wcFQQjeeXwHN/uPMfhOYgaUaMNx5GXlweFQlFlPEpbW1ts37692n2MjY0RExODoKAgSKVS/PLLLwgLC8OKFSvw6quvVml/+/ZtrF+/Hl988YXaeg8PDyxfvhydOnVCQUEB5s2bh6CgIBw/fhxubm5VjrN48WIsXrwYAJCZmYmkpKQnzLpSYWFhlWOcvVQOAEjdtxcGUu0oRFeXp7bRhRwB5qlNdCFHQHfypObjtUBn/G/PRSzcdQHf/KfTo3cgIiIiogbn5WCKX97tjqkbTyDmz79x4NINfPOfTrAx0dxwrUS6olHHhAYqv316kCAIVdbdZ2VlhYkTJ6qW/fz8kJeXh6+++qraIvT3338PhUKB8PBwtfUBAQEICAhQLQcGBqJz586Ii4vD/PnzqxwnMjISkZGRqnOGhITUOb/qJCUlVTnGKZwHzp5Fr57B0JdJnur4TUV1eWobXcgRYJ7aRBdyBHQnT2o+rIz1EBHojCXJF/FGdxd4OZhqOiQiIiIiAmCsJ8W8lzojoI0lPvnlJAbEJmP2sI7o68VJvIkaUqMNx2FlZQWJRIKcnBy19bm5uVV6R9fG398f586dq3bbkiVLMGzYMLWJC6sjkUjg5+dX43Eag+LecBxSjglNRESkld4OaQszAxk+++0UBIGPehIRERE1FSKRCC93a43f3u0OW1N9vLnyMKZuOoGisgpNh0aktRqtCC2Xy+Hr64vExES19YmJiVXGb67NsWPHYG9vX2X9wYMHcfz48SoTElZHEASkp6dXe5zGUn5v3CFOTEhERKSdzAxlmNzfA6kX87H+SKamwyEiIiKih7jZmuDnt4Mwpqcr1hy8gkHzU3D8n1uaDotIKzVaERoAJkyYgISEBCxduhSnT59GdHQ0srKyMHbsWADAlClT0KdPH1X7FStW4IcffsDp06dx9uxZxMTEYMGCBXj33XerHHvx4sVwc3NDz549q2ybMWMG/vjjD1y8eBHHjh3DG2+8gfT0dNV5NaFCoYRULKpxKBIiIiJq/l7u2hrdnC0wa+tpFJayZw0RERFRUyOXijFlgCd+ePMZlJYrMGzRPny78xwUnLSQqF416pjQYWFhyM/Px8yZM5GdnQ1vb29s3boVTk5OAIDs7GxcuHBBbZ+ZM2fi8uXLkEgkcHd3x/Lly6uMB11QUIC1a9fi448/rraoe+vWLURGRiInJwdmZmbw8fHBnj170K1bt4ZL9hEUSoG9oImIiLScWCzCtEGeeGHBXqzYl4G3e7XVdEhEREREVI2ANpb4PToYH23+CzF//o2ks9cRM6ITnK2MNB0akVZo9IkJo6KiEBUVVe22hIQEteWIiAhEREQ88pgmJiYoLCyscfvcuXMxd+7cx4qzoZUrBMgkjdoRnYiIiDSgU6sW6NPOBov3XER4gBNM9WWaDomIiIiIqmFmKEPcyz7o084G/7f5Lzw7bw/e798OowKdIWZHQqKnwiqohiiUSkglfAMjIqKma+HChXBxcYG+vj58fX2RnJxca3tBEBAbG4t27dpBT08P9vb2+PDDD9Xa7N69G76+vtDX14erqyvi4+OrHGfDhg3w8vKCnp4evLy8sGnTpnrNSxPG9XXH7eJyJOzN0HQoRERERPQIL/q0ROL4nghsY4VPfzuFsMWpuJR3V9NhETVrLEJrSLlSgJTfohERURO1bt06REdHY+rUqUhLS0NgYCAGDBiAK1eu1LjPxIkTsXDhQsyePRunT5/G1q1bERwcrNp+6dIlDBw4EIGBgUhLS8OUKVPw7rvvYsOGDao2qampCAsLw8iRI3Hs2DGMHDkSI0aMwIEDBxo034bWwdEM/bxssST5Im4XlWs6HCIiIiJ6BDszfSyL8MM3IzrhbE4Bno3dg6XJFzlWNNETYhFaQxQKAVIxf/xERNQ0zZkzB6NGjcLo0aPh6emJuLg42NvbY9GiRdW2P3v2LOLi4rB582a88MILcHV1hY+PDwYOHKhqEx8fDwcHB8TFxcHT0xOjR49GREQEYmJiVG1iY2PRq1cvTJs2DZ6enpg2bRpCQkIQGxvb0Ck3uAn93FFUpsCX285oOhQiIiIiqgORSIRhvo5InNAT3dtaYeaW0/jP/1Jx8XrNQ8ISUfVYBdWQcqWSExMSEVGTVFZWhiNHjiA0NFRtfWhoKPbt21ftPps3b4arqyu2bdsGV1dXODs7IyIiArm5uao2qampVY7Zv39/HD58GOXl5bW2qem8zYmnvSleD3LGmoNXsO9CnqbDISIiIqI6sjXVx9IIP8wN64TzuYUYMC8ZC3adR1mFUtOhETUbjT4xIVWqUAiQcUxoIiJqgvLy8qBQKGBra6u23tbWFtu3b692n4sXL+Ly5ctYu3YtEhISIBKJMGnSJAwePBipqakQi8XIyclB3759qxyzoqICeXl5sLe3R05OTrXnzcnJqfa8ixcvxuLFiwEAmZmZSEpKesKsKxUWFj71MWrjpyfgNyMRxqw4gE8CDGBpoJn+AA2dZ1OgCzkCzFOb6EKOgO7kSUTaRyQSYYiPI4LaWGHGr6fw9R9n8XPaVXwxtAO6OltoOjyiJo9FaA1RKAX2hCYioiZNJFK/TwmCUGXdfUqlEqWlpVi1ahXc3d0BAKtWrYKHhwcOHToEf3//Go/58PrHOW9kZCQiIyMBAH5+fggJCaljdtVLSkp66mM8SttOhXjx27347rwMP40NhL5M0qDnq05j5KlpupAjwDy1iS7kCOhOnkSkvWxM9bFgZBcMO3MN//fzSYyIT8XL3Vrjw2fbwcxQpunwiJosDsehIeUKJWQS/viJiKjpsbKygkQiqdL7ODc3t0ov5fvs7e0hlUpVBWgAcHNzg1QqVU1maGdnV+0xpVIpLC0ta21T03mbozbWxpj3cmeczLqDKRtPqArxRERERNR89G5ni8QJwYgMdsWPh/9BnzlJ2HzsKn+3I6oBq6AaUlKhhJ4Gej4RERE9ilwuh6+vLxITE9XWJyYmIjAwsNp9goKCUFFRgQsXLqjWXbx4ERUVFXBycgIABAQEVBnOIzExEX5+fpDJZKo2j3Pe5qp3O1tM7OeOTWlXsSzlkqbDISIiIqInYCiXYupAT/zyThBatjBA9NpjeG35QVzgxIVEVbAIrSGFJeUw0eNoKERE1DRNmDABCQkJWLp0KU6fPo3o6GhkZWVh7NixAIApU6agT58+qvZ9+/ZFly5d8PrrryMtLQ1paWl4/fXX4e/vDz8/PwDA2LFjkZmZiXHjxuH06dNYunQpEhISMGnSJNVxoqOjsXPnTsyaNQtnzpzBrFmzsGvXLowbN65R828Mb/dqiwHedvhi62mknONEhURERETNVXsHM2yMCsKM59vj2D+30H/uHnyx9TQKSso1HRpRk8EitIYUllbAmEVoIiJqosLCwhAbG4uZM2eic+fOSElJwdatW1W9mrOzs9V6PYvFYvz222+wsbFBcHAw+vfvD0dHR2zevBliceWvGy4uLti6dSv27NmDzp074/PPP8f8+fMxbNgw1XECAwOxdu1arFixAh07dsTKlSuxbt061ZjS2kQkEiFmRCe42ZjgnTVH8c+NIk2HRERERERPSCIWISLQGbsmhWBol5ZYvOcien+zGxuPZkKp5BAdRKyCasjdUgWMWIQmIqImLCoqClFRUdVuS0hIqLLO3t4e69evr/WYPXv2xNGjR2ttM3z4cAwfPrzOcTZnRnpSLH7NF4PjUjB65WH89FYgv6QmIiIiasasjPXw1fBOeMXfCdM3/4UJPx7H9/sv4/mWCk2HRqRR7AmtIQUl5TDR54dMIiIiXedkaYRvX+mCc7mFiFp9FOUKpaZDIiIiIqKn1LlVC2yKCsJXwzricn4RZqSWYMrGdOQWlGg6NCKNYBFaAwRBwN0yBYz0ODEhERERAcHu1vhiiDf2/H0db68+irIKFqKJiIiImjuxWIT/dG2FnZNC0M9JivWHM9Hr6yTE7TiH4jL2jCbdwiK0BpSUK6FQCjDWk2k6FCIiImoiwrq2xieDvfDnqWuIWn0UpRX8YEJERESkDcwMZHjFUw+JE3qih5s1vkn8GyExu7D+8D9QcLxo0hEsQmtAQWnl7KjGHI6DiIiIHjAqyAWfvdAe209fw7s/pKGCQ3MQERERaQ0XKyPEh/ti/dgA2JkZYPJP6XguLgUp5/I0HRpRg2MRWgPullb2bDLmcBxERET0kPAAZ0y/1yN64vrjHJqDiIiISMt0dbbAz1GBiHvZBwUl5Xh12QG8tvwgTmTe1nRoRA2GXXE1oLCkAgA4HAcRERFV679BLigqU+DrP84i53YJ/hfuixaGck2HRURERET1RCQSYXAnB4S2t8XKfZexIOk8Bn+bgoEd7DChnzva2phoOkSiesWe0BqgGo5Dj98BEBERUfXe7tUWsWGdkXblFp7/di+2/ZWj6ZCIiIiIqJ7pSSUYHeyKPe/3QnQfN+w+ex2hc/dg4o/H8c+NIk2HR1RvWITWgH+H42ARmoiIiGr2ok9L/DDaH3KpGGO/P4IFu85rOiQiIiIiagCm+jKM7+eO5A96443uLvgtPQu9v0nC//38F67dKdF0eERPjUVoDSjkxIRERERUR37OFtgW3QMvdHbA13+cxUc/n0BxmULTYRERERFRA7AwkmPaIC/sntwL//FrhTUHr6DHV7swffNfyLpVrOnwiJ5YoxehFy5cCBcXF+jr68PX1xfJyck1ts3IyIBIJKry2rZtm6pNUlJStW3OnDmjdqwNGzbAy8sLenp68PLywqZNmxosx0cpvNcT2ogTExIREVEdSCVifDOiE0b3cMHqA1cQtjgV1wtKNR0WERERETUQOzN9fD6kA3ZODMFQn5ZYfeAKen69C1M2nuAwHdQsNWoRet26dYiOjsbUqVORlpaGwMBADBgwAFeuXKl1v23btiE7O1v16t27d5U2J0+eVGvj5uam2paamoqwsDCMHDkSx44dw8iRIzFixAgcOHCg3nOsi/sTE5pwYkIiIiKqI6lEjGmDvLAk3A/nrhVi4Pxk7Pn7uqbDIiIiIqIG1NrSEF8O64ikySEI69oKG45koldMEiavP46MvLuaDo+ozhq1CD1nzhyMGjUKo0ePhqenJ+Li4mBvb49FixbVup+lpSXs7OxUL7m86uzwNjY2am0kkn97GcfGxqJXr16YNm0aPD09MW3aNISEhCA2Nra+U6yTwtJySMQi6Ms4GgoRERE9nr5ettgYFQhzQxleW34Qn/12CiXlHJ6DiEhbPc7TxABw4sQJ9OzZEwYGBmjZsiU+/fRTCIKg1mb37t3w9fWFvr4+XF1dER8fX+U4j3qaeNasWejatStMTU1hbW2NwYMH46+//nr6hImoWo7mhpj5Ygfseb8XXn3GCb8crxwzetzaNJy7VqDp8IgeqdGqoGVlZThy5AhCQ0PV1oeGhmLfvn217jt06FDY2NggKCgIP/30U7Vt/Pz8YG9vjz59+mDXrl1q21JTU6uct3///o88b0O5W6qAkVwCkUikkfMTERFR8+Zpb4pf3umOiAAnLEu5hBcX7MXf/PBBRKR1Hvdp4jt37qBfv36wtbXFoUOHMH/+fHz99deYM2eOqs2lS5cwcOBABAYGIi0tDVOmTMG7776LDRs2qNrU5WnipKQkREVFYd++fdi5cyekUin69u2LGzduNNwPhIhgZ6aPT55vj+QPeuHNHq744+Q19Ju7B28kHMKBi/lVvnQiaioabWa8vLw8KBQK2Nraqq23tbXF9u3bq93H2NgYMTExCAoKglQqxS+//IKwsDCsWLECr776KgCoelJ37doVZWVlWLVqFfr06YOkpCQEBwcDAHJycqo9b05OTrXnXbx4MRYvXgwAyMzMRFJS0tOkjsLCQrVjnMsohQyKpz5uU/NwntpIF3IEmKc20YUcAd3Jk+hB+jIJZrzgjRAPG0z+6TgGx6Vg2iBPhD/jxC+6iYi0xINPEwNAXFwctm3bhkWLFmHWrFlV2q9evRpFRUVYsWIFDAwM4O3tjdOnT2POnDmYMGECRCIR4uPj4eDggLi4OACAp6cnDhw4gJiYGAwbNgyA+tPEADBt2jTs2rULsbGxWLNmDQDgjz/+UDv3qlWrYGZmhr1792Lw4MEN9jMhoko2JvqYOtATY3u2wcrUDKxMvYywxfvRqVULjAl2Rf/2dpCI+TshNR2NVoS+7+EPRYIg1PhBycrKChMnTlQt+/n5IS8vD1999ZWqCO3h4QEPDw9Vm4CAAGRkZCAmJkZVhH7c80ZGRiIyMlJ1zpCQkLonWI2kpCS1Y6z55zCsFEUICQmueadm6OE8tZEu5AgwT22iCzkCupMnUXV6tbPB79HBeP+n4/h480kknb2Or4Z3hJWxnqZDIyKip3D/aeJJkyapra/taeLU1FT06NEDBgYGqnX9+/fH//3f/yEjIwMuLi41Pim8YsUKlJeXQyaTITU1Fe+++26VNt9++22N8RYUFECpVMLc3PxxUyWip2BhJMe4vu4YE9wGPx3NxNLki4hafRROloZ4s7sLhvu2goFc8ugDETWwRitCW1lZQSKRVOl9nJubW6WXcm38/f3x3XffPbLN2rVrVct2dnZPfd76dLdUASM9vgEQERFR/bA20cPyUV2xMvUyPt96Gs/G7sHXIzqhl4eNpkMjIqIn9CRPE+fk5MDR0bFK+/vbXFxckJOTg759+1ZpU1FRgby8PNjb2z/208QAEB0djc6dOyMgIKDa7Q39xLG20oU8dSFHoHHybAVguh9w5Joefr9Ugv/bfBKzt55E79Yy9Golhbl+w4/KqwvXUxdyBOo/z0YrQsvlcvj6+iIxMREjRoxQrU9MTFQ98lMXx44dg729/WO1CQgIQGJiIiZPnqx23sDAwMfIoP4UlFbAzECmkXMTERGRdhKJRIgIdMYzrpaIXpuG/353CKMCnfHhgHbQl/HLbyKi5upxnuqtqf3D65+0TU3nnTBhAlJSUpCSkgKJpPp7TkM/caytdCFPXcgRaNw8ewOYJAg4lHETi/dcwK9ncrH1UgWe9bbDf4Oc0aW1eYMN36YL11MXcgTqP89GHY5jwoQJCA8PR7du3RAUFIT4+HhkZWVh7NixAIApU6bg4MGD2LFjBwBgxYoVkMlk8PHxgVgsxq+//ooFCxZg9uzZqmPGxsbC2dkZ7du3R1lZGb7//nv8/PPPapMqREdHIzg4GLNmzcKQIUOwadMm7Nq1CykpKY2ZvkpBSTkcWxg8uiERERHRY/KwM8HPbwfhq21nsXzvJez++zpeC3DCSH8nyKWNNic1ERE9pSd5mrimp4CBf3tE19RGKpXC0tKy1jbVnXf8+PFYu3Ytdu3aBVdX18fIkIgakkgkQjcXC3RzsUBG3l2s2n8ZPx7+B7+lZ8O7pSleC3DG850c2FmBGk2jfhIJCwtDbGwsZs6cic6dOyMlJQVbt26Fk5MTACA7OxsXLlxQ22fmzJnw8/ND165dsXbtWixfvhzjx49XbS8rK8OkSZPQsWNH9OjRAykpKdiyZQuGDh2qahMYGIi1a9dixYoV6NixI1auXIl169bB39+/cRJ/SF5BKayM5Ro5NxEREWk/fZkEHw/2wsrXu8HMQIYZv57CsEX7cD63UNOhERFRHT34NPGDanuqNyAgAMnJySgpKVFr7+DgAGdnZ1Wbh4fzSExMhJ+fH2QymapNXc4bHR2NH374ATt37kS7du2eKE8ianjOVkb4v+e8sH9KH8x80Rul5Uq8/1M6AmbtwOxtZ3D1VrGmQyQd0OgTE0ZFRSEqKqrabQkJCWrLERERiIiIqPV477//Pt5///1Hnnf48OEYPnx4neNsKCXlCtwpqYC1CScLIiIiooYV7G6NYHdr/HEyBx9uSMdzccmYNtATjvceuyYioqbtcZ8mfuWVVzBjxgyMGjUKH330Ef7++298+eWXmD59uurR+7Fjx+Lbb7/FuHHjMGbMGOzduxcJCQlYs2aN6rx1eZr47bffxqpVq/Dzzz/D3Nxc1XPa2NgYxsbGjfUjIqLHYKQnxavPOGGkf2ukXshHwr4M/G/3Bfxv9wWEeNjgpa6t0LudDaQSPj1H9a/Ri9C67npBKQDAxkRfw5EQERGRrujf3g4+rVpg8k/p+L/NJ9HRSoL2viWwMeXvI0RETVlYWBjy8/Mxc+ZMZGdnw9vbu9anic3MzJCYmIi3334bfn5+MDc3x8SJEzFhwgRVGxcXF2zduhXjx4/HokWL4ODggPnz56vN1XT/aeKPPvoI06dPR5s2bao8Tbxw4UIAQJ8+fdRinj59Oj755JOG+HEQUT0RiUQIbGuFwLZWyLxZhHWH/sG6Q/8g8kwubE318B+/VviPXyu0sjDUdKikRViEbmS594rQ7AlNREREjcnGVB8J/+2K7/dfxqe/nkTfObsxrq87XurWCoZy/kpIRNRUPc7TxADQoUMH7Nmzp9Zj9uzZE0ePHq21zaOeJhb4VA2RVnA0N8TEUA9E93HDzjO5WHvoHyzYdR7f7jqPHm7WeKVbK/TxtIWMvaPpKfFfUCO7ziI0ERE1EwsXLoSLiwv09fXh6+uL5OTkGttmZGRAJBJVeW3btk3VZtSoUdW2MTIyUrVJSEiots2DY1vSkxOJRAgPcMZnQQbo4GiGT387hcAvd+LrP87gdlG5psMjIiIiIg2RSsQIbW+H5aO6IuWD3oju44Zz1wow9vujCJi1A5/9dgqnsu5oOkxqxtjtpZFdL6j8EG1jyiI0ERE1XevWrUN0dDQWLlyI7t27Y+HChRgwYABOnTqF1q1b17jftm3b0KlTJ9WyhYWF6u/z5s3Dl19+qdY+KCgIwcHBausMDQ2rTFSsr89hI+qTnZEY37/hjyOXb2Jp8iUsTLqA1Qeu4OVurfFagBPszQw0HSIRERERaYhDCwOM6+uOd3u7YfffufjxUCZWpmZgWcoltLMzwXBfR7zQuSU7WNJjYRG6kV0vKIVYBFga8T8qERE1XXPmzMGoUaMwevRoAEBcXBy2bduGRYsWYdasWTXuZ2lpCTs7u2q3mZmZwczMTLW8d+9eXLx4EatWrVJrJxKJajwG1R+RSAQ/Zwv4OVvgVNYdzEn8G//bfQHLUi5hWBdHjPRvDe+WZo8+EBERERFpJYlYhN7tbNG7nS1u3i3Dr+lZ2HD0KmZuOY1Zv59BsJsVhvk6oq+nLfRlEk2HS00ci9CNLLegFJbGepCIRZoOhYiIqFplZWU4cuQIJk2apLY+NDQU+/btq3XfoUOHoqSkBG5ubhg/fnytY0kuWbIE7du3R2BgoNr64uJiODk5QaFQoHPnzvjss8/g4+Pz5AnRI3k5mGJphB8ybxZhwa7z2JSWiTUHr6CjoxlGBTpjUEd76En5wYKIiIhIV5kbyfFagDNeC3DG+dwCbDh6FZuOXsU7P6TBRF+K/u3tMLiTAyqUHC+eqscidCPLLSiFtTF7QRMRUdOVl5cHhUIBW1tbtfW2trbYvn17tfsYGxsjJiYGQUFBkEql+OWXXxAWFoYVK1bg1VdfrdL+9u3bWL9+Pb744gu19R4eHli+fDk6deqEgoICzJs3D0FBQTh+/Djc3NyqHGfx4sVYvHgxACAzMxNJSUlPmHWlwsLCpz5Gc1Bbnv0tgO7B+kjNqsDOK3cw4cfj+OTndPRqJUWv1lK00GseU4rwWmoXXchTF3IEdCdPIiJt1tbGBB882w6TQj2QeiEfm9Ku4o+/cvDTkUyYyIDnb5/A4E4O6OpswU6YpMIidCO7XlDK8aCJiKhZEInUf2EUBKHKuvusrKwwceJE1bKfnx/y8vLw1VdfVVuE/v7776FQKBAeHq62PiAgAAEBAarlwMBAdO7cGXFxcZg/f36V40RGRiIyMlJ1zpCQkDrnV52kpKSnPkZzUJc8B6Hymqecz8N3ezOw+UwutmZU4LmODvhvkDM6OrZojFCfGK+ldtGFPHUhR0B38iQi0gUSsQjd3azQ3c0KJeXe2PP3dSxLPIaNR69i9YErsDHRw6CO9hjcyQE+rVrU+FmCdAOL0I0st6AE7exMNB0GERFRjaysrCCRSJCTk6O2Pjc3t0rv6Nr4+/vju+++q3bbkiVLMGzYMLWJC6sjkUjg5+eHc+fO1fm8VH9EIhF6uFmjh5s1LuXdxYp9GfjpSCY2pV1Fl9YtEBHojP7t7TgGIBEREZGO05dJENreDvLr+ugW2B07Tufi1+NZWL3/Cr7bm4GWLQzwrLcd+re3g6+TOXtI6yAWoRuRQikgr7CMPaGJiKhJk8vl8PX1RWJiIkaMGKFan5iYiGHDhtX5OMeOHYO9vX2V9QcPHsTx48cRGxv7yGMIgoD09HR06tSpzuelhuFiZYRPnm+PiaHu+OlIJlbsy0D02mMw1pPiWW87vNi5JQLaWPIDBREREZGOM5RLMbiTAwZ3csCdknL8efIatqRnYVXqZSxLuQQrYzn6edkitL0dAttYcu4RHcEidCO6XlAKhVKAvZmBpkMhIiKq1YQJExAeHo5u3bohKCgI8fHxyMrKwtixYwEAU6ZMwcGDB7Fjxw4AwIoVKyCTyeDj4wOxWIxff/0VCxYswOzZs6sce/HixXBzc0PPnj2rbJsxYwaeeeYZuLm54c6dO5g/fz7S09OxaNGihk2Y6sxEX4b/BrkgIsAZ+y/m4+djV/H7icoxAG1M9PB8Jwf0ameDdnYmsOQ8GEREREQ6zVRfhuG+jhju64iCknIknb2ObSdz8MuxLKw5+A9M9KTo1c4G/dvbIcTDGkZ6LFVqK17ZRpR1uxgA4NBCX8OREBER1S4sLAz5+fmYOXMmsrOz4e3tja1bt8LJyQkAkJ2djQsXLqjtM3PmTFy+fBkSiQTu7u5Yvnx5lfGgCwoKsHbtWnz88cfVjgl369YtREZGIicnB2ZmZvDx8cGePXvQrVu3hkuWnohYLEJgWysEtrXCpy94Y+eZXGxKu4oVqRlYmnIJYhHQ090aw31boYe7FUz1ZZoOmYiIiIg0yERfpuohXVKuwL4Lefjjr2vYfvoafjmeBblUjABXS/RuZ4Pe7WzQysJQ0yFTPWIRuhFl3bpfhGZPaGp+lEol8vLycOvWLSgUCk2HUy/MzMxw+vRpTYfRoHQhR6D6PPX19eHo6AiZjIWvJxUVFYWoqKhqtyUkJKgtR0REICIi4pHHNDExQWFhYY3b586di7lz5z5WnKR5+jIJBnawx8AO9rhVVIa/rt7Bvgt52Hj0Kt7+4SjEIqBDSzMEtLFCYBtLdHW2gIGcj10SERER6Sp9mQS929midztbKJQCDmfcwB8nr2HX2VxM/+Ukpv9yEm1tjNG7nQ16edjAz9kcMolY02HTU2ARuhFl3yoBAA7HQc1SZmYmRCIRnJ2dIZPJtGJW24KCApiYaPdEobqQI1A1T0EQkJ+fj8zMTLi4uGgwMiLd08JQrpolfWKoBw5euoHUC3nYdyEfS5MvIn73BcglYnRwNIOThSFaWxqie1sr+LTmBDVEREREukgiFsHf1RL+rpb4eLAXLuXdxc4zudh1Jhff7b2ExXsuwkRfimA3a4R4WKOnhzVsTDjKQHPDInQjunqrGMZ6Upjq88dOzc/du3fh4eEBsZjfPFLTJxKJYGlpievXr2s6FCKdJhGLENDGEgFtLDEBwN3SChzKuIG95/NwPPM29l/Mx6ZjVxG7/RwsjOTo5myB9g6maN/SFN4OZrAx5YcLIiIiIl3jYmWEN7q74I3uLigsrcDe83nYdSYXu87mYsuJbABAOzsTdG9b2fGhm4sFDOWstTV1vEKNKPt2MezN9LWiBynpJhagqTnhey1R02OkJ0WIhw1CPGxU6+6UlGP32evYcfoa0v65hW0nc1TbrIz1KovSDqZo72AG75amaG1hyP/fRERERDrCWE+K/u3t0L+9HQRBwMmsO0g+l4eU89excv9lLE25BLlEjC5OLdDDzRrd21rBu6UZn7BrgliEbkRZt0o4HjQRERHRA0wfmKAGqCxKn866g5Oq123sPZ+HCqUAADDRk8LzgcK0h60J2tgYsfcLERERkZYTiUTwbmkG75ZmeCukDUrKFTh46QZSzuch+Vwevv7jLL7+4yzMDGQIbGOJoLZWeMbVEm2sjdiJoQngb+uNKPt2Mbxbmmo6DCIiIqImy1RfphoT8L6ScgX+vlagKkqfzLqDNQevoKRcqWrjaG4AR3MDOJgZwNPeFOX5CnS8WwYLI7km0iAiIiKiBqYvkyDY3RrB7tYAgLzCUuw9n4eUc3lIOZ+H3/+qfMLOylgP/i4W6OZiAX9XC7jbmEDMntKNjkXoRlJSrkBeYRkcOCkhUbM3atQo5OXl4bfffqvzPiEhIfD29sa3337bgJEREWknfZkEHR1boKNjC9U6hVLApby7OJ9bgHPXCnEutxDZt4ux90IeNqZdBQB8dSgRFkZytLE2gquVMTzsTNC5dQt42ZtCXybRUDZERERE1BCsjPXwQueWeKFzSwiCgIz8Ihy4mI8Dl27gwMV81XjS5oYydHW2qOz44GIBT3tTDt/RCFiEbiRXbxUDAIfjIGpEj3rc5pVXXsHq1asf+7jz5s2DIAiPtc/GjRshk8ke+1xPKjc3F61bt4a1tTUuX77M8byJSOtIxCK0tTFGWxtjPOutvi2/sBRrt6VAbuOCC9cLcfH6XWw/fQ3rDv+jamMkl6C1pRFcrYzgal35crEyhoulEUwNpHxkk4iIiKgZE4lEcLEygouVEV7q1hqCICDzZjH23y9KX8rHn6euAQBM9KXo0tocvk7m6NLaHJ1amcFEv/E+v+uKRi9CL1y4EF9//TWys7PRvn17xMbGokePHtW2zcjIgIuLS5X1v//+O5599lkAlYWd+Ph4pKWloaSkBF5eXpg2bRqef/55VfuEhAT897//rXKc4uJi6Os3zqzrp7PvAAA87Ewa5XxEBGRnZ6v+/ttvv2H06NFq6yoqKtTal5eX16lQbGZm9tixWFhYPPY+TyMhIQGDBw9GWloa/vjjDwwYMKBRz/+wsrIyyOV8JJ6IGoelsR7aW0kQEuyqtj7ndgmO/XMLf18rwM2iMmTk3cXJrNvYdjIHCuW/Xy7qy8SwM9WHQwsD1atliweWzQxgIGdPaiIiIqLmQiQSoZWFIVpZGGKEXysAQNatYhy8V5A+evkW5m7/G4IAiEWAu62Jqijt62QOJ0tOjv20GrVr3Lp16xAdHY2pU6ciLS0NgYGBGDBgAK5cuVLrftu2bUN2drbq1bt3b9W23bt3o3fv3tiyZQvS0tIwcOBADBkyBMnJyWrHMDQ0VDtGdnZ2oxWgAeBk1h1IxSK42Ro32jmJdJ2dnZ3q1aJFC7V1JSUlaNWqFdasWYPevXvDwMAA//vf/5Cfn4+XX34Zjo6OMDAwQPv27fHdd9+pHXfUqFF47rnnVMshISGIiorC1KlTYWVlBRsbG0yaNAlKpVKtzTvvvKNadnZ2xsyZMzFmzBiYmprC0dERX3/9tdp5/v77b/Ts2RP6+vrw8PDA1q1bYWxsjISEhEfmvnz5crz22mt46aWXsGzZsirbz5w5g+effx5mZmYwNjZGQEAATpw4odq+YsUKdOjQAXp6erC1tcWoUaNU20QiEX766Se14zk7OyMmJkatzYIFCzB06FAYGRlh6tSpUCgUeOONN+Di4gIDAwO4ubnhq6++Uvs51Xbu119/Xe3nDgBKpRKtW7fmMCdEVCd2Zvp41tsO7/Vxw/TB7fHdf7shaXIvnP70WWyfEIzF4b74aJAnXvV3QvuWZigpVyDlXB7idp7DBxtOIHzZQfT5Zjc8P96GLp8l4rm4ZESuPIxPfjmJJXsuYkt6No5euYl/bhShqKzi0QERERERkcY4tDDAiz4tMWtoR/wxPhjHp4di5evd8G5vN1ib6OGXY1mYuP44QmKS4DtzO95ccQgLdp3HX3kVuFVUpunwm51G7Qk9Z84cjBo1CqNHjwYAxMXFYdu2bVi0aBFmzZpV436Wlpaws7Ordtu8efPUlqdPn44tW7bg559/VuthLRKJajxGYziZdQdutibQk7LXDGmPGb+exKmsO416Ti8HU0wf3L7ejjdlyhTExMRg2bJlkMlkKCkpQZcuXfDBBx/A1NQU27dvx5gxY9C6dWv06dOnxuOsXr0a0dHR2LdvH44dO4ZXXnkFvr6+ePnll2vcZ+7cuZgxYwYmT56M33//He+99x66d++OgIAAKJVKDBkyBHZ2dti/fz+Ki4sxbtw4lJaWPjKn5ORk5Ofn49lnn4WzszP8/Pxw/fp1WFtXTtaQlZWF7t27IygoCImJiWjRogUOHjwIhUIBAPjf//6H6OhofPHFFxg0aBAKCwuxc+fOx/zJAjNmzMAXX3yBmJgYiEQiKJVKtGzZEj/++COsra1x8OBBREZGwtLSEm+88cYjzz169Gj06NED2dnZsLe3BwAkJiYiJycHL7300mPHR0R0n1wqRlsbE7S1qf6JtXKFEjm3S5B1qxhZt4uRdasEV28VI+tWMTLy72Lv+TzcLVNU2c9AJoGViRyWRnqwMtaDlbEclsZyWBnrwfLespWxHiyN5DA3lHOCHCIiIiINMtWXqU10qFAKOJ9biKNXbuLI5Zs4euUmtp/OBQDEHE5EawtDdHA0Q8eWZujo2ALeLU05jEctGq0IXVZWhiNHjmDSpElq60NDQ7Fv375a9x06dChKSkrg5uaG8ePHY/jw4bW2LygogLm5udq64uJiODk5QaFQoHPnzvjss8/g4+PzZMk8JkEQcCrrNkI8bBrlfERUd++++26V95TJkyer/h4ZGYmdO3dizZo1tRahvby88OmnnwIA3N3dsWTJEuzYsaPWInRoaKiqd/S7776L+fPnY8eOHQgICEBiYiLOnj2LP//8Ey1btgRQWbQOCgp6ZE5Lly5FWFgYZDIZnJ2d4e/vj5UrV2LixIkAgAULFsDIyAjr169XDZHh7u6u2v+zzz7DuHHjMGHCBNU6X1/fR573YWFhYXjzzTfV1t3/GQGVvaePHj2KNWvWqIrQtZ07ICAA7dq1w4oVK/Dhhx8CqOzx/fzzz8PKyuqx4yMiqiuZRKx6fLM6giDgTkkFsm8XI/tWCfIKS5FXWIb8wlLkFZYi/24Zrt4qxvHMW7hxt0xt6I/7xCLAwuiBwvSDfxrpqYrZ99dzYkUiIiKihiURi+BhZwIPOxO83K01AOB2cTlWb90DkaUzTly9heP/3MKW9H+H/XS1NlIVpTs4msHT3hTGepySD2jEInReXh4UCgVsbW3V1tva2mL79u3V7mNsbIyYmBgEBQVBKpXil19+QVhYGFasWIFXX3212n0WLFiAzMxMhIeHq9Z5eHhg+fLl6NSpEwoKCjBv3jwEBQXh+PHjcHNzq3KMxYsXY/HixQCAzMxMJCUlPWHWla7euIu8QhH07uY+9bGassLCQq3OD9CNHIHq8zQzM0NBQYHaugkhrRsxqn89HEddFBcXq+1bWFgIoLJ4/ODxFAoF5syZg40bNyIrKwtlZWUoKytD9+7dVe3Ky8tRUVGhWlYoFPD09FQ7jrW1NbKystTalJWVqZYFQYCHh4faPra2tsjMzERBQQGOHTsGe3t7mJqaqtq0a9cOYrEYJSUlNf4M7ty5g59++gm//vorCgoKoFAoMGLECCxYsACRkZEAgEOHDsHf3x+lpaVVelZfv34dV69eRUBAQK0/5+LiYrXtgiCgtLRUbV379u2rHGPZsmVYuXIlrly5gpKSEpSXl6NVq1YoKCio07nDw8OxdOlSvP3227hx4wY2b96M1atXQ6FQVLtPSUmJTvyfJSLNEolEMDOQwcxAhnZ2prW2VSoF3Couv1egLqssUt8rVOc9sO7KlSLkF5ZW28MaAIz1pLAylkOqKMHqK4dhZiBDi3sxmBnK0MJQDgtDOVoYymBxr6c1x7EmIiIiejpmBjJ4WUoQEtJGte7G3TKkZ97CiczbSL96G6kX8/HzsSzVdidLQ3jamcLLwRSe9qbwtDdByxYGOjfGdKOX4h/+AQuCUOMP3crKStVzDwD8/PyQl5eHr776qtoi9IYNGzB58mSsXbsWTk5OqvUBAQEICAhQLQcGBqJz586Ii4vD/PnzqxwnMjJSVazx8/NDSEjIY+X4sNgftwMoxQs9fdHNpXEnJ2tMSUlJT/2zaup0IUeg+jxPnz4NE5PmO7GmgYEBAKhyMDauHJ/d2tpaLa/Zs2fj22+/xbx589ChQwcYGxtj6tSpyM3NVbWTyWSQSqWqZYlEAkNDQ7XjyOVyiMVitTZyuVy1LBKJYGxsrLaPVCpVHVdPT09tf6Cy+A0A+vr6NV6L1atXo6ioCKGhoWrrFQoF0tPTERQUBIlEAplMVu0xioqKAKBKPg8SiURVYqioqICenp7aOisrK7XldevW4cMPP0RMTAwCAwNhamqKBQsWYNOmTTAxManTuUePHo3p06fj+PHjSEtLg5WVFV588UUUFRVVu4++vn6jPfVCRFQXYrEIFkZyWBjJ4Wb76PZFZRXIVxWry5B/98HidRnO/ZODf24U4a/ictwuLkdRDUVroHLCRQtDOSyM5bAw0oOFoQwW93pXWxjJYaIvhbGeFCb6MpjqS2GsL4WZgQwGMonOfUgiIiIiqisLIzlCPGzURkC4dqcEJzJv43T2HZzOuYNTWXfwx6kcCPceiDPVl94rSJvCy76yQN3Wxlirn3ZrtCK0lZUVJBIJcnJy1Nbn5uZW6R1dG39//yqThAGVBejw8HCsXLkSzz//fK3HkEgk8PPzw7lz5+p83qdxpaBy0i1P++ZbwCPSFSkpKRg8eLDqaQpBEPD333+rJjZsLJ6enrh69SqysrLg4OAAADh8+HCVSfwetmzZMrzzzjsYM2YMAODu3bswMjLChx9+iGXLliEoKAhdunTB999/j7KyMtVwHPfZ2tqiZcuW2LFjB/r161ftOaytrZGd/e/jRteuXVNbrklKSgr8/f3VJmi8cOHCY53bwsICQ4cOxfLly5GWloZRo0ZBItHemzQRkaFcCkMLaY1DgVR+cRysWi6rUOJ2cTluFZXhZlE5btwtw62iMtwoKsPNu2W4cbccN+6W4sbdMly8Xoibd8tq7G19n55UrOpNbWpQWaQ20ZfC9F6xWrVsIFMVso3uv+QSGOlJIZM06nzoRERERBpla6oPWy999PX6t+Z5t7QCZ3IKcDr7Dk5l38Hp7DtYd+gfFJdX/i4mFgFOlkZwszGGm60x3G1N0NbGGG2staM43WhFaLlcDl9fXyQmJmLEiBGq9YmJiRg2bFidj3P/EfUH/fjjj4iIiMCKFSseOV40UFlUSk9PR6dOneqewFO4fEcJZ0tDDk5O1Ay4u7tj3bp1SElJgZWVFeLi4nDp0qVG703br18/eHh4ICIiAjExMSguLsaECRMglUpr7I2Wnp6Ow4cPY9myZfD29gZQOfyIiYkJwsPD8cYbb2DevHmIiopCfHw8/vOf/2DatGkwNzfHoUOH4Onpic6dO2PatGkYP348bG1tMWjQIBQVFWHHjh2qJ1N69+6NBQsWIDAwEBKJBFOnToW+vv4jc3J3d0dCQgJ+//13tG3bFmvXrsXu3bvVxvB/1LmByt7Qzz77LMrLy/HTTz89zY+ZiEjryKViWJvowdpEr877lJQrcLOoDAUlFSgoKcedkgoUllSgoKRCVdC+cbcMN4vKcKe4Av/cKEJBSQXulJSjsLRC1aOnNgYyCUwNKgvXJvpSGOvLYCiTwEB+7yWTwFAugf69Pw3ubTOUS2Egk+D8TQVssu5UbntgHxa3iYiIqLkw0pPC18kcvk7/fgZWKAVczr+L09kFOHutAOeuFeBcbiF2nMlVzSMiFgGtLQzhZmsCd1tjuNmYwM22+RWnG3U4jgkTJiA8PBzdunVDUFAQ4uPjkZWVhbFjxwIApkyZgoMHD2LHjh0AgBUrVkAmk8HHxwdisRi//vorFixYgNmzZ6uOuXbtWoSHhyMmJgbBwcGqntZyuRwWFpVDX8yYMQPPPPMM3NzccOfOHcyfPx/p6elYtGhRo+R95Y4S3dqaNcq5iOjpfPTRR7h06RIGDBgAAwMDjBo1CiNHjsSpU6caNQ6xWIxNmzbhzTffRLdu3eDs7IxvvvkGQ4cOrbHgu3TpUri5uaFjx45Vtj333HNQKpVYs2YNIiMjsWfPHkyePBm9evWCSCRChw4dVGPhv/XWW5DL5fjmm2/wwQcfwMLCAgMHDlQd65tvvsEbb7yBkJAQ2Nra4quvvsLp06cfmdOYMWNw7NgxvPLKKxAEAcOGDcPEiROxfPlyVZtHnRsAQkJC4OjoCCcnJ7Rp0+bh0xAR0WPSl0lgb2YA+yf4dVWpFHC3rEJVlC4oqUBhaQXullagqFSh+vudknLcKb73Z0k5bheVIadcgaIyBUru/Vlcrqi9oH0gucoqmUT0UOFaCgOZuLJ4XUtxu7LA/eA+kn8L3A/soycVcygSIiIiajASsQiu1sZwtTbGIPzb6basQomM/Lv4+1oB/r5WiPO5lX/uOpOLigeK0y3NDeBiZQxXKyO4WhvBxary5WBmALG4af0O06hF6LCwMOTn52PmzJnIzs6Gt7c3tm7dqhq/OTs7W+3RbACYOXMmLl++DIlEAnd3dyxfvlxtPOj4+HhUVFRg3LhxGDdunGp9z549VZNR3bp1C5GRkcjJyYGZmRl8fHywZ88edOvWrcFzvl1cjuvFArwcap+khoga1vDhwyE88MnW2dkZd+7cqTKOsLm5OTZu3FjrsRISEtSWq5v47lFtMjIyquzzcBt3d3fs2bNHtXz8+HGUl5ejbdu21cZV3Rj39xkZGanGXAYqJw3cunVrje3feOMNvPHGG9Vuc3BwwO+//6627uEnWoRqqghyuRzLli3DsmXL1NZ//PHHdT43UDnZ4M2bN/Hpp5/W2IaIiBqHWCy6NxyHDA4weKpjCYKA0golissUKCpXoLjs3qtcgf2Hj8Lds72qWF1cplD7u9o+5RUoKqtAXmGpWoG7uEyh+tBW5/xElb249WQSyCQiyCRiyCViyCRiyKSVy/+uu7csfWhZIoZc+tDy/e3Sf5f/zqlA2cmcB/b/dx+59N9luUQM6YPbJOIm9yGTiIiIno5cKoa7rQncbdVrFveL0+euFeLvawW4lHcXF/MKcSTjhtoQa3pSMZwt1QvTlX83hrmhTCNfsjf6xIRRUVGIioqqdtvDRZuIiAhERETUerzqij8Pmzt3LubOnVvXEOvVqaw7AID2LEIT0WPatGkTjIyM4ObmhoyMDEyYMAGdOnVCly5dNB2aRiiVSly7dg1z586FgYGB2tBORETU/IlElb2a9WUSmD+0reiyFCHe9tXu9zjKFUq13tdFZRX/FqprKHAXlSlQplCgQiGgTKFEuUJAeYUS5QrlvWUlissVuFOiRNm99eUK4d6f99dVLj+yCH7syBPlJRGLaiyS11bQrr195Tq1ZYnogf3/PYZELIJULLr3Z+WyRLUsQisLQ0hYKCciInpqDxanH+w5LQgCrheU4mLeXVy697p4vRBnrxUg8dQ1td9BTPSkaG1pCCdLQ7S2MIKTpSGcLAzR2tKwQXtQN3oRWteczLoNAGjvwOE4iOjxFBQU4IMPPsA///wDc3NzhISEYO7cuTr7WPCVK1fg4uICR0dHfPfdd1UmVSQiInoUmUQMMwMxzAw0M1eLUimgXFldIVvAvtQD6NTFV62IXaZQ3msnqBW9769TLd/b598i+APbKyqL3/cL4ndLK6o53kPLCkE1DmV9OPp//WBhxPs2ERFRQxGJRLAx1YeNqT6ecbVU21ahUCLzZvG9XtN3cSX/Li7fKMKZ7MoCdbni33v+iU9CG2xOOxahG1gfT1tkXb7wWJPDEBEBwGuvvYbXXntN02E0Gc7OztUO80FERNRciMUi6Ikl0JMCeOjjwWUTMbxbNp2OKwqloFbQ/rdXd9UiuUKoLFpXKAUoFPf+VAqoUCqhFAQY6TWfSZOIiIi0jVQihrOVEZytjNDroW0KpYDs28W4kl+Eq7eKG6wADbAI3eBcrIwQ7KiZnhZERERERERPonI4jcrhUYiIiEg7ScQiOJobwtHcsMHPJW7wMxCR1mAvVGpO+O+ViIiIiIiIqGlgEZqI6kQmk6G4uFjTYRDVWXl5OaRSPvDzNBYuXAgXFxfo6+vD19cXycnJNbbNyMiASCSq8tq2bZuqTVJSUrVtzpw5o3asDRs2wMvLC3p6evDy8sKmTZsaLEciIiIiIiJqeCxCE1Gd2NjY4OrVqygqKmIPU2rylEolrl27BjOzpjO2ZnOzbt06REdHY+rUqUhLS0NgYCAGDBiAK1eu1Lrftm3bkJ2drXr17t27SpuTJ0+qtXFzc1NtS01NRVhYGEaOHIljx45h5MiRGDFiBA4cOFDvORIREREREVHjYBcxIqoTU1NTAEBWVhbKy8s1HE39KCkpgb6+vqbDaFC6kCNQfZ5GRkawsrLSUETN35w5czBq1CiMHj0aABAXF4dt27Zh0aJFmDVrVo37WVpaws7OrtZj29jY1HhtYmNj0atXL0ybNg0AMG3aNOzatQuxsbFYs2bNE2ZDREREREREmsQiNBHVmampqaoYrQ2SkpLg4+Oj6TAalC7kCOhOno2lrKwMR44cwaRJk9TWh4aGYt++fbXuO3ToUJSUlMDNzQ3jx4/H8OHDq7Tx8/NDaWkpvLy88NFHH6FXr3/naE5NTcW7776r1r5///749ttvnyIjIiIiIiIi0iQWoYmIiEhNXl4eFAoFbG1t1dbb2tpi+/bt1e5jbGyMmJgYBAUFQSqV4pdffkFYWBhWrFiBV199FQBgb2+PRYsWoWvXrigrK8OqVavQp08fJCUlITg4GACQk5NT7XlzcnKqPe/ixYuxePFiAEBmZiaSkpKeJnUUFhY+9TGaA13IUxdyBJinNtGFHAHdyZOIiIjUsQhNRERE1RKJRGrLgiBUWXeflZUVJk6cqFr28/NDXl4evvrqK1UR2sPDAx4eHqo2AQEByMjIQExMjKoI/bjnjYyMRGRkpOqcISEhdU+wGklJSU99jOZAF/LUhRwB5qlNdCFHQHfyJCIiInWcmJCIiIjUWFlZQSKRVOl9nJubW6WXcm38/f1x7ty5x2pjZ2f31OclIiIiIiKipoVFaCIiIlIjl8vh6+uLxMREtfWJiYkIDAys83GOHTsGe3v7x2oTEBDw1OclIiIiIiKipoXDcRAREVEVEyZMQHh4OLp164agoCDEx8cjKysLY8eOBQBMmTIFBw8exI4dOwAAK1asgEwmg4+PD8RiMX799VcsWLAAs2fPVh0zNjYWzs7OaN++PcrKyvD999/j559/xoYNG1RtoqOjERwcjFmzZmHIkCHYtGkTdu3ahZSUlMb9ARAREREREVG9YRH6ETIyMuDn5/dUx7h+/Tqsra3rKaKmSxfy1IUcAeapTXQhR+DJ8szIyGiYYLREWFgY8vPzMXPmTGRnZ8Pb2xtbt26Fk5MTACA7OxsXLlxQ22fmzJm4fPkyJBIJ3N3dsXz5ctV40ABQVlaGSZMm4erVqzAwMED79u2xZcsWDBw4UNUmMDAQa9euxUcffYTp06ejTZs2WLduHfz9/R8ZM+/ZdacLeepCjgDz1Ca6kCPAezZV4j277nQhT13IEWCe2kQXcgTq/54tEgRBeMqY6BH8/Pxw+PBhTYfR4HQhT13IEWCe2kQXcgR0J09qeLryb0kX8tSFHAHmqU10IUdAd/Kkhqcr/5Z0IU9dyBFgntpEF3IE6j9PjglNRERERERERERERA2GRWgiIiIiIiIiIiIiajAsQjeCyMhITYfQKHQhT13IEWCe2kQXcgR0J09qeLryb0kX8tSFHAHmqU10IUdAd/Kkhqcr/5Z0IU9dyBFgntpEF3IE6j9PjglNRERERERERERERA2GPaGJiIiIiIiIiIiIqMGwCE1EREREREREREREDYZF6Aa2cOFCuLi4QF9fH76+vkhOTtZ0SE/sk08+gUgkUnvZ2dmptguCgE8++QQODg4wMDBASEgITp48qcGI62bPnj14/vnn0bJlS4hEIiQkJKhtr0tepaWlePfdd2FlZQUjIyM8//zzyMzMbMQsaveoHEeNGlXl2j7zzDNqbZp6jrNmzULXrl1hamoKa2trDB48GH/99ZdaG224lnXJUxuu54IFC9CxY0eYmprC1NQUAQEB2LJli2q7NlxLanp4z+Y9uyngPbuSNlxL3rMracO1pKaH92zes5sC3rMracO11IV7dlO4X7MI3YDWrVuH6OhoTJ06FWlpaQgMDMSAAQNw5coVTYf2xDw8PJCdna16nThxQrXtq6++wjfffIO4uDgcOnQINjY26NevHwoKCjQY8aMVFhbC29sb8+bNg4GBQZXtdclr3Lhx2LBhA9asWYPk5GTcuXMHzz33HBQKRWOmUqNH5QgAffv2Vbu2W7duVdve1HNMSkpCVFQU9u3bh507d0IqlaJv3764ceOGqo02XMu65Ak0/+vp6OiI2bNn4+jRozh8+DB69+6NF198Eenp6QC041pS08J7Nu/ZTeW9gffsStpwLXnP5j2bGgbv2bxnN5X3Bt6zK2nDtdSFe3aTuF8L1GC6desmvPnmm2rr2rZtK3z44YcaiujpTJ8+XWjfvn2125RKpWBnZyfMnDlTta6oqEgwNjYW4uPjGyvEp2ZkZCR89913quW65HXr1i1BJpMJ33//varNlStXBJFIJGzbtq3RYq+rh3MUBEGIiIgQBg0aVOM+zS1HQRCEgoICQSwWC7/88osgCNp5LQWhap6CoJ3XUxAEwdzcXIiPj9faa0maxXs279lN8b2B92ztuZaCwHv2fdpwLUmzeM/mPbspvjfwnq0911IQdOee3dj3a/aEbiBlZWU4cuQIQkND1daHhoZi3759Gorq6V28eBEtW7aEi4sLXnrpJVy8eBEAcOnSJeTk5Kjla2BggODg4Gadb13yOnLkCMrLy9XatGrVCp6ens0q95SUFNjY2MDd3R2jR49Gbm6ualtzzLGgoABKpRLm5uYAtPdaPpznfdp0PRUKBdauXYvCwkIEBgZq7bUkzeE9m/fs5vbeoE3v8QDv2dp0PXnPpobGezbv2c3tvUGb3uMB3rO15Xpq6n7NInQDycvLg0KhgK2trdp6W1tb5OTkaCiqp+Pv74+EhAT8/vvvWLJkCXJychAYGIj8/HxVTtqUL4A65ZWTkwOJRAIrK6sa2zR1zz77LFauXIkdO3bgm2++wcGDB9G7d2+UlpYCaJ45RkdHo3PnzggICACgvdfy4TwB7bmeJ06cgLGxMfT09DB27Fhs2rQJHTp00NprSZrDezZUy801X0B73+cfpi3v8Q/iPbv5X0/es6mx8J4N1XJzzRfQ3vf5h2nLe/yDeM9u3tdT0/draT3kQLUQiURqy4IgVFnXXAwYMEBt+ZlnnoGrqytWrFihGoxdm/J90JPk1Zxyf+mll1R/79ChA3x9feHk5IQtW7Zg6NChNe7XVHOcMGECUlJSkJKSAolEorZNm65lTXlqy/X08PDAsWPHcOvWLWzYsAERERFISkpSbdema0lNgzbdw3jP/pe2vTdoy3v8fbxna8f15D2bGps23cN4z/6Xtr03aMt7/H28Zzf/66np+zV7QjcQKysrSCSSKt8G5ObmVvlmobkyNjZG+/btce7cOdXsvdqWb13ysrOzg0KhQF5eXo1tmhsHBwc4Ojri3LlzAJpXjuPHj8eaNWuwc+dOuLq6qtZr27WsKc/qNNfrKZfL0bZtW/j5+WHWrFno3Lkz5s6dq3XXkjSP9+xKzT1fXX1vaK7v8QDv2dVprteT92xqLLxnV2ru+erqe0NzfY8HeM+uTnO8npq+X7MI3UDkcjl8fX2RmJiotj4xMRGBgYEaiqp+lZSU4MyZM7C3t4eLiwvs7OzU8i0pKUFycnKzzrcuefn6+kImk6m1yczMxOnTp5tt7nl5ebh69Srs7e0BNJ8co6Oj8cMPP2Dnzp1o166d2jZtupa15Vmd5no9H6ZUKlFaWqpV15KaBt6zec9uzu8NzfU9nvfs6jXX6/kw3rOpofCezXt2c35vaK7v8bxnV6+5Xs8HNfr9+nFnTqS6W7t2rSCTyYQlS5YIp06dEt577z3ByMhIyMjI0HRoT2TixIlCUlKScPHiRWH//v3CoEGDBBMTE1U+X375pWBiYiJs2LBBOHHihBAWFibY29sLd+7c0XDktSsoKBDS0tKEtLQ0wcDAQJgxY4aQlpYmXL58WRCEuuU1duxYwcHBQUhMTBSOHj0qhISECJ06dRIqKio0lZaa2nIsKCgQJk6cKOzbt0+4dOmSsGvXLuGZZ54RWrZs2axyjIqKEkxMTIQdO3YI2dnZqldBQYGqjTZcy0flqS3X84MPPhD27NkjXLp0SUhPTxc+/PBDQSQSCVu3bhUEQTuuJTUtvGfznt1U3ht4z66kDdeS92zes6lh8J7Ne3ZTeW/gPbuSNlxLXbhnN4X7NYvQDWzBggWCk5OTIJfLhS5dugi7d+/WdEhP7P4/QJlMJjg4OAhDhw4VTp48qdquVCqF6dOnC3Z2doKenp4QHBwsnDhxQoMR182uXbsEAFVeERERgiDULa/i4mLhnXfeESwsLAQDAwPhueeeE65cuaKBbKpXW45FRUVCaGioYG1tLchkMqF169ZCRERElfibeo7V5QdAmD59uqqNNlzLR+WpLdczIiJCaN26tSCXywVra2uhT58+wrZt21TbteFaUtPDezbv2U0B79mVtOFa8p5dSRuuJTU9vGfznt0U8J5dSRuupS7cs5vC/VokCIJQtz7TRERERERERERERESPh2NCExEREREREREREVGDYRGaiIiIiIiIiIiIiBoMi9BERERERERERERE1GBYhCYiIiIiIiIiIiKiBsMiNBERERERERERERE1GBahiYiIiIiIiIiIiKjBsAhNRERERKQDMjIyIBKJcPjwYU2HQkRERLXgPZu0EYvQRERERERERERERNRgWIQmIiIiIiIiIiIiogbDIjQRERERUSMQBAFfffUV2rRpAwMDA3To0AHff/89gH8fu/3hhx/QvXt36Ovro127dvjzzz/VjrFnzx74+/tDX18ftra2GD9+PMrKytTO8c0338DNzQ16enpwdHTElClT1I5x+fJl9OvXD4aGhvDy8kJiYmLDJ09ERNSM8J5NVP9YhCYiIiIiagQfffQRli1bhgULFuDUqVOYMmUKxowZgy1btqjavP/++3jvvfdw7Ngx9OvXDy+88AKuXr0KALh69SoGDBgAHx8fpKWlYdmyZVizZo3aB9apU6fis88+w5QpU3Dy5EmsX78erVq1Uotj2rRpeO+993D8+HF07doVL730EgoLCxvnh0BERNQM8J5NVP9EgiAImg6CiIiIiEib3b17F1ZWVvjzzz/Ro0cP1fpx48bh77//xsKFC+Hi4oKZM2di2rRpAAClUol27drhP//5j2r9unXr8Pfff0MsruxLkpCQgDFjxuDmzZtQKpWwsrJCbGwsxo4dWyWGjIwMuLi4ID4+HmPGjAFQ+SHZ0dERycnJ6N69eyP8JIiIiJo23rOJGoZU0wEQEREREWm7U6dOoaSkBM8++yxEIpFqfXl5OZydnVXLAQEBqr+LxWL4+/vj1KlTAIDTp08jICBA9WEWALp3746ysjKcP38eJSUlKC0tRZ8+fWqNpWPHjqq/Ozg4AAByc3OfKj8iIiJtwXs2UcNgEZqIiIiIqIEplUoAwK+//orWrVurbZPJZKjLw4mCIKh9GH6QSCSq0zHun+/B/R6Mj4iISNfxnk3UMDgmNBERERFRA/Py8oKenh4uX76Mtm3bqr2cnJxU7fbv36/6uyAIOHjwIDw9PVXHSE1NVfvwmZKSArlcjjZt2qjOsWPHjsZLjIiISMvwnk3UMNgTmoiIiIiogZmYmGDSpEmYNGkSBEFAcHAwCgsLsX//fojFYoSGhgIAFi1aBHd3d3To0AELFy7E5cuX8dZbbwEAoqKiEBsbi6ioKERHR+PixYv48MMP8c4778DQ0BAAEB0djSlTpkBPTw/BwcHIz8/HkSNHVMcgIiKi2vGeTdQwWIQmIiIiImoEn332GWxtbRETE4O33noLpqam6Ny5M95//31Vmy+//BJz5szB0aNH4eTkhE2bNsHR0REA0LJlS/z++++YPHkyOnfujBYtWuCVV17BF198odp/1qxZMDc3x2effYbMzEzY2tritddea/RciYiImjPes4nqn0io60A0RERERETUIDIyMuDi4oJDhw7Bz89P0+EQERFRDXjPJnoyHBOaiIiIiIiIiIiIiBoMi9BERERERERERERE1GA4HAcRERERERERERERNRj2hCYiIiIiIiIiIiKiBsMiNBERERERERERERE1GBahiYiIiIiIiIiIiKjBsAhNRERERERERERERA2GRWgiIiIiIiIiIiIiajAsQhMRERERERERERFRg/l/49VFlq4bXf8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9MAAAH3CAYAAAAIdn/OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gUxxsH8O8dHEfvIFVARWwIKmAXsKCJJibGnsRuNNFEE7tGxRJL1CQmGuNPo9g1xsQSG4oUBXsvoPTee+e4m98fx60cd1TB+n6eh0fd3ZndnbuTuX1n3uExxhgIIYQQQgghhBBCCCGEEEIIIYQQwuG/6gsghBBCCCGEEEIIIYQQQgghhBBCXjcUTCeEEEIIIYQQQgghhBBCCCGEEEKqoGA6IYQQQgghhBBCCCGEEEIIIYQQUgUF0wkhhBBCCCGEEEIIIYQQQgghhJAqKJhOCCGEEEIIIYQQQgghhBBCCCGEVEHBdEIIIYQQQgghhBBCCCGEEEIIIaQKCqYTQgghhBBCCCGEEEIIIYQQQgghVVAwnRBCCCGEEEIIIYQQQgghhBBCCKmCgumEEEIIIYQQQgghhBBCCCGEEEJIFRRMJ4QQQgghhBBCCCGEEEIIIYQQQqqgYDohhBBCCCGEEEIIIYQQQgghhBBSBQXTCSGEEEIIIYQQQgghhBBCCCGEkCoomE4IIYQQQgghhBBCCCGEEEIIIYRUQcF0QgghhBBCCCGEEEIIIYQQQgghpAoKphNCCCGEEEIIIYQQQgghhBBCCCFVUDCdEEIIIYQQQgghhBBCCCGEEEIIqYKC6YQQQgghhBBCCCGEEEIIIYQQQkgVFEwnhBBCCCGEEEIIIYQQQgghhBBCqqBgOiGEEEIIIYQQQgghhBBCCCGEEFIFBdMJIYQQQgghhBBCCCGEEEIIIYSQKiiYTgghhBBCCCGEEEIIIYQQQgghhFRBwXRCCCGEEEIIIYQQQgghhBBCCCGkCgqmE0IIIYQQQgghhBBCCCGEEEIIIVVQMJ0QQgghhBBCCCGEEEIIIYQQQgipgoLphBBCCCGEEEIIIYQQQgghhBBCSBUUTCeEEEIIIYQQQgghhBBCCCGEEEKqoGA6IYQQQgghhBBCCCGEEEIIIYQQUgUF0wkhhBBCCCGEEEIIIYQQQgghhJAqKJhOCCGEEEIIIYQQQgghhBBCCCGEVEHBdEIIIYQQQgghhBBCCCGEEEIIIaQKCqYTQgghhBBCCCGEEEIIIYQQQgghVVAwnRBCCCGEEEIIIYQQQgghhBBCCKmCgumEEEIIIYQQQgghhBBCCCGEEEJIFRRMJ4QQQgghhBBCCCGEEEIIIYQQQqqgYDohhBBCCCGEEEIIIYQQQgghhBBSBQXTCSGEEEIIIYQQQgghhBBCCCGEkCoomE7Ia8DDwwM8Hg8+Pj6v+lIIIYQQQgh57VB/mRBCCCGEkHdbQEAAeDwebG1tX/WlEELeMRRMJ+8cHo/XoJ+3/cHd+PHjuXvdv3//q74c0khycnIwf/58tG7dGhoaGjA2NsagQYNw9uzZBtU3YcKEOn9m9uzZI1c2Ojoa3t7eGDx4MFq1agV9fX2oqanB3NwcQ4YMwbFjx2o9f2hoKMaNGwdLS0sIhUJYWVlh3LhxCAsLq7Fcbm4uVqxYgS5dukBXVxcCgQDNmjXDe++9hyNHjlRb7smTJ9i2bRsmT54MJycnCAQC8Hg8TJgwocbzlZaW4tSpU5gxYwa6dOkCPT09qKmpwczMrM73KhaLsWXLFri6ukJHRwe6urpwdXXF1q1bIZFIlJaRSCQ4e/YsVq1ahaFDh8LS0pJ7PQICAmo9JyGEEAJQf1nG1tb2rbyvhiopKcEPP/wAR0dHaGlpwcDAAH369MHBgwcbXKesjWv6UdbPi4mJqbWcmZlZree/c+cOJk+eDDs7O6irq8PAwACOjo6YPn06nj17VmNZf39/jBkzBtbW1hAKhTA2Nkbnzp0xe/ZspKSkKBxfl370H3/80ajtJBMQEIBhw4bB3Nyc639/8sknCA4OrrWNKisvL4eLi8tb+5knhBBCXmeywaXe3t6v+lJIHSnr//H5fOjq6sLZ2Rnz5s1DQkJCo5/Xx8cH3t7euHfvXqPXTci7SvVVXwAhL1vPnj2Vbpc9SLC3t4epqanC/mbNmjXZNTVv3hwODg7Q09NrsnPUJD8/H3///Tf37127duGzzz57JddCGk9cXBx69eqF+Ph4CAQCtG/fHjk5OTh//jzOnz+PFStWYNmyZfWqs3Xr1tV+hgAgMTERMTExABQ/a8HBwVixYgUAwNjYGM2bNwePx0NMTAxOnz6N06dPY9iwYThy5AhUVRV/PZ09exbDhg1DSUkJ9PT04OjoiNjYWOzbtw9Hjx7FiRMn4OXlpVAuKioKHh4eiI+PB4/Hg42NDQwNDRETE4Nz587h3Llz+Pfff3Ho0CHweDy5sosXL8aJEyfq1UYAsHr1aqxevRoAoKqqilatWkFDQwMRERFy93ro0CGoqakplC8rK8OQIUNw4cIFAICDgwPU1NRw+/Zt3Lp1C6dOncKpU6cgEAjkyuXl5eH999+v9/USQgghlVF/mVSVk5MDDw8P3L9/H3w+H+3bt0dZWRkuX76My5cvw8/PD3/++WeD6+/QoUO1r62mpmaNZat7vxoZGdVYbuXKlVixYgUkEgmMjY3h6OiIwsJCxMbG4tGjR+jVqxdat26tUE4ikeDLL7/E//73PwCAubk5nJyckJubi7CwMNy9exfDhw+vNphvbW2N5s2bK91nbm5e4zU3pJ2WLVuGVatWAQAMDQ3h7OyMpKQk/PPPP/j333/xyy+/4JtvvqnxvDIbNmzA7du363QsIYQQQkhj09TUhIODAywtLV/1pdSLqakp7O3tAUgnz8THx+P+/fu4f/8+/ve//+H8+fPo1q1bo53Px8cHgYGBsLW1hbOzc6PVS8g7jRFCGGOMAWAA2O7du1/1pbx0//vf/xgApq+vzwAwHo/HoqKiXvVlkRcgkUhY165dGQDm5OTE4uLiuH1Hjx5lAoGAAWDnz59v1PN++OGHDADr06ePwr7bt2+zPXv2sISEBLntZWVl7I8//mAqKioMANu4caNC2ZSUFKajo8MAsM8++4wVFhZyZefPn88AMD09PZaWlqZQtn///gwAs7OzY/fu3eO2l5eXs23btjEej8cAMB8fH4WyX375Jfvoo4/Y6tWr2blz59iYMWMYADZ+/Pga22HJkiWsR48e7MCBAyw/P1/uXtetW8f9f7N48WKl5WX3pK+vzwIDA7ntDx8+ZNbW1tWWzc3NZc7OzmzKlCls27Zt7ObNm0woFDIAzN/fv8ZrJoQQQmrzrvWXbWxs3qn7rcnIkSMZANa8eXP28OFDbntgYCDT09NjANj//ve/etcra+P69lOio6O592NDbNy4kQFgNjY27Pz580wikXD7xGIxu3btGnv69KnSsjNnzuT62NeuXZPbV1ZWxi5dusQSExMVyo0fP54BYMuXL6/39Ta0nY4ePcq108qVK5lIJOL2HThwgAkEAsbj8VhQUFCtdYWGhjKhUMhcXV2ZlZUVfTYIIYSQl8zd3b3BfQnyasj6f8qeI964cYPZ2dkxAMze3p6JxeJGO6/svUJ9NUIaD6V5J4Rg165dAICZM2eiS5cuYIxh9+7dr/iqyIs4ffo0rl+/Dj6fj8OHD8Pa2prbN3z4cMydOxcA6j0zvSapqak4c+YMAGDy5MkK+zt37sylaK9MIBBg2rRpmDp1KgDg6NGjCmU3bNiA/Px82NnZYefOndzMG4FAgHXr1qFHjx7Izc3Fpk2b5MoVFBTAz88PALBp0yY4OTlx+1RUVDB9+nQMHz4cAHDq1CmF8/7+++/4999/sWTJEgwcOBC6urp1aovZs2cjODgYY8eOhba2tty9LliwAFOmTAEAbN++XSFle0ZGBn799VcAwI8//og+ffpw+zp06ICdO3cCAH7++WdkZWXJldXV1cXdu3exY8cOTJ8+HS4uLnW6XkIIIYSQ6jx69Ah//fUXAGDnzp3o0KEDt69Pnz748ccfAQDe3t4Qi8Wv5BrrIyIiAkuWLIGOjg4CAgLg5eUll52Iz+eja9euSmelBwUFYcuWLbCyskJAQAC6du0qt18gEMDT0xMWFhZNfh91sX79egBA//79sXTpUrnsT2PHjsXMmTPBGMOSJUtqrEcikWDSpEkQi8XYuXMnVFRUmvS6CSGEEELedq6urtiyZQsAIDw8nLL/EPKao2A6IXUgW6MuICAAT58+xfjx42FlZQWBQCC3dvLly5cxb948uLm5cevRNWvWDIMHD1YaqJORrXlTdc25gIAA8Hg82NraAgBOnjwJDw8P6OvrQ0tLC127dsXhw4df6N5CQ0Nx7do1AMC4ceMwfvx4AMCePXuqXZdZJjk5GQsXLoSzszN0dXWhqakJe3t7jB49utr7jYiIwNdff422bdtCW1sbOjo6aNOmDSZPnoygoCC5Y6trF5nKayVWVblscnIyvvrqK9jZ2UEoFMLDw4M77u7du1i2bBl69uwJKysrqKmpwcjICH379sXevXvBGKuxDfz9/TF69Gg0b94c6urq3FqJCxcuREREBNdOsrW2a1p78dKlS+DxeDAyMkJpaWmN562N7IGnp6cn2rRpo7B/+vTpAIDr168jOjr6hc4ls3fvXpSXl0NXV5cLUNdHu3btAACFhYUK+2T3M2nSJAiFQrl9PB4P06ZNAwCFz0NJSQn3GsrSKVUl2y4Siep9zdUxNjaucb8sFXtmZibS09Pl9p08eRIlJSXQ0tLC559/rlDWy8sLLVq0QHFxMU6ePNlo10wIIYS8iLe5v1xf165dw6hRo2BpacmtpT1w4EAcO3as2jIRERH44osv0KpVK6irq0NTUxPNmzeHp6cnfvjhB4X+UV5eHpYvXw5nZ2doa2tz62C7uLhgzpw5XD+0Mcj6YS1btsSAAQMU9o8bNw6amppISkrC5cuXG+28TeW3335DaWkpJk+ezL1v6ko2cHPu3LnQ19dv/ItrREVFRdxD2VGjRik9ZvTo0QCAK1euID4+vtq6Nm/ejKtXr2LevHno2LFj418sIYQQQppMTk4OVq5ciS5dukBPTw/q6upwcHDA3LlzkZaWprTMs2fPsG7dOnh6esLGxgbq6urQ19dHjx498Ouvv6KsrExpOdka4d7e3sjNzcWCBQvg4OAADQ0Nrt/1Iv33qmUrq/x9ISsrC7Nnz4atrS2EQiEsLS0xdepUpKSkVNtOKSkpmD59OqysrKCurg5bW1vMnj0b2dnZ8Pb2Bo/Hk/te0xh69OjB/T0qKkphf32fW8vaJzAwEAAwceJEufXaKz8Tl7lz5w7Gjx8PW1tb7nXu06cPfHx8ao0NEPIuoTXTCamHq1evYvXq1RCLxWjXrh0MDAzA5z8fk/Lxxx8jMzMThoaGMDc3h4WFBeLj43HmzBmcOXMGCxcuxNq1axt07pUrV2L58uVo1qwZWrVqhcjISNy4cQNjxoxBRkYGZs6c2aB6ZbPSe/ToAXt7exgaGmLu3LmIi4vDxYsXla5BDQDnzp3DqFGjkJeXBz6fz3WMYmJicOTIEVy7dg0ffPCBXBkfHx9MmzYNZWVlUFVVRdu2bcHn8xEdHY1du3YhMjISAQEBDbqP6kRERGDevHnIzs5Gu3bt0K5dO7k1qqdOnYrbt29DT08P5ubmMDc3R1JSEvz9/eHv749z587h4MGDCvVKJBLMmDEDf/zxBwBAR0cHHTp0QEFBAUJDQ3H37l2oq6vD29sb5ubm+OCDD/Dvv//izz//5GaIVLVjxw4AwOeffw6hUIiYmBjY2dkBkAbtlXV4qhMSEgIAcrOaK2vevDlsbW0RExODq1evcud5EbJsBqNHj651bUtlZA9fXV1d5bYnJCRwD/equx93d3cAQGxsLJKSkrjZQMbGxrC2tkZ8fDwuX74sN5MKABhj3Hkbc22i2hQXF3N/r9pWstfOzc0N6urqSsv36dMHUVFRCAkJafSOPCGEEPIi3sb+cn38/PPPmDNnDhhjMDAwQMeOHZGUlARfX1/4+vpi3Lhx2L17t1yb3L17F+7u7sjPz4e6ujpatmwJDQ0NJCYmIigoCAEBARg1ahRatWoFAMjPz0e3bt0QGhoKHo+Hli1bwsDAAGlpaXjw4AFu376Ntm3bcsfLyAag7t69u179h9r6lerq6nBzc0NAQABCQkLq1WeV2b59OzZt2oSioiKYmpqiR48e+Oyzz2BgYFBr2W+++QZhYWHg8XiwtrZG//798cknn0AgECg9/vjx4wCAAQMGICkpCdu3b8etW7dQXl4Oe3t7jBw5Uum9lpaW4ty5c1zZ8PBw7NixAw8ePACfz0e7du3w2Wef1boupb+/Px4/foyMjAzo6+vD2dkZY8aMUToTvqr6tFN2djb3gLW6dUVl2asYYwgODuaC65VFRkbi+++/h729faNmtSKEEEJI07t//z4GDx6MxMREqKqqwsbGBhoaGnj27Bk2bdqEgwcPwtfXV+F52eLFi3Hs2DFoa2vDzMwMHTt2RFpaGq5evYqrV6/in3/+ga+vr9wz1soyMzPh4uKCyMhItGnTBu3atZN7FibTFP33hIQEODs7Izk5GW3btoVQKERERAR27tyJS5cu4e7duwqZJyMiIuDu7o6kpCSoqKigffv2kEgk+O2333D69GkMHjy43tdRF0VFRdzftbS0FPbX97m1np4eevbsiYcPHyIvLw/29vYwNTXl9js6OsrVv2HDBixYsACMMW7CW2ZmJi5fvozLly/jxIkT+PvvvykrESEArZlOiAxqWANStkadiooKGzt2LMvOzub2FRUVcX/fsWMHi4yMVCh/4cIFZmpqygCwq1evKuyvbh0Tf39/BoAJBAKmoaHBDhw4wO0TiUTsq6++YgCYtrY2y8vLq/c9i0Qi1qxZMwaAbd++ndv+8ccfMwBs1KhRSss9fvyYaWpqMgBs+PDhCmsCPn78mK1bt05u28WLFxmfz2cA2IwZM1hWVpbc/mvXrrGtW7fKbattfZea1kqUlVVRUWH9+/dnSUlJ3L7Kr9mBAwfk1n2UuXHjBrO3t2cA2KFDhxT2L1++nAFgQqGQbdu2jZWVlXH7RCIR+/fff9nJkye5befOnWMAWLNmzeTWKpTJzMzk1rZ+9OiRwv3VZ33EsrIyrq0rv2eq6tevHwPAli1bVue6qxMSEsJd6/Xr1+tcrrCwkD18+JB9+eWXDAAzNzdnMTExcsf4+flxdStbf5Ix6dqWsnXgL126JLfv0KFDjM/nM21tbbZ161aWmJjIioqK2MOHD9lnn33GADBHR0dWUFBQ6/VOmzatTmum12bw4MEMAOvcubPCvt69ezMAbOrUqdWWX7VqVbVr01dFa6YTQghpLO9af7m+a6ZfunSJ8Xg8rn9VuX944MABpqamxgCwDRs2yJUbOnQoA8A+++wzlpubK7cvLS2NbdmyhaWmpnLbfv75Z67/Eh0dLXd8cXEx++uvv1hISIjC9dX0+tXE2tqaAWA//PBDtcdMnjyZAWDjxo2rV92yNlb2o6ury/766y+l5Sr3k5X92NvbswcPHiiUS0lJ4Y7ZunUr09fXV1p+woQJCn32a9eucfv//PNPpq6urlCOx+OxJUuWKL1m2ZqZyn74fD5bsGCB3NrtL9pO+fn53DE7duxQWu/169e5Y5R9J5BIJMzDw4PxeDy5vmR9PxuEEEIIeXH1XTM9MzOTWVlZcc+Y0tLSuH05OTls3LhxDABzcHBQ6PccP36cXb9+XaFvEhoayrp168YAsLVr1yqcU9bfUVFRYU5OTuzZs2fcPtl3ghfpv8vK2tjYVNs+AoGAeXl5yT0LvnPnDvcMvGqfRyKRMDc3NwaAOTs7s6ioKG7fs2fPWNu2bblnjvV9HljTmumMMbZlyxauvWJjYxX2N/S5dV3WTD98+DADwPT19dmePXvk1my/ceMGa9WqFQPAVq5cWfuNEvIOoGA6IRXq8nCwXbt2SgOhdbFjxw4GgE2fPl1hX20PBwGwVatWKZQrLi5mJiYmDAA7ceJEva/p+PHjDABTV1eXe+B54sQJLlBcNejNGGPDhg1jAJi7u7vcL9qadO7cud4P2BojmG5iYsJycnLqfM7KLly4wACwQYMGyW1PTU3lHp7t2rWrTnVJJBJmZ2fHALB//vlHYf8vv/zCALDu3btz2+Lj45mlpSWztLRU+kC0Ounp6Vy7nD17ttrjRowYwQCwr7/+us51V0f2ALV9+/Z1Ol5PT0/uIaBAIGBff/21XEdX5ujRo9xxxcXF1dYp+ywcO3ZMYd/Zs2dZr169FB4+ampqMm9vb5afn1+n626MYPqxY8e48yu71vbt2zMAbMGCBdXWsXXrVu4hem0omE4IIaSxvGv95foGDPv27csAsPfff1/p/u+//54BYMbGxqykpITb7uDgwACwe/fu1ek8sv7IL7/8UqfjZWT9yuoC1NXR0tJiANi2bduqPWbevHkMAPvggw/qVfe4cePYnj172JMnT1hBQQHLy8tjFy9e5F5vPp/Pzp07p1AuPj6effrpp+zkyZMsMjKSlZSUsNTUVLZ//35ma2vLADBTU1OWkJAgV+7u3bty/c8WLVqwc+fOseLiYpacnMyWL1/ODYioGhT/999/5cp27tyZhYSEsJKSEhYTE8MNDq0ueL169Wq2YcMGdvv2bZaZmcmKi4vZ3bt32ZQpU7hy1QXiG9pOsn6ll5eX0nrnzJnDnVvZd4Lff/+dAWBTpkyR207BdEIIIeTlq28wfcmSJQwAGzp0qNL95eXlrFOnTgwAO3LkSJ2vIzw8nAFgbdq0UdgnCx6rqakpDPqUeZH+e12C6cbGxnLPuWU2bdrEALBOnTrJbb906RLXv1M26Pfx48fcpKXGCKaLxWIWExPDNm3axPWzJ0+eXK96Gav+uTVjtT9TF4lEXH9O2XNqxhi7desW4/F4TF9fn5WWltb7+gh521Cad0LqYfz48VBVrflj8+TJExw9ehQPHjxAVlYWtw5zbm4uAGkax4b46quvFLapq6ujU6dO8PX1bdC6iLK03EOHDpVb8++9996DiYkJ0tPTcfDgQcyYMYPbV1JSgtOnTwOQpvypnKKyOjExMbhz5w4AYMmSJfW+zhcxfPhw6Onp1XhMbGwsDh8+jDt37iAjI4Nbr1z2Z9XX7MyZMygpKYGlpSW3xnxteDwepk6disWLF2Pnzp34+OOP5fbv3LkTADBlyhRum5WVFRISEupUf2WV0yZVl24JAJdCvHJKoYYoLCzk1tKcPHlyncp0794d+fn5yM3NRUxMDAoKCnD8+HE4Ojpi6tSpcsc2xv1ERUVx60BZWFigWbNmiImJQXZ2Nvbv3w9nZ2cMHTq0Ttf+Ih4/foyJEycCAD799FMMGzZM4RjZ/b6M144QQghpbG9bf7muCgsLubUJv/vuO6XHfPvtt1i7di0yMjJw/fp1LpW4jY0Nnj59isOHD8PR0bHW/rWNjQ0A4NSpU5g8eTK0tbXrdI0N6VcCTds32bNnj8K2fv36wcPDAx9++CHOnDmDWbNmISwsTO4YKysr7N+/X26bqakpPv30UwwYMAAuLi6Ij4/HypUrsX37du6YgoIC7u9isRgnT55E+/btAQBmZmbw9vZGRkYGtm7dip9++gnfffcdDA0NFcoKhUKcO3cOJiYmAKSvye+//464uDicPn0ay5cvx8SJE+VSYir7HuTs7IwdO3agZcuWWLRoEX788UdMnTqVe41ftJ2+/vprTJ8+Hb6+vliyZAlWrFjBfT7//PNP/Prrr9yxVV+7uLg4LFiwAGZmZtiwYYPC+QkhhBDyejty5AgAYPr06Ur3q6ioYOjQobh79y78/PwwcuRIuf1paWk4fPgwbty4gdTUVJSUlMit0f306VMUFxdDQ0NDoe5+/fopXde8qqbov48dO1buObdM9+7dAUChTtkyPn379kWLFi0UyrVr1w49e/bklolsiD179ijtz+no6GD+/Pn44Ycfqi1b3+fWdXH9+nXExsbCzMxM4Rm1TJcuXWBjY4OYmBjcvn2baz9C3lUUTCekHmQPWqqzcOFC/Pjjj3Idi6oyMzPrfV5jY2PuIU5VzZo1AyBdO7E+0tLSuKB41YCwQCDAp59+il9++QW7du2SC6aHh4dzv6x79OhRp3M9fPgQAGBkZFSntQAbU22v2a+//op58+ahrKys2mOqvmay++nWrVudBhPITJo0CcuXL8f58+eRmJjIrV147do1PHr0CDo6Ohg1alSd66tO5U5sTfdVUlICQHHN7vo6evQo8vPzIRAI8Nlnn9WpzNmzZ7m/l5eXY+/evfjuu+/wxRdfoLCwELNnz+b2V72f6tYRr+5+Zs2ahV9//RUtWrTA1atXubXRGWPYu3cvvvjiCwwbNgz//PNPkwbUIyMj4eXlhby8PLi7u2PHjh1Kj5Pd78t47QghhJDG9jb1l+sjIiICYrEYABTWnJQxNDSEpaUl4uLiEBYWxgXT582bh4sXL2LdunXYu3cvBg4ciO7du6N3795o06aNQj2TJk3CTz/9BD8/P5ibm2PAgAHo2bMnevbsCVdX10Zf01BDQwOFhYUvtW+ioqKCjRs34syZM3j69CkePnyosMZjdUxNTbFo0SJ89dVX+Oeff/DHH39w68VX7lcOGjRI6ft13rx52Lp1K4qLi+Hv749PPvlEoey4ceO4QHrVsqdPn0ZSUhLu3buHLl261Oma586di99++w1JSUk4efIkvv766zqVq62dvvjiC4SEhGDv3r1Ys2YNNm/eDHt7e8TFxSErKwvdu3dHYWEhHjx4oLB26BdffIH8/Hzs2rVL6QNpQgghhLy+CgsLuaDx0qVLsXr1aqXHpaamAgDi4+Pltv/999+YOHGi3GDCqhhjyMrK4p5vVlbbdwKg6frv1T17rq7Op0+fApAOcqxOp06dXiiYbmpqCnt7ewDSAYwRERHIz8+HlpYWPDw8qh2M3JDn1nVx//59ANJBs7169aq17vj4eAqmk3de3aNAhBBoaWlVu+/w4cNYv349eDweli9fjvv37yMvLw9isRiMMfj5+QEAN/Omsc4rC+bW9EBSmb1796K8vBxmZmbw8vJS2C8LsN+5cwcPHjzgtufl5QGQPrip6ywYWZlX8RCmpra7evUqZs2ahbKyMsyYMQM3btxAdnY2ysvLwRhDZGQkAGmwt7KG3k+zZs0wdOhQiMViLisA8HxW+tixY2u83rrS09Pj3hc1daiysrIAAAYGBi90vl27dgEAPvzwQ6UPFWujqqqKSZMmYdu2bQCAZcuWcQ9kq15fdfcjkUiQk5OjcPzDhw/x22+/AZCOApUF0gFptoDx48djyZIlkEgkWLhwYb2vva5iYmLQt29fJCUloUePHvjvv/+UjtytfP0v47UjhBBCGtvb1F+uD9lDOT6fD1NT02qPMzc3lzseAPr3749Lly5hwIABSE9Px+7du/HFF1+gbdu2aN++PY4dOyZXR7NmzXDjxg2MHz8efD4f//77L+bOnYvu3bvD3Nwca9asUei/vohX1Tdp27YtV194eHi9yvbs2RMAkJGRgezsbG575Qe2bdu2VVrWxsaGez9FR0fXq2y7du24v1cuWxtVVVV07doVQP3vtaZ24vF42LNnDw4fPoy+fftCIBDgyZMnMDExwapVq+Dv788NlJa9NwFg//79OH/+PIYOHYrhw4fX63oIIYQQ8urJnpEBwK1btxAcHKz0RxZwr5yhJiYmBp999hkKCgowcuRIXLlyBRkZGRCJRGCMcQNIger77XV5vtlU/ffq6q1uQpRswICOjk61dda0ry7ee+89XLlyBVeuXMGdO3eQmpqKJUuWICUlBR999BGX0bWyhj63rgtZ/zg3N7fa90ZwcDD3nYUyYxJCwXRCGo2Pjw8AaVpHb29vdOzYETo6OnUKar4KsmBuSkoKVFVVwePx5H46derEHfvnn39yf5fNWBCLxTWOTqxMVqZyR64uZDNIqus4FRYW1qu+qmTpdYYPH44tW7bA1dUV+vr63Gye6l6zht4PAEybNg2ANADNGENBQQGXdqlqevOGEggEsLOzA6CYuqgyWafLwcGhwecKDw/nRmbWNcV7dT744AMA0ofLz54947ZXvr7q7ic+Pp7rwFc+/sqVK2CMQUtLi3uoWtWgQYMAAGFhYU0yYy0+Ph59+/ZFXFwcunbtirNnz9Y4EEV2/U392hFCCCEv25vWX64P2QM2iUTCLS2jTHJystzxMu7u7vD19UVOTg78/PywYsUKdOzYEU+ePMHw4cPlsvoAgJ2dHXx8fJCVlYVbt25h8+bNGDhwIDIyMrBkyZJGXVrpVfZNZKnl6zvAonJK+splbWxsuAGNQqGw1vKVHxZXzhJQXdnK2yuXrc81N2QwSW1lR40aBT8/P2RnZ6O0tBRhYWH4/vvv5R7Eurq6csffunULABAQEAAzMzOFH9nstVmzZsHMzEyuLCGEEEJevcrPnaKiosAYq/EnICCAO/7w4cMoLS2Fm5sbDh06hJ49e8LIyIibPf0m99mVkbVVTc8EG/t5oYaGBlavXo1Ro0ahrKwMEydOhEQikTumoc+t60J2z3369Kn1vcEYw4QJExp8LkLeFhRMJ6SRyGYeyNI1VnXt2rWXeTk1unbtGp48eQJAOrOluh/ZDIcDBw5w6WRat27NpdkOCQmp0/k6duwIQPpLvnKQtDaykYSylENV1acuZRr6msnu59q1awodndr069cPLVu2RHR0NPz8/HD48GEUFBTA2dm5zmkg60KWeicoKEjp/ri4OMTExMgd2xCyWemWlpYYOHBgg+sB5EdSVn74aGVlBWtrawDV349sjdLmzZvDwsKC2y7LIlBXspk5jSUxMRGenp6Ijo6Gq6srzp8/r5BCsyrZ63Hz5k25GfqVydqBUiwRQgh5k7xJ/eX6atWqFfeA8dGjR0qPyc7ORmJiIoDqZzZramqib9++WLZsGe7du8fNCv7999+VHq+iooIuXbrgm2++wblz57iMPNu2bWu0mfiy/kZ1qS1LSkpw48YNuWMbQ1paGjcwQdYXrCvZskwaGhowNjbmtvP5fC5TUVRUlNKy2dnZ3GwdKysrbru5uTm3jmZ1ZWWB6apl63PN9b3XF2mn//77D+Xl5TAxMVG6hFdubi5SU1MVfmTfgfLy8pCamor09PR6nZcQQgghTUtPT4/rF1TOOFoXsj57r169lM7mfpP77MrIBoPKUp8rc+/evSY598aNGyEUCvHgwQPs3btXbt+LfHeSTVCrjmxZoMePH9f72TYh7yoKphPSSGTrA8pmm1SWnp7OzcR5HcgCoB07dkRKSkq1P8+ePYNAIEBmZiZOnDgBQDrbYsiQIQCAdevW1ekhnY2NDVxcXAAAa9eurfN1ytaSuXr1qtL9srTgDVXTa1ZSUsI9jKzq/fffh4aGBhITE7Fv3756nZPH4+GLL74AIE3vLkvx3liz0mVGjhwJQDqbJCwsTGH/H3/8AUA6A0U2i72+xGIx19GbMGFCvdaPV+bvv/8GIH1dqs5qGjFiBABpRoWqAW/GGLZv3w4ACmvOy+opLCxEcHCw0vPKZnoZGxvDyMjohe6hspSUFPTt2xeRkZFwcXGBr68v9PT0ai03dOhQCIVCFBYWKn1/+fr6IioqCurq6k26xjshhBDS2N6k/nJ9aWlpwd3dHQDw008/KT3ml19+gVgshrGxMdzc3Gqtk8fjcZl1ZEH42siOz8/Pb7QZNLJ+WGRkJC5cuKCwf+/evSgqKoK5uXm1D/saYv369WCMwcDAoF4zn8vLy7Fp0yYA0oGsVdeQHzt2LABpIFlZEFjWP1dRUYGnp6fcvjFjxgCQDjZWNghTVlZfX5/7/lMXp06d4gY713eAakPbqaioCMuXLwcAfP3113Kz+X/55ZcaZyfZ2NgAkPbNGWPcIF1CCCGEvD5kzwZ/+umnemXMqanPzhjDxo0bG+cCXxOyjJV+fn5K+zRhYWG4cuVKk5zbysqKeya8atUquYlGDX1uXblsdenZe/XqBQsLC2RmZsplpCWEVI+C6YQ0EtnDszVr1sjNmI6OjsaQIUNem7VFioqKuLTiEydOrPFYY2NjLvW2LAAPACtXroSmpib8/f0xZswYhV/qT548wfr16+W2/fjjj+Dz+fDx8cGsWbMUUqTfuHFDYcbNhx9+CED6cOnw4cPc9pKSEixevFguBVFDyF6z33//HTdv3uS2p6WlYfjw4Vz6wqpMTEy49bWnT5+OHTt2yHV2ysvLceLECZw6dUpp+YkTJ0JNTQ3Hjh3D9evXoampiU8//VThuISEBNja2sLW1rbeoz6HDBkCFxcXSCQSjB49Wu5e/v77b67ju3LlSoWyf//9N3fempw7dw5JSUng8Xi1vpcAYObMmbhw4YJC+smSkhLs2LED33zzDQBpm8o6fTLz5s2DtrY2oqOjMWXKFO7zJBKJsHDhQoSEhEBXVxdz586VK+fl5QUzMzMAwPjx4+XakTGGPXv2YM2aNdz+2kZu1lV6ejr69euHZ8+eoXPnzvD19YW+vn6dyhobG2PmzJkAgPnz58vNxn/06BGmTJkCQJpWs/LanYQQQsjr7k3pLzfUkiVLwOPxcObMGXh7e8v1eY4cOcL1jxcuXCiXDnzEiBH4559/FO4/MjIS//vf/wDIp+BetGgRtm3bppC9KScnhxu42rp1a4VsOLL+nWwAY1117NgRn3zyCQBgypQpcjPvg4KCMH/+fADAsmXLFALX165d486bkJAgt2/jxo349ddfFQLa+fn5WLx4MTcoYdmyZRAIBHLHTJ06FX///bdCFp/Y2Fh89NFHuH79OlRVVbFs2TKF+xk/fjwcHBxQUFCAcePGyaXI9PPzw+rVqwEAkyZNkst4BEiXKDAyMkJ8fDymT58u95odPHgQO3bsACDtu1Z+jS9cuIB58+bh6dOncvWJxWLs27eP+y4wdOhQhWxVL9JOAPDzzz8rvFeePHmCgQMH4smTJ3B2dsaCBQsUyhFCCCHkzbZgwQJYWFggKCgIn3zyiUJmHcYYbt68idmzZ8s9F5X12Y8ePYrTp09z2/Pz8zFlyhQuI9HbwsPDA127doVIJMInn3yC2NhYbl9ERASGDx+u0MdtTLLvBlFRUXKz0xv63BqQZs0CAH9/f6Uzz9XU1LBhwwYA0kGVv/zyC4qLi+WOKSgowLFjx7jnkIS88xghhDHGGAAGgO3evVthn42NDQPA/P39qy2fmJjIzMzMGACmqqrK2rVrxxwdHRmfz2f6+vpsy5YtDACzsbFRKOvu7q703P7+/tWWkRk/fjwDwJYvX16n+9yzZw8DwNTU1Fh6enqtx//3338MAOPz+SwhIYHbfvbsWaajo8Pta9euHevcuTMzMjKq9pp37drFBAIBA8AEAgHr2LEjc3JyYnp6egwAc3d3VygzbNgw7rWxtLRkLi4uTEdHh6mrq7P//e9/3L6qqmvTygoKCljbtm0ZAMbj8Vjr1q1Zp06dmEAgYEKhkO3cubPa+sViMfviiy+4/bq6uszFxYW1adOGqaur1/qajBo1iis7fvx4pcdER0dzx9T03qtOdHQ0s7S05Nrb2dmZ2dracnUuW7ZMabndu3dXe9+VyV4bDw+POl2P7HOkpqbG2rVrx7p168YcHR259gLAxowZw0pLS5WWP3XqFBMKhQwA09PTY126dGHGxsYMABMKhezMmTNKy/n7+3PvVdn7qHPnzszAwIDb1rt3b1ZQUKBQ9tChQ8zIyIj7kV2rUCiU275+/Xq5cpXfGx06dGA9e/as9ufOnTsK5y0pKWF9+/bl6nBwcOD+PwHA+vfvX207ffjhh3LXVvk9Wnl7XFxcbS8ZIYQQIudd6S9XvSdtbW2536FVfz788EOuzKZNmxiPx2MAmIGBAXN1deX6YwDY559/zsRisdx5ZH1hVVVV5uDgwLp27crs7e25euzt7VlKSgp3/NChQ7n6mjdvztzc3Fj79u25fpKWlhYLDAxUuJ+aXr/aZGVlsQ4dOnB9f0dHR+bg4FBrf1b2+gBg0dHRcvtmzZrF9cNtbW2Zm5sbc3JyYmpqalyZb7/9Vmm9Tk5OXJu1adOGde3albVu3ZprM01NTXbo0KFq7ycsLIw1a9aMAWDq6urMxcWFtWrVijuvh4cHKywsVFr28uXLTFtbmwFgOjo6zNXVlTVv3pwrO3r0aIXX+N9//+X2m5iYsC5dujAXFxfutZedMzc3V+F8L9JOjDGurKWlJXN1dWUtWrTgyrm6urK0tLRqy1ZH9tloyHuJEEIIIQ0j6w9raGjU2Dft1KkTV+bBgwfMzs6O+93fokUL1rVrV+bo6Mi0tLSUPncUi8XMw8OD22dnZ8e6dOnCNDU1GZ/PZ3v37q22f1eXfveL9N9rKlvbs+DKz1mrCg8PZ+bm5gwAU1FRYU5OTtz3lJYtW7JvvvmGAWCTJk2q9ppruo/q+soyM2bM4NpaJBIxxl7sufX169e5Z4iWlpasZ8+ezN3dnc2aNUvuuF9++YWpqqpyfWInJyfWtWtX1rJlS658Ta8TIe8SmplOSCOxsLDAtWvX8Omnn8LAwADh4eHIycnB+PHjcffuXbRv3/5VXyIAaSo+APjggw/k1g+szqBBg2BhYQGJRCKXenPQoEEIDQ3Fd999hzZt2iAmJgZPnz6FgYEBxo4dq3Rdx4kTJ+Lhw4eYNm0amjdvjmfPniE6OhoWFhaYMmUKNwukskOHDmHVqlVo3bo10tPTERMTgwEDBuD69esYMGBAwxsC0nScly9fxpdffglzc3NER0cjOTkZH3/8MW7cuIF+/fpVW5bP52P79u24cOEChg0bBi0tLdy/fx8ZGRlo164dFi9ejHHjxlVbvnJa98ZO8S5ja2uLBw8eYO7cubCxsUFoaCjy8vLg5eWF06dPY8WKFQ2uOyMjg5t5P2nSpDqV+e233zBjxgw4OjoiKysLt2/fRlRUFGxsbDBu3Dj4+fnh4MGDcikmKxsyZAju3LmDTz/9FJqamnjw4AEEAgE+/fRT3L17F++9957Sch4eHnj8+DHmzJkDR0dH5OTk4MGDB1BRUUHfvn2xY8cO+Pv7Q0tLS6FsSUkJMjMzuR/Z7KfS0lK57VVnklVO+/no0SMEBwdX+5Obm6twXqFQCF9fX2zevBldunRBYmIioqOj0alTJ/z66684d+5cte2Um5srd20yeXl5ctvrk+KLEEIIaQxvSn+5qoKCArnfoVV/Kv8u/+677xASEoIRI0ZAXV0d9+7dQ3FxMQYMGICjR49i7969Ckvj7N27l+sjZWdn4/bt20hNTYWLiwt++OEH3L59G82aNeOOX7p0Kb7//nv06tULEokE9+7dQ1RUFOzs7DBz5kw8evSoUdOtA4CBgQFu3LiBlStXom3btoiIiEBKSgp69eqFffv2NShF/+jRozFr1ix069YNIpEIDx48wLNnz2BtbY1x48YhODi42pT5ixcvxsSJE9G+fXuuX5mcnIyOHTtizpw5ePToEUaPHl3tuR0cHPD48WPMnTsXzZs3x6NHj5CSkoJu3bph69at8PX1VciUJNOrVy88fvwY06dPh5GREe7fv4+8vDx4enri4MGDOHjwoMJr3KVLFyxduhReXl7Q0tLC06dP8eDBA2hqamLIkCE4dOgQ/Pz8FLIJvGg7AdIZ671794ZYLMa9e/eQl5eHfv364c8//8S1a9dgYmJSbVlCCCGEvH6Ki4tr7JtmZWVxxzo6OuLhw4f4+eef0adPH+Tk5ODWrVuIiYlBy5YtMWPGDFy4cAG9evXiyvD5fJw5cwYLFy6EnZ0dEhISEBcXB09PT1y6dAmff/75q7jtJtWqVSvcuXMH06ZNQ7NmzRAaGorc3Fx89dVXuHHjBpf9R1lfrTEsWrQIQqEQ0dHR2LNnD4AXe27t5uaG48ePw8PDA4WFhbh69SoCAwMV1n6fNWsWHj58iBkzZsDOzg4RERG4ffs2CgoK0KdPH6xfv17pMk+EvIt4jNVhwWNCCCGN6uDBg/j000/Rtm1bbn1EQgghhBBCCCGEEEIIIa+PwYMH48yZM9i8eTO3TCUh5N1CM9MJIeQV2L59O4Cmm5VOCCGEEEIIIYQQQgghpOFiY2Nx8eJFAGj07E+EkDcHBdMJIeQlO378OIKCgqCrq4uJEye+6sshhBBCCCGEEEIIIYSQd1JMTAw2bdqEjIwMue3379/HkCFDUFZWhl69esHZ2fnVXCAh5JWjNO+EEPISpKSkYPTo0cjLy8O9e/fAGMOGDRswd+7cV31phBBCCCGEEEIIIYQQ8k569OgRHB0dwefzYW9vD319faSmpiImJgYAYG1tDX9/f7Rs2fLVXigh5JWhYDohhLwEMTExsLOzg4qKCmxsbPDll19izpw54PF4r/rSCCGEEEIIIYQQQggh5J2Ul5eHTZs24cKFC4iOjkZWVhYEAgFatWqFIUOG4Ntvv4WRkdGrvkxCyCtEwXRCCCGEEEIIIYQQQgghhBBCCCGkCloznRBCCCGEEEIIIYQQQgghhBBCCKlC9VVfwNtMIpEgKSkJOjo6lMqZEEIIIXXCGEN+fj4sLCzA59O4R/JyUf+VEEIIIQ1BfVjyKlEflhBCCCH1VZ/+62sbTL958yaWL1+OkJAQiEQiODo64rvvvsPIkSPrVN7W1haxsbE1HhMUFITevXtz/66pszV+/Hj4+PjU6dwySUlJsLa2rlcZQgghhBAAiI+Ph5WV1au+DPKOof4rIYQQQl4E9WHJq0B9WEIIIYQ0VF36r69lMN3f3x8DBw6Euro6Ro8eDR0dHRw7dgyjRo1CfHw85syZU2sds2fPRk5OjsL2jIwMbN26FQYGBnB1dVXYb2NjgwkTJihsd3Z2rvd96OjoAJC+ELq6uvUuXxuRSARfX194eXlBIBA0ev3vImrTpkHt2vioTZsGtWvjozatv7y8PFhbW3P9CEJeJuq/vpmoXRsftWnToHZtfNSmTYPatf6oD0teJerDvnmoTZsGtWvjozZtGtSujY/atP7q03997YLp5eXlmDp1Kvh8PoKCgrgg9rJly+Dm5obFixdj+PDhsLGxqbGe2bNnK92+adMmAMBnn30GdXV1hf22trbw9vZ+kVvgyGa66+rqNllHTlNTE7q6uvThaCTUpk2D2rXxUZs2DWrXxkdt2nCUnpC8CtR/fTNRuzY+atOmQe3a+KhNmwa1a8NRH5a8CtSHffNQmzYNatfGR23aNKhdGx+1acPVpf/62i1idOnSJURGRmLs2LFys8H19PSwePFilJWVYc+ePQ2u/88//wQATJ48+UUvlRBCCCGEEEIIIYQQQgghhBBCyFvqtZuZHhAQAADw8vJS2Ddw4EAAQGBgYIPqDgkJQWhoKFxcXODk5KT0mJycHPzvf/9DRkYGDA0N0bNnTzg6OjbofIQQQgghhBBCCCGEEEIIIYQQQt5Mr10wPTw8HABgb2+vsM/MzAza2trcMfUlm5U+ZcqUao+5f/8+pk2bJrdt0KBB2LNnD0xNTWusv7S0FKWlpdy/8/LyAEjTK4hEogZdc01kdTZF3e8qatOmQe3a+KhNmwa1a+OjNq0/aitCCCGEEEIIIYQQQgh5Pbx2wfTc3FwA0rTuyujq6nLH1EdBQQH++usvaGpqYsyYMUqPmTNnDj755BO0bt0aampqePToEVatWoWzZ89iyJAhuHr1KlRUVKo9x9q1a7FixQqF7b6+vtDU1Kz3NdfVhQsXmqzudxW1adOgdm181KZNg9q18VGb1l1RUdGrvgRCCCGEEEIIIYQQQggheA2D6U3lyJEjKCgowPjx46Grq6v0mI0bN8r9u3v37vjvv//Qt29fBAYG4sSJExg2bFi151i0aBG+++477t95eXmwtraGl5dXted8ESKRCBcuXMCAAQMgEAgavf53EbVp06B2bXzUpk2D2rXxUZvWnyyzDSGEEEIIIYQQQgghhJBX67ULpstmpFc3+zwvLw8GBgb1rrcuKd6V4fP5mDp1KgIDAxEcHFxjMF0oFEIoFCpsFwgETRpAaOr630XUpk2D2rXxUZs2DWrXxkdtWnfUToQQQsjrRSQSQSwWv+rLUEokEkFVVRUlJSWv7TW+iahdARUVFeqXEkIIIa+h17lvWlfU12p81KZSTdWHfe2C6bK10sPDw9GlSxe5fSkpKSgoKICbm1u96nzy5AmuXr2KNm3aoFevXvW+JmNjYwBAYWFhvcsSQgghhBBCCCHkzZOXl4eMjAyUlpa+6kupFmMMZmZmiI+PB4/He9WX89agdpUSCoUwNjZukmyLhBBCCKmfN6FvWlfU12p81KbPNUUf9rULpru7u2Pt2rXw9fXF6NGj5fadP3+eO6Y+ZLPSJ0+e3KBrun79OgDA1ta2QeUJIYQQQgghhBDy5sjLy0NiYiK0tbVhbGwMgUDwWj6UkkgkKCgogLa2Nvh8/qu+nLfGu96ujDGIRCLk5uYiMTERACigTgghhLxCb0rftK7e9b5WU6A2bdo+7GsXTO/Xrx9atGiBgwcP4ptvvoGzszMAadr3NWvWQE1NDePGjeOOT05ORm5uLszNzbkU8ZWJRCLs27cPAoFArlxVDx8+RJs2bRSm/4eEhGD9+vUQCAQYMWJE49wkIYQQQgghhBBCXlsZGRnQ1taGlZXVa/2gUiKRoKysDOrq6u/sQ7OmQO0KaGhoQEdHBwkJCcjIyKBg+it08+ZNLF++HCEhIRCJRHB0dMR3332HkSNH1rmO0tJSrF+/Hvv27UN8fDwMDQ0xZMgQrF69GqampkrLHDhwAJs3b8bjx4+hpqaGnj17YuXKlejcubPCsfv378fly5dx+/ZtPHz4EGVlZdi9ezcmTJhQ7TXl5eXB29sbx44dQ0pKCszNzTFixAgsX74c2tradb43Qgh5F7wpfdO6or5W46M2lWqqPuxrF0xXVVXFzp07MXDgQPTp0wejR4+Gjo4Ojh07htjYWGzcuFFuhviiRYuwZ8+eajtoJ0+eRHp6OoYNG1Zt5xAANm3ahNOnT6NXr16wtraGQCDA48eP4evrCx6Ph61bt6Jly5ZNcMeEEEIIIYQQQgh5XYhEIpSWlsLY2PiteFhJSEPxeDzo6ekhMTERIpGI1lB/Bfz9/TFw4ECoq6vLPSMdNWoU4uPjMWfOnFrrkEgkGDp0KM6fP49u3brhk08+QXh4OHbu3Ak/Pz9cu3YNJiYmcmV++OEHfP/997CxscH06dORn5+Pw4cPo0ePHvDz80PPnj3ljv/+++8RGxsLY2NjmJubIzY2tsZrKiwshLu7O+7duwcvLy+MGTMGd+/excaNGxEYGIigoCCoq6vXv8EIIeQtRH1TQuqnKfqwr10wHQA8PT1x5coVLF++HEeOHOFGXa5fvx6jRo2qV12yFO9Tpkyp8bihQ4ciJycH9+/fx4ULF1BWVgYzMzOMHj0as2fPrvc67YQQQgghhBBCCHnziMViAKDAISF4/jkQi8X0mXjJysvLMXXqVPD5fAQFBXHZO5ctWwY3NzcsXrwYw4cPh42NTY317NmzB+fPn8eYMWNw4MABLhDzxx9/4Msvv8T333+P7du3c8eHh4fD29sbrVu3xo0bN7hMoF999RW6deuGqVOn4tGjR3Kz3nbu3Al7e3vY2Nhg3bp1WLRoUY3X9OOPP+LevXtYsGAB1q1bx21fuHAh1q9fj59//rnWOggh5F1BfVNC6q+x+7Cv7Vx/Nzc3nD17Frm5uSgqKsL169eVBtJ9fHzAGKs2bdCZM2fAGMN7771X4/k+/vhjHD9+HFFRUSgoKEBZWRni4uJw8OBBCqQTQgghhBBCCCHvGJr5Qwh9Dl6lS5cuITIyEmPHjuUC6QCgp6eHxYsXo6ysDHv27Km1nh07dgAA1q5dK/d6Tps2DS1atMCBAwdQXFzMbd+9ezfKy8uxZMkSuSU1nZ2dMWbMGISGhuLKlSty5+jfv3+tQX0Zxhh27twJbW1tLF26VG7f0qVLoa2tjZ07d9apLkIIeZfQ72RC6q6xPy+v5cx0Qggh5G2QXViGtPxSOJjpvOpLIYSQ18LjpDw8zOKhQ1YRWjbTq70AIYQQQsg7KiAgAADg5eWlsG/gwIEAgMDAwBrrKCkpwfXr1+Hg4KAQ7ObxeBgwYAC2b9+OW7duoXfv3nU6r4+PDwIDA9GnT5/63hIA6cz3pKQkDBw4EFpaWnL7tLS00LNnT5w/fx7x8fGwtrZu0Dkak0gsgV9YGh5l8SAMS4OqSv0fp+uoq8LNzpACYYQQQsgbioLphJC3lljCEJVegFam2vSFhbwSk/fcxL34HPjN8YCdsVbtBQgh5C2343IMTj9VgXmrDAqmE0IIIYTUIDw8HABgb2+vsM/MzAza2trcMdWJjIyERCJRWkflusPDw7lgenh4OLS1tWFmZlbj8Q1V033Jtp8/fx7h4eHVBtNLS0tRWlrK/TsvLw+AdF1hkUjU4GtTJr+kHNMP3AOggh1P7zW4ntVD22GUi1VjXdYbT/Y6Nfbr9a6jdm18r0ObikQiMMYgkUggkUhe2XU0JsYY9+fbck+vGrWpPIlEAsYYRCIRVFRUlB5Tn881BdMJIW+tgzfisPT4Iyz/oB0m9rR7aeeNzyqChb4GVPgvN4BfWi5GZkEZLPQ1Xup5iXJiCcPDxFxIGHAzJouC6YS85RITE3H06FGcOXMGYWFhSElJgaGhIXr27In58+eja9eudarnypUr+PfffxEQEICYmBgUFhbC1tYWQ4cOxaJFi6Cvr69QxtbWFrGxsUrrc3d352YXvQ5kvxvFEvaKr4QQQsjrhsfjvfDvrYCAAHh6emL58uXw9vZutGsj5FXIzc0FALlU65Xp6upyx7xIHZWPk/3d1NS0zsfXV0Ouqaq1a9dixYoVCtt9fX2hqanZ4GtTplQM2GgrfwhfFyViILWYh5/OPYZm6gOo0FwPORcuXHjVl/BWonZtfK+yTVVVVWFmZsYtT/w2yc/Pf9WX8EoNGTIEwcHByM7ObrQ63/U2lSkrK0NxcTGCgoJQXl6u9JiioqI610fBdELIW+tmdBYA4MS9pBcKpqfmlcBYW1in4PiJe4mYdfgelrzfFlP7tGjwORtizelQ7L0Wi7+mdYerreFLPTdRlJxbDJFYGiwKTc57xVdDCGlqv/32G9avX4+WLVvCy8sLJiYmCA8Px/Hjx3H8+HEcPHgQo0aNqrWe4cOHIyMjA7169cK4cePA4/EQEBCAH3/8EX///TdCQkLQrFkzhXJ6enqYPXu2wnZbW9tGuLvGo1Lx9LCcRkkTQshrqb4ZvWQzYEj1bG1tkZKSgpKSkld9KYS8NRYtWoTvvvuO+3deXh6sra3h5eXFBeMb05BBIly4cAEDBgyAQCCoV9niMjE8fgpCVqEIEktnfOBs0ejX9yYSiRrepqR61K6N73Vo05KSEsTHx0NbWxvq6uqv5BoaG2MM+fn50NHRqbX/GRMTwz1rOXv27Eu6wpdDVVUaom2M3131adPq+Pj4YPLkyXLb1NXVud+xixcvVpq5pj5WrFiBlStXws/PDx4eHi9UV01KSkqgoaGBPn36VPu5kWW2qQsKphNCXoncIhGEAj7UBQ0f3Vub+GzpyKIHCTnIKSqDvqZaves49ygF0/ffxrf9W2NWf+UpyCq78CQVAHAlIqNJgumMMeQUiaClpO926WkaGAMCn6Y3KJieXyKChkAFqir8RrjSN5eEATlFIpjovVgHOTbz+ci2lxVMzy4sg76mgJY1IOQVcHNzQ0BAANzd3eW2X758Gf369cOXX36Jjz76CEKhsMZ6vv32W3z++eewsHj+kI0xhhkzZmDbtm1YuXIltm7dqlBOX1//jZiBp1oxMK1cTMEXQgh5HS1fvlxh2y+//ILc3Fyl+xpTaGjoC88odXNzQ2hoKIyNjRvpqgh5dWQzt6uboZ2XlwcDA4MXrqPycbK/1+f4+mrINVUlFAqV9qsFAkGTBrsaUr9AIMDkXi2w4fxTbL8cg2FdmoP/kjMZvs6a+jV7V1G7Nr5X2aZisRg8Hg98Ph98/tvx3FaWhlx2XzWR7a/LsW+avXv3oqioqFHuqz5tWh1ZuX79+qFXr14AgMzMTPj5+WHr1q04ceIE7ty5AxMTkwZfp+y5dVO/n/l8Png8Xo2f3fp8pimYTgh56SLTC/DRlmA4mOng7y97NGrdZeUSMDAIVVWQkF0MQBocDY7IxOCO5vWu79+7CdyfdQmmP0iQfhmMyiio97mqkkgY4rOLUC5hMNNVh5ZQFX/diseCYw+xabij3H/g+SUixGdJ77chgdunKfl4/9fLGO1qjR8+dnzha3/TFJeJIaiYLXk+gYc56/yxc7wL+rZRnP1ZV/LB9HwwxpQGuQtKy6EhUHnhZQGO3U7AnKP3sXaYI8a4NX+huhhjyCsph55G035JKC0Xgwce1FRr7jiJJQwlIjG0hC+n21JQWg4tNRUalEDqZdiwYUq39+7dG56envD19cXDhw/h4uJSYz0LFixQ2Mbj8bB06VJs27YNgYGBjXK9rwoXTKc074QQ8lpSNjDLx8cHubm5TT5oq02bNi9ch6amZqPUQ8jroPL65F26dJHbl5KSgoKCAri5udVYR4sWLcDn86td41zZ+uX29va4evUqUlJSFGaf1bbeeV3Utu56Y5zjdfN5dxv8ERCJ8LQCXAxNhVf7F5vVRwgh5O3QvPmLPcNtKv3798fChQu5f0skEnzwwQc4c+YMtmzZonSplbfd2zWMgxDyypWLa0/buvZMGPJLy3ErNhvPUhtvDQ/GGEZuvwqPDQHILChFen4pty/oWXqd6sgsKEVCdhEKSstRLpYgJCITABCTWYS4TOVraDDGUFouRnZhGeKypMckZBejtFzc4Hu5E5eND7degfuGAPTbFAj3Df7ILxHhxL0kAEBIVKbc8WEpz9uxajC9LtdxMyYLYgnD8buJKCuvW+rdsnLJW5HWMa9EhP4/BeKDLcFgjCE8lw8JA373j3yhemOzCrm/5xaLkJwrn9Yxu7AMi/99CEfv8/jur3ty+0rLxfVu273XpOslB0dkNOyCK1lzJhSdVvriTlzjrddTVYlIDK+fg/DhliuQSBgYkwbMlZnz1z24/XCxwf9fFJWV17k9/cPS0GH5efx5JbpB5yJEGdlIV1n6rqaoo7S0FD4+PlizZg22bNmC69evN/hcTUmV1kwnhJC3QkxMDHg8HiZMmIDQ0FB8/PHHMDIyAo/HQ0xMDADg33//xZgxY9CqVStoampCT08PvXv3xrFjx5TWyePxFFI9TpgwATweD9HR0fj111/Rpk0bCIVC2NjYYMWKFdwMHJmAgADweDyFwL+trS1sbW1RUFCAWbNmwcLCAkKhEB07dsTff/+t9Hri4uIwevRoGBoaQltbG+7u7ggKCoK3tze3DEtjKywsxPLly9GmTRuoq6vD0NAQgwcPRnBwsMKxJSUl2LRpE5ycnKCnpwctLS3Y2tpi5MiRuH//PnecRCLBzp074ebmBkNDQ2hoaMDKygoffPBBk9wDaTyyjEe+vr4K+86fPy93THU0NDTg5uaGp0+fIjY2Vm4fYwwXLlyAlpaW3IDPxjhvTezt7WFhYYHg4GAUFhbK7SssLERwcDDs7OxgbW3d4HO8bnTVBfi8uw0AYGtA5FvxLIUQQl5X+fn5WL58Odq3bw8NDQ3o6+tj4MCBuHLlisKxt2/fxsyZM9GhQwfo6elBQ0MDjo6OWLduHUQikcLxsj5lTk4OZs6cCWtra6iqqsLHx0eufxwREYGPP/4YBgYG0NLSQv/+/eX6ZzIeHh4Kk3l8fHzA4/Hg4+MDX19f9OjRA5qamjAyMsL48eORmZmpUA8AbN++Hd27d4empiasra0xf/58lJSUKO1j1xefz8eECRO4NqssNzcX69evh7u7OywsLKCmpgYLCwuMGzcOkZHyz9c9PDy4QLynpyd4PB54PJ7CEoVpaWn49ttv0apVKwiFQhgbG+OTTz7Bo0ePXug+XgTNTCeE1IoxBsZQaxqqkMgMfP7nDXSxMcDKoe3RxkxxrY9rUZm4GJrK/fv0g2S0HqBT72vKLCiFmDEYaT1fy/xpaj7uxecAAM48SpE7Pig8nZsZLJYwpbOAN55/iq0BEWAM0FJTwfIP2yO/tJzbHxiejs+NbLh/M8bg+yQVK089QWm5BPMHOVTaJ52Z3LpZ/e/tdmw2RvwRAgkD1FT4kDCGjIIyBD5Lx9046f0lZBcDlQYyP0l6HkBPyi3h0tofuB6LJf8+wo5xLhjQrvpZ1mkVAw8Ky8S4E5eNbi2MarzGx0m5GLolGJN62WHx+23rfY8ypeViqKnwX+kM4GO3E5CYU4zEnGJkFYmQXSbdfis2G0+S8tDOomFr1sRmyA++CE3Og4W+BgDpfX/8ezBiKgZonLiXhFGu1ujR0hjJucX44LcrcLbWx87xrnU6V3xWEe5XvPfjKzIyvIjgiExIGHA1MhOdm9ecNrCuysUSqKgw7v+Re/E53Oz9qIwCXHiSho2+T7FrgivcW5ugXCyBqgof5WIJzj9ORbFIjF1XorHuk471Oq//0zRM8rmJGR6tMHegQ63Hn3mYDADYHRyDyb3slL43S0RiPErMhUsDllMg7564uDhcvHgR5ubmcHRseOaPXbt2AQC8vLyU7k9JScHEiRPltrm6uuLQoUNo2bJltfWWlpaitPT54DNZWk2RSKT0i+OL4kH64LBMVN4k9b+rZG1Jbdp4qE2bxpvSriKRCIwxSCQShWDt60YWkJFdb1OqXL/s7xEREejWrRscHR25h3uqqqqQSCRYtGgR1NTU0LNnT5ibmyM9PR2nTp3C8OHDsXnzZsycObPW88jub+7cuQgKCsLgwYPh5eWFEydOwNvbG6WlpVi9erVCWWXtIRKJ4OXlhezsbAwbNgxFRUU4cuQIRo4ciTNnzsj9jk1ISMDAgQORkpKCgQMHolOnTnj69CkGDBgAT09P7lz1afPaji0pKUHfvn1x48YNdO7cGbNmzUJqair++usvnD9/HgcOHMCIESO448eNG4ejR4+iY8eOmDBhAoRCIeLj4xEQEIDr169z/Y6FCxdiw4YNaNmyJcaMGQMdHR0kJiYiODgYFy5cQJ8+fWq9bsYYRCIRVFSqX6btdf9cv4n69euHFi1a4ODBg/jmm2/g7OwMQPrQes2aNVBTU8O4ceO445OTk5Gbmwtzc3O5FOlffPEFrl27hkWLFuHAgQPcd5zt27cjKioKX3zxBTQ0NLjjJ06ciI0bN+KHH37A0KFDubru3buHQ4cOoW3btlzq14bg8XiYMmUKVq5ciVWrVmHdunXcvlWrVqGgoACLFy9ucP2vq0m97PDnlWjcj89BSGQmerai5SgIIaSxZWVloU+fPnj8+DF69uyJ6dOnIy8vDydOnICnpyeOHj2Kjz76iDt+x44dOHXqFPr06YP3338fRUVFCAgIwKJFi3Dz5k2lg0BLS0vRt29fFBQU4MMPP4SqqiqaNXv+3D0mJgbdunVD+/btMWnSJERGRnLnDw0NlTu2JidPnsTp06fxwQcfoEePHggKCsLevXsRGRmpMDBg2bJlWLVqFUxNTTFlyhSoqanhr7/+QlhYWMMasgZVJ3mEhoZi2bJl8PT0xMcffwwtLS2EhYXh4MGDOH36NO7cuQMbG2lMRRaQDwwMxPjx47kgur6+PldfZGQkPDw8kJCQAC8vL3z00UdIS0vDsWPHcP78efj5+aFr166Nfl+1oWA6IS8RYwwShhdO5/yybfYLx1b/CIx1a47vvBzkUj/LHm7weDwcuRkPsYThRnQWPvjtCv79qic6WMqvcbXx/FMAgLWhBuKzinHmYTK+HdCaq6u2oH25WIKZB+/i3GNpsLytuS5OzewJVRU+Lj97PiPXt2K/nbEWEnOKkZxbgp8uPENmYRn+uhmP77xa4yuPVtzxf92Kxxb/CADSWXOFZWJ8/690pJMKXxqAD3qWjs+7PQ+m778Wi6UnHnP/XndW/pdTVHqhQjC9ulTflf33IAkSBnRvYYTfxnbClksR8AmJwbaASBRXzNxNrAimS9uMKcxGf5Kch+4tjLCrYnbt8buJNQbT0/Ofz5q+HJ5eazD94pM0lEsYfEJiMN29JQy16rcefYlIjN/9I/BHUBSGOllgwwinepVvLIwx7Lv2fHR+XGYRcsqe7993LRZrh9Ue/Kr8usr+HluRpcBQSw1ZhWV4kpSHfm2lr8HZhymIySyCsbYanK31cTE0DWvOhOLkjF7Yfy0WGQVl8H+ajhKRGOoCFaXnqezso2Tu7wlZRSgRifHBb1egrynAX9O612uwAmMMsZnS2QFR6YUK+xoy8CGzBOjxYyA6WOph7yQ38Hg83IzO4vbfj8/F8buJEEsYtvpHwMpAA8O3haC3vQm+8mzJve+P30vEovfb1iv9/O/+0gEyfwRGYlhnS7Qw0a7x+PsJOQCAxJxiPEjIhZO1vtz+S2Gp8D75BOn5pfCb484NkCBEGZFIhM8//xylpaVYv359jQ+ga3Lv3j2sWLECpqammD9/vsL+iRMnonfv3ujQoQO0tbXx7Nkz/PTTT9i3bx/69euHhw8fQkdH+eCutWvXKk3P5evr+8Lr1iqTEMcHwEdkVAzOnIlq9PrfdRcuXHjVl/DWoTZtGq97u6qqqsLMzAwFBQUoKyuT2yfNpvP6BdiLM3Pk/q0uaLwBq7IgsGzAFQAUFEiXtQoODsb8+fOxaNEiuTJ5eXk4fPiwwiyTFStWYODAgVi6dCmGDx+u8LumvLxc7jyyAO3t27dx+fJlLuX0rFmz0KVLF2zZsgWzZ8+Gmpr0+0hRkbQPXlpaKlePRCJBUlISnJ2dcfz4ce74oUOH4qOPPsLGjRvRrVs37vh58+YhJSUF33//PebMmcNt379/P77++mvuXJXPUZ/2U+bHH3/EjRs3MGLECGzfvp17/SZNmoQBAwZg2rRp6NGjB3R0dJCbm4u///4bzs7OuHjxolwfQywWo6CggDvfzp07YW5ujqCgIIX2zs7OrvW6ysrKUFxcjKCgIJSXl1d7nKztSeNRVVXFzp07MXDgQPTp0wejR4+Gjo4Ojh07htjYWGzcuFHuM7Zo0SLs2bMHu3fv5h5WA8D48eNx5MgRHDp0CNHR0XB3d0dERAT++ecf2NnZyQ1IAYDWrVvD29sb33//PZycnPDJJ58gPz8fhw8fBiANPFRd43Tnzp3cg/2HDx9y22TZD3r16oUpU6Zwx8+fPx8nTpzA+vXrcffuXXTu3Bl37tyBr68vXF1dMXv27EZqxdeHsbYQY9yawyckBr8HRFAwnRDSKBhj3HOz15mG4OUsp/j111/j8ePH2LFjh9zvnbVr18LFxQVffPEFBg0aBHV1dQDA4sWLsXXrVrm+FGMMU6ZMwa5duxAcHIyePXvKnSMlJQVOTk4IDg6WG4wmy84UGBiIdevWyS3jt3TpUqxevRq7d++WS59ek1OnTiEgIIA7v1gsRv/+/REQEIBr165xfddnz55hzZo1sLS0hL+/P1q2bAk+n48VK1bI9W9fhEQiwe7duwFAYUBd27ZtkZycDEND+UlH/v7+6N+/P1avXo0dO3YAkAbTY2JiEBgYiAkTJiidMT9u3DgkJyfj3LlzGDhwILf9+++/h4uLC6ZOnYoHDx40yn3VBwXTCXlJysolmL7/Nu7H5+Ds7N4w1VGvc9naAliHb8Rh5X9PsG+yG7rY1G+mZEJ2ET7+PQQerU2UBjTzSkTYHhgFkZhhz9VYBIVn4Oys3lAXqIAxhi/338Gt2GycmNkTl8OlwWwbI03EZhbh0I04ufW30/NLcStWmjZ69wRXvLf5MsLTChCemg9rQ018uOUKeODh0Bfdqg3Orj4dygXSAelsX/+n6RjQrhmCwp+ncr9WkQa9lak23FubwCckBr9diuD2b/OPxIQettBUU0V0RiGW/Cv9svdNP3t86GSOgb9cRllFyvpPuzbH3quxuBqZCZFYAoGK9EvjP3cTAQCdm+vjTlwOsgqlD9r4POk67VXXTd8eGImfLjzDaFdrhUEJld2KkbbRmK7NYawtRJ/WxvAJicHjSrPPk/NKUVwODNwcDHN9DeSVSB8yCVX5KC2XIDQ5H0ZaQkRWBENvxmTV+D5Ky6ucEj8D8wYqPYzzJFm6NnxZuQRHb8Vjmnv1sx6rEoklGP5HCB4lSu/n9MNkrB3mCNWKdm1owLYhrkZmygWM78bnQMKen/ufOwlwttbDiC7W1Q7y+D0gAtv8I7Froiv0NAQYuf0q3nc0R1xFQNqrXTMcvhmP0JTnr58sgD++uy3Gdm0O9w0BeJSYh90hMThyMx6ANAXys9R8OFrq4eT9JPx47ikMtdRwdHp3LsA+Zc9NPEjI5dImA0BmYRnuxuUgPE36/ovOKEQLE+2K1PHSbAd8Pg8n7ydh7tH7+HV0JwzqYCZXvrBM2gmXvYeTc4ux+r9Q+IWl4ueRznjP0bxe7Xwqjo/sIhEuh2fg9MNkDOlogRsxz4Ppl8PT8bQihfuN6Cx8c+gusotEOP0wGR2tng/IKRFJcOx2Aib1sgMASCSsxsE3ocl5uFnxeSqXMPx47in++LwL174isQQqfB73mS4sLUdE2vPP7ZmHyXLBdFmmBwAw01VHUk4xBdNJtSQSCSZMmICgoCBMnToVn3/+eYPqiYqKwuDBgyEWi3H48GEYGys+dFu+fLncv52dnbF3714AwL59+7Bjxw589913SutftGiR3L68vDxYW1vDy8sLuroNy8xRk4fnwnApOQ5WzZvj/ffbNXr97yqRSIQLFy5gwIAB3JIA5MVQmzaNN6VdS0pKEB8fD21tbe5Bm0xRWTk6rX+9BwMAwCPvAdBUa5xHPrKgWeXfC9ra0gGKZmZmWLFiBRecrqxjR8WMQrq6upg0aRLmzp2Lp0+fKqSKVlVVlTuP7H2ydOlStG7dWq6eoUOHYu/evUhOTuZmYcuCxUKhUK4e2T38+uuvcr9LP/jgA9jY2ODu3bvc8aWlpThx4gRMTEywaNEiuffAl19+iS1btuDp06fQ1NSs0+9KZe2nzJEjRyAQCLBx40a5WcW9evXCuHHjsHPnTly6dInrUzDGoKWlBX19fYXvTwYGz7NL8Xg8CIVCGBgYQCgUyh1Xl+svKSmBhoYG+vTpo/B5qKwuAwtI/Xl6euLKlStYvnw5jhw5ApFIBEdHR6xfvx6jRo2qUx18Ph8nTpzAunXrsG/fPvz8888wNDTE5MmTsXr1apiYmCiUWbJkCWxtbfHLL79g27ZtUFNTQ+/evbFq1Sp07txZ4fgrV65gz549ctuCg4PlliioHNTQ0tJCYGAgvL29cezYMfj7+8Pc3Bxz5szB8uXL5YITb5OpfVpg/7VYBEdk4m5cNjo1UiY4Qsi7q1gkRrtl51/1ZdTqycqBjdY3rU5GRgaOHDmCvn37yv3OAQBTU1PMmzcP33zzDS5evIghQ4YAUL5mOY/Hw4wZM7Br1y5cvHhRIZgOSAdBVve7ys7ODvPmzZPbJvude/PmzTrfz9ixY+XOraKigvHjxyMgIAA3b97kAuWHDh2CWCzGd999J/c7XUdHB99//z3Gjh1b53PKXLx4ESUl0sl3WVlZuHjxIkJDQ9GjRw98+eWXcsdW7rdW5unpifbt2+PixYt1Pu/du3cREhKCSZMmyQXSAelgv6lTp+Knn37Co0eP0KFDh3re1YuhYDohLwFjDMtPPsalsDQA0jV5R7kq/ketTExGIT778zqcrPSx9VPFLywA4BMSg6IyMc49Sqk1mF41ULknJAbp+aU4dicBC95rA2Nt+S/Xx24noFgkhrWhBgpKyhGdUYjr0Vlwb20Cv9A0LrC96J+HyCosk6ZH/6AdJvncwvnHKRjbtTnG77qBjrp8lFlIA9wdLHXRylQHve1NcCksDSfvJ8HOWAvPUqVBrOn7b2P/5K5QU5Uf6XzuUQp8QmIAAH981gV347KxPSgKe6/GoFcrY1yvNNNVJJbOmLc20MTSIW3RxcYA686GQVdDgLxiERJzinH8bhLGdm0Ov9BUiMQMbraGmN3PHnw+D6NcrXHwepz0etxb4r8HycgqLMP1qCz0sjdGcZkYDxOkAeWNI5ww6n/XuDXae9mbIOhZulyQNiG7CJsuPENZuQR7rsbC/2k6zszqDW2h/H/DBaXleJwkrdfVVvqlqlsLI6ip8LngPiANBN7P4iE6swjRldZyH9jeDCfvJyE0OQ+5xc/T7KXll+JBQi6+/eseHJrpYNtnXeTOm1ZpfflHSbnILCiFUZX3QmWhyc/Xrt5/PRZTereoc8aFg9fj8CgxD3oaApSLJSgsE+NxUh6crPVRXCbG4F8vw76ZNrZ/7lJ7ZVVsOB+GIzcTsG+yG9qa1/xgKCwlD6tOh8ptu1EReLXSV4eNsRaCIzKx4NhDhERmYvPoTgCkD1BH/HEVFvoa2DHOBf/cSUR+aTmWHn8EEx0hcopE3HuHxwMGVATTHyXmgTGGJ8l5uB2bDYEKD6PcrGGkLcTs/vZYfToUq/57Inc9ocl5OP0wGdsDpbM3E3OKsSckBtPcW+JZaj4uhqZxx/J40sEUJSIJAp4+334rJhsXQ1Ox9mwYGANsjTRxYkYv/Fzxfjx4I04umC6blQ5IA/EJ2UV4b/Nl5JdIZ6F4n3oMdwcThQ5wdYMg7sXn4G7m88/yj+eeol+bZrgT+3w99tMPk+XKyAaOiCWMy67QTFeI1LxS/BEYCWMdIU7eS0JIZAYm9rTFDM9WSjvk+ysGLThZ6+NhQg7OPU7BT75Poa6mgm3+kcgvLYdAhcdl3QhLzkPlZZxPP0zGwvfacPd1vGIAzUgXKyz/oD20hNSNIspJJBJMmjQJBw8exGeffYY//vijQfVER0fD09MTGRkZOHbsGJdWtq6mTZuGffv2ITg4uNpgulAoVHiwDkiDF00R6BIKpJ8bBt5rHUh7UzXV6/YuozZtGq97u4rFYvB4PPD5fIXZl1X//bpSdu2NUWfVvzs5OVUbYE1LS8O6detw9uxZxMbGorhYfjmilJQUpddYeZusH+bq6qpwrGw95by8PG6f7E/Z61eZvr6+0qVPrKyscPXqVe748PBwlJaWwtnZGerq6gr19OjRA0+fPq13G9d0bF5eHqKiotC2bVulD3X79u2LnTt34sGDB+Dz+dDX18f777+PM2fOwMXFBSNGjICHhwdcXV0VPlujR4/G77//jo4dO2L06NHw9PRE9+7d6xys5POlWQ5q+9y+zp/pN52bmxvOnj1b63E+Pj7w8fFRuk8oFGL58uUKgzBr8umnn+LTTz+t07E1nbs6enp6+Pnnn/Hzzz/Xq9ybzFJfAx91ssTftxPwe0Akdoyr/3MPQgghyt28eRNisRilpaXw9vZW2B8eHg4ACAsL44LpZWVl2LJlCw4fPoywsDAUFBRwmXgBICkpSaEedXX1Gpfxc3Z2Vuj3WVlZAQBycnLqfD9dunRR2KasHtla7MqC/sq21YWfnx/8/PwU6vLz81P6DCkgIAC//PILrl+/joyMDLlsRsoG3Vbn2rVrAIDU1FSlr6EsbX1YWBgF0wl5G/17NxGHbsRx/74RnV2nYHpusQiT99xEQnYxErKLsSCzCM2N5NOypeWVICxFGtiMzihUqGPtmVCcup+E7Z+7IL9UhHlHH+DjTpaYO9ABxWVi/HUrAYB0JvX5xyn4tKv8muCyGbRf9G6BR4l5OHIrHkHP0tGjpRHWnH0eiAx6Jp0V3r2lMXrbm0BfU4CMgjJM2XNLut53IQ+l96QBsz720hFSn3S2wqWwNOwOjoGVwfMv8jeis7DsxCOsHeYoF5zzrxiMMK67DQZ1MEM7c13873IULodn4MjNOJSVS6ClpsLNqgUAKwMN8Hg8fOBkgSEdzcHj8bDzchRWnw7F3qsxGONmjZsVM2Q925hys1y/7d8awREZaGumCwt9DQzqYIaD1+Pwy8Vn6NnKCPfic1AuYTDTVYedsRbGuDXHr37hUOHzMKSjOYKepcu9HhvPP0VZuQQdLHWRkluCuKwiXAlPx6AO8jN878RmQ8Kk122uJ20TTTVVuNgaICRSOhhBlnb+YZZ84FJDoIL3OjwPpsvWj1fl81AuYVhw7AGi0gsRlV6I+/E5cjNu0yrSvKsLpMHYoPB0fNzJSuH9BAD5JSLEVaQw1xaqIj6rGJfD0+HhYCp33A+nn+DsoxTsGOfCBbbzSkT45eIzAMC8gQ7wD0uDX1gabsZkwclaH0+ScxGVUYjozEKUloshVK05JXJcZhEm7L6BjlZ6WPdJR+wOlg4sWXHqMQ5N7aY0uJtfIsLPF8Kx52oMxBIGbaEqPNuY4tT9JG4Ws4W+BnwmumFPSAzWnQ2TrmnuYo0erYxxMTQNj5Py8DgpDxFp+YhMlw4CCUvJ5z6LMhZ6GnCxNYRQlY+4rCLcjc/B4Yr/CwZ1MOcyVEzuZYd78Tn470Ey164FpeV4mJiLE/eknTYPBxMEPE3HFv8IjHCxxumKY+2MtVBYWg5PB1M8SsrF46Q8buAOAFyPzsKViHTI+oExmUWYsvcm9/68HpUpl04+ttLgjJwiEQ7diEN+STlamGihVCRBYk4xdl6Oxjf97CuOL8Sq/57gdmw2pru3xKRedtxMb8YY1p+Xvt7vd2iGW7E5iMsqwtyj91FYJubem7LBL61MtbmZ4bL3YlKu9L05x8sBW/0jEJtZhG8O3eWucat/JC4+ScPJr3si6FkGFv3zABtGOKGLjQH+rQh+LxzUBn6hqdh5JRq/VspQAYDLunHucQqGOlsCAHrbG+NWTDYSsotxNz4HnZsboFws4bIpfNGnBQXSSbUkEgkmTpyIvXv3YsyYMfDx8WlQMCMqKgqenp5ITk7G0aNHuS969SGbeVdYqNg/eFVkA6/KK49cIYSQN4iGQAVPVtaSxuklkkgkyM/Lh46ujtzvGw1Bw5YWqa/q1nzMysqCq6sr4uLi0LNnT/Tv3x/6+vpQUVHBvXv3cOLECZSWliotq4yyGdSy9RrF4rqlNq1u1oxsjXcZ2QxrZbN1gerv+UXIzlld3ebm5nLHAcDRo0exZs0aHDx4EEuWLAEgbaeJEydizZo13Cz9zZs3w87ODrt378bq1auxevVqqKurY+TIkdi0aZPSrDeEkKYz3b0ljt1JwIUnqXiWmq+wPCAhhNTH69Y3rc7L6JtmZUmf8VfNjFJV5Wckw4cPx6lTp9C6dWuMGjUKpqamEAgEyMnJwebNm5X2V01NTWvMqtoY/db61CPrH5qamioc39B+69q1a7Fw4UJIJBLExMTA29sb+/btw9SpU7lMiDJHjx7FqFGjoK2tjYEDB8LW1haamprg8Xjw8fFBbGxsNWdRJHsNT58+jdOnT1d73Kt4zvVmDKkm5A13oGKWalc76azxW7FZNR0OQLo2+NeH7nJpugHgzKNkheNkqdUBxfWN0/JL8OeVaCTllmDK3pv4cv8dJOYUY4t/BPZdi8WpB0lys5fPVJkdKkuBraWmgo86WaJPa+nDhKBn6Th8Mx5R6YUw1FJDM93no5HcWxtDoMLHwHbSma7JFYEwMeMhuCIYLKvnvQ5mcLTUQ0FpOcJS8iFQ4eHH4R3B4wGHb8Zzs9BlwtOkgUpXW2k7NjfShEdFXd6npDN6B3c0l5vtbW34fPCB7Jfc8C5WEKryEZaSj9ux2VxadTe75+m1THSECJjrwaWE/qavPdQFfNyKzcb5x6lcAN7F1gA8Hg+fdW0Ocz11vNfBDO0tdCteD2lQ8EFCDo5XBETXDeuIIR0tAACBldZ4l5HV62Yrn2Ggd8UABHUBn9v3NEf+l7aDmQ7aW0gfEEkDvQVQU+FjlKt0xkblQG/ldcLFEoaMAmmK+g+dpNd2tGKQhTKyesx01fGBk/ShjizQL1MiEmPftVgkZBdXDKiQdjx2Xo5GdpEILU20MNrVGq4VnwnZfcdkSAO5jAHxWfIzV6IzCtF3UwB+85OOIswvEWHK3puIyijE8XtJ+CMwEkUVAymuRWXJBZRl0vJLMPDnIOwKjoZYwvBeBzP4ftsHvSvWKsurmH1toacOgQofU3q3wKddpQNffjgTComE4cyD55+TXcExYFXiQe0qzYi3MdKEnoYAH1S067ozYTh2RxrgndDDljuOx+Nhw3AnuNkawlhbiK/7tgIAnLyXhPyScuhpCLBjnAvamesiv6QcP54L4z6vMz1b4caS/lg/vCM3KCW8UqryUw+SkJpXCh2hKraM7VTR3s9nhZeWS3CjUlaHmEz5tQ7/vi19L4zoYo2F77UBIF1/PC2/BCGRGRjwcxAuhqYhu0iEtWfD8P7mywiJlL63zz9Oxa3YHAj4DAsHOXDlZTPRe7YyllvuYFqfFujWwhCW+hpYOVR+dGH3FkY49XUvTOxpC1U+Dz1bGWH9J47QVVfF09R8XI/Kwp6QGGQUlGHj+af453YCisrEaGWqjW4tDLFkcFtsHdsZ5nrqMNYWYtMIJzz09sL+yV3R3FATqXml2HFZmgGgWwsjvOco/T/sJ99nYIwhIr0AxSIxtIWqaGFc87rr5N1VOZA+atQo7Nu3r0HrpFcOpB85cgRDhw5t0PVcv34dABTWq32VZMtSiCmYTgh5Q/F4PGiqqb5WPxpqKgrbXtaySdWd588//0RcXBxWrVqFK1eu4LfffsOqVavg7e3daGs3NhXZg8v09HSl+1NTU5vsnNXVnZKSInccIE1pv3r1akRFRSEqKgp//vknHBwcsHnzZnz77bfccaqqqpg7dy4eP36MxMREHDx4EL1798bevXvrPOuYENJ4WplqY1B76ffNbQGRr/hqCCFvutexb6rs52X0TWX9pDlz5oAxVu2PLEvLzZs3cerUKQwcOBBPnjzBjh078MMPP8Db2xujR4+usc1fJ7L7TktTfBb+ov1WPp+PFi1aYM+ePejTpw/27duH48ePyx3j7e0NdXV13L59G0ePHsWGDRuwYsUKbnt9yO7lt99+q/E1HD9+/AvdV0NQMJ2QJpacW4zbsdng8YAfPnYEjyed+ZmWV1JjuTVnwhD0LB3qAj4XzDvzMBmbfJ+i36YAxFUEvCqvEx6XVQRRpVTgR27EczO/UvNKkVssgrG2NK3GshOPsPgf6TrhY9yk9V+NzMS0fbfw4ZYrSMkt4QKuwzpbQUddgF6tjMHnSQN1G88/BQDM6mcvN5tdFih/v+PzGdf2plrc37XUVNC5Yk0oPp+Hxe+35fa918EcI12ssfg96bZV/z3BtoBIlJVLwBhDeEUaePtmzwNZ091bcrPcVPg8fNzJCm3Mno/qtTZUTF2nr6mGoc7S4Oaq06HILCyDUJUPR0t9ueMq/2I001PHlF4tAABrz4ZyM/HdKoLBprrqCFnYF1vGdoadsfR+s4tEyC4sww8VqcSHdbJEB0s99GktDdwGPUuXSxsDPA8qy4LMMkM6mkNHXRUfOlmghYm0flHF2t6jXKyhpsLHex3MYG2oIZfefKizBfq2eT4qTZY6/9T9JGRXrPGeVVgGsYSBxwNmetqDz5MGxyPS5GdZy4QmS0e7tbPQ5db3ul8xC17mVkw2SkTS92JiTjG+PXIPALjU3lN6t4CqCp9LZX8rJhuMMcRmPQ/kxmXJDw5Z/d8TRKUXYntQFEpEYiw89pBbGgAANlcE2WXB2bVnwyCpEqz5yfcZknJLYGWggT2T3LDtsy6w0NeAVZX3ibn+81/03/Szh45QFY+T8rArOBr+lVKoH6sINPdrY4o2Zjqw1NfA3slu3AATm4pMEp93k35GbsRkQSxh8GrXDF1s5NdG01BTweEvuuH64n7c4AlZcL9XK+kgle+HSD8bh2/GIzytAAIVHvq3ez7C0NpAPnMFIF3XHgD6t2uGwY7m6N7CiNsnuwbZ+xkAt9a7TGqedCCEm50BhnQ0h7O1PorKxNh0/hmWnXiMsnIJ3OwMsfyDdjDSUkN4WgHG7riObw7dxfpz0tQ7nuYM5nrq+LiTJff/mbROQ7k10bvaGeHwF91xeb4nhnQ0h0BF+h431FKDlYEGdNUFWP5BezxZOQgHpnTDKNfmXIr6849TuHXYHyflce+Hz7vZgMfjgcfjYXBHc1xZ0BfXFvXFJ10q/l+zN8ZPI50AgBsY4WSlj2/7t4aaCh9XIjIQ+Cyde493sNStcZ128u6SpXbfu3cvRowYgf3799cYSM/IyEBYWBgyMuQHVslSuyclJeHw4cP4+OOPazxvWFgYioqKlG5fsGABADRofaymIvudLaJgOiGEvNUiI6UBImUDwi5fvvyyL6deHBwcIBQKcf/+fYXZSIwxXL16tdHPqaurixYtWiAiIgKJiYkK+wMCAgBI04YqY2dnh0mTJiEwMBDa2to4efKk0uMsLCwwZswYnDt3Dq1atcLFixcV0u8TQpreVx4VA+jvJyE+S7EvTwghpP5cXV3B4/Hq3FeT9VcHDx6s8Pzmde+vVubkJH2uGRISorBP2baG4PF42Lx5M3g8HhYtWiSX1SkyMhJt27aFvb29XJnk5GRERUUp1CVra2Wz9Lt27QoATdLfflEUTCekiZ19KB1B7mJjgFam2mhrJg10yoI+yhy+EYddwdJ1gn8a6YxvB7QGnwc8SMjFb5ciEJleiB2XoyCRMLmZ6eUSxnXCy8XStZABacpycz1pOvIz3/TGGDdrMCY93lBLDfMGOqCDpW5FqvdUPEjIxYJjD+D7RDpy6bOKQKCepoBLDZ5bLIKdsRbGdm2OMW7NYaIjhJudIWyMpIHeHi2N0MJESxq0nOACLVXpQ/PuLY3l1kLv3tIIQ50toKbKx9Te0mD1lN52GO1qDQkD1p8LwyfbQhCXVYT80nKo8HlcsBoAurYwwt1lA3B1UV/cXTYA3VsaoZ3F82CylZLgIgB83s0WwPMgsLO1vsIa7VVN92iJZrpCxGYW4VZFUNil0hr1suC7ppoqzPWkwdhVp5/genQW1FT5mDPQAcDzNdATc4rx55VoeP0ciJ8vPENIZAbuxkmvRxZklrE21MT9ZV5Y/0lHudn2ADDDsxUerRiIae4twePxcGpmT1xd1BfXF/fDj8M7yl3juG42aGeui9JyCVafDkVhaTmX4t1ISw3NjTTRr600OLv/WpzceXZejsLQLVdw/rH0Pd3WXAdOVvoAgEeJuXKzDGWDPDo3l+6/HJ6BcrEE2UXSAL5ZRfs4WupDqMpHZmEZItML5QK5ldONh0RmwK9ipnlBaTl8QmJw+mEyeDxgUcVsZ1kg9NcxnaCrroqItAIEhqfj9INkDPolCD+eC8Nft+IBAJtHO8O99fO0jVWD0Jb6z4PrRtpCfN1P+kV39elQlJZLIBtnUVoRqHaxNcR/X/dCwDwPGGsLMdNTerx7a+lABidrfS5orMLnYUHFNVfF5/Ogwuehlak2F0gGwA3A6NHSGPMq3keANGNB5ZndVd8ble/jfUfpMgffD2kLLTUVDGpvxs2Or/z/iGxmuonO84wTssEmPB4PSwZLA/pHbsUjIq0ABprSWfMTe9rh0hyPiuC19KFAdEYhjLTU0M9S2k48Hg/eH7aHe2sTqKnwMbB9M+49ZKoj5Aa/8PnSUbWy966TlZ7c4JbKn1XZwIO/bsVzAwcA6WAWTTUVDOtsKdcmKnweVFXkP+sutobczAAAcLTSg7WhJib0lLbPmjOh3GdTdr2EVLVy5Urs2bMH2traaN26NVavXg1vb2+5n3v37nHHb9myBW3btsWWLVvk6vH09ERcXBxcXFzw4MEDhTqqrhl1+PBhmJmZYciQIZgxYwbmz5+Pjz76CB07dkRKSgoWLVqEPn36vIQWqBtuZrqYgumEEPI2s7GRfoe8cuWK3PaDBw/izJkzr+KS6kwoFOKTTz5BWloaNm/eLLdv79693FqNjW38+PEQiURYtGiR3KDrBw8ewMfHB3p6evjoo48ASGfNP3r0SKGO7OxslJaWcrOASktLlT5ELSwsREFBAQQCQYOWoyGEvBhHKz30aW0CsYRhexDNTieEkMZgZmaGkSNHIiQkBBs2bFCYxAZIM/jJJiRU1199/Pgx1q5d2/QX3EhGjx4NPp+Pn376CZmZz7PHFhYW4ocffmi08zg7O+Ojjz5CWFgYDhw4wG23sbFBRESE3Cz4kpISfPnllxCJRAr1GBpKn/fGx8cr7HNzc0PXrl1x6NAhHDlyRGG/RCJBYGBgY9xOvdGCn4TU4uKTVPweEIGNI5zQwqT+qX1lqZjfd5TO1HazM8ST5Dzcisnm0n1Xdj0qE0tPSL8Uf9u/NVeuq50RrkY9/8/wnzsJ6N+uGbIKy6AtVIWFvjqepRbgYWIuFv3zEFEZhUjPL4WRlhqme7TAdI8WUOFJg0hrh3XErH6tUVouhrG2EFpCVYzvbot5fz+As7U+7sXnILDSzGuHSjO9+9ibcEGlBYPaQKDCh4mOEJfne3IPyAFAoMLH+dl9IJYwqECCvhYSnIpTwfAu8oEtQDpgYM3HYm4NYh6PhzUfO8LF1hArTj7Gw8Rc7A6OASCd6Vt1HW1ddQF01Z8HFGUzsw00BXIp3ytztNKDk7U+F0x3rZJWXRltoSr++KwLRv3vGsrKJdBRV5Vrm8o8HExw6EY8/qlI6T25lx0X2Ky8Bvrqilnrz1LDAT9p2TZmOmip5L0mmw1beX15baEqrAw05GbKqqrwufXWAekgCPfWJrgbl41x3W3R0Vof3xy6i2N3EnAtKhOz+0tHjZlUrN/9eTcbXHiSimO3E/BNP3sYaqlBLGHY6h+B7KLnvwDbmuuilak2NCvWqY9KL4B9xVpfspnOn3e3wZ2K90tOsQg5FeUNNKUZEtRU+XC21sf16CzcjMmSSzEuC6aXloux+j9pO2lVnEuWGaFfG1N80acFjt1JwLPUAljoqaOPvTGGd7HGruBo/BEQibCUfOQWi7j09O91MEMXG/nX21xPnVuLHpCmea9sSq8WuBWTzQ0wGdHFCn9VSoXvZKUnF6D9vLsthnexhoba8/fqVx4tMX3/HUzpbaf09a1MTZWPVqY6XBaAPpUC/195tERUeiGO3UngskrIVM7EYKSlhv5tTbHnaiy0harobS8NyLe30MPN7/tDqKqCvGIReDzgaWo+uq/1g4eDKeIqBuR4tDbB0YqZ95UHm7jaGmJg+2Y4/1jaFt/0s+cC+nqaAqz6qANGulhj6YlHuJ+QgwUDW0OYfI+7LoEKHz4TXVFUJv3Me7Vvhm2BkRjqbKGQJmmkqxWuRmXivQ7mqE6vVsbg8cCtu+5oqYeHibkAgI87WUKn0v8NNVnwXhtcjcpEW3Md7n5meLTCkZvxeJZawK0xLxtQREhVMTExAICCgoJqv6zY2tpWO6NMRraW1LVr13Dt2jWlx1QOqHt6eiI0NBR3797F5cuXUVRUBGNjY7z//vv46quv4OXlVe97aUqy/yspzTshhLzdPv/8c6xfvx5ff/01/P39YWNjg/v378PPzw/Dhg3DP//886ovsUZr1qzBxYsXsWjRIgQFBaFTp054+vQp/vvvPwwaNAjnzp2rVxBaJBJhwoQJ1e738fHB/Pnzcfr0aezbtw+hoaHo168f0tLScOTIEZSXl2PHjh3Q0ZF+30pMTESnTp3g5OSEjh07wtLSEpmZmThx4gREIhHmzp0LACguLkbPnj3RunVrdOnSBc2bN0dBQQH+++8/pKSkYO7cuRAKhdVeFyGk6Xzl0RJBz9Lx160EfNPXHqa69UuFSwgh75qHDx9W259q06YNFi5ciN9//x1Pnz7F/PnzsW/fPnTv3h36+vqIj4/HrVu3EB4ejuTkZGhqasLNzQ1ubm7466+/kJycjG7duiEuLg4nT57E4MGD8ffff7/cG2wgBwcHLFy4EGvWrEHPnj0xcuRICAQC/PPPP3B0dMSjR48abfDk8uXLcfz4caxcuRJjxoyBqqoqvv76a3z99dfo1KkThg8fjvLycly4cAGMMTg5OeH+/ftydXh6eoLH42Hx4sV4/Pgx9PT0oK+vj5kzZwIADh06BE9PT4wePRq//PILOnfuDA0NDcTFxeHq1atIT09HSUnNWZ+bAgXTCanFH4GRuBOXgx2Xo7B2WMd6lQ18ls7NYJYFg1xtDeETEsOtUXzqfhIO34zDumEdIVDhY/r+2xCJGYZ0NMc3FbNhAWC0mzWuRmViWGdL3IvPQVR6IabuuQUA6NfWFOUShmepBdjqHyGX+np8D1uF4DPwfGawzAgXawzsYAYdoSpmHb6Hk/ela3zL0lPLDO5ojt8DItCthREGtn+eXlpdoHgOgQofAhVAJJKgnwXD0k89YKqnpXCcCp/HBdJl+Hwehnexwp24bBy8HsfNKG5tqjx4XVn3FkZQ5fMUAqZVfd7N5nkw3a72YDoAdGpugA3DO+K7v+5jQLtmXLraqrw/bA9LfQ1s8Y+AkZYQX3q0lNvfp7UJt854p+b6SMktQXJuCUa7WmP+oDY1rr1SeRZ1GzPtOqWc3jneBSUiMXTUBWhupAltoQqW/PsIiTnF2HlZmgXBtGImcq9WxrA31UZ4WgG+3H8b+yZ3RWhynlwgHZCuDa7C56GDhR5uxGThXnwO7JvpIDWvBGEp+eDxpDOz9TUFyKlIeZ9VkVresCKYDkg/E7JgelxW5WB6IRhj+P7fR3iSnAdddVVsHOGEL/bd5pYv+KwihfdXHq0w+8g9jO3aXLqGfbfm2BUcjesVnzNLfQ0UlpVDLGGYP0hxVrh0AII6ErKlKQ7Nq3w++Hwefh7ljFH/u4pnKQX4ok8L3IzJRnRGIXg8oEOlVOUylQPpADCogzlufd8fRlpqCscq09ZcGky3N9WWGxzB4/GwcURHLH6/DYy05R98Vc7EYN9MG+85mmPvtViMdLGW+4xqqkk/bwZaauhtb4KgZ+lIzi3BoRvPsxF4tjHlgulVB5ssGNQGwRGZsDLQkFvmQcbRSg//ftUDucUiaAl4OFMpmC67B9lnvqOVPu4v94KGkv9DPu5khb4OzaCrUX13xUBLTVpHxWf5S4+W2H8tFnfisjGxYmZ5XdgZa+HKAk+5dtLTFOCbfvZY9d8TLljfUclrTQggfQju4+NT5+OVzTIHoHTkdE3c3d3h7u5erzKvkuz3ZnmllGCEEELePlZWVggMDMT8+fNx8eJFlJeXo3PnzvD19UV8fPxrH0y3traGr68vVq9ejQsXLiAwMBBdunSBr68vjh49CkB+/fLaSCQS7Nmzp9r9Pj4+UFdXx6VLl7B+/XocOXIEP//8MzQ1NeHu7o7FixejV69e3PG2trbw9vbGpUuXcPHiRWRmZsLY2BidO3fGrFmzMGjQIACAlpYW1q9fDz8/P1y+fBlpaWkwMDCAg4MD1q5dW+N6oISQptXVzhBdbAxwOzYb24OisHRIu1d9SYQQ8lpLSkqqtj/l7u6OhQsXwtDQECEhIdiyZQuOHDmCAwcOQCKRwMzMDE5OTli6dCmMjaUTjlRUVPDff/9h4cKFOHfuHG7evAl7e3ts3LgR77333hsTTAeAH374ARYWFvjtt9+wfft2mJqaYvTo0Zg1axZOnTpVr35rTZycnDBs2DAcO3YMe/fuxaRJkzBjxgwIBAL89ttv2LFjB/T19TF48GCsXbsWI0aMUKijXbt22L17NzZt2oTffvsNpaWlsLGx4YLpdnZ2uHv3Ln766SccP34cu3fvhoqKCszNzdGnTx8MHz68Ue6lviiYTkgNSkRiPEiQznA8/zgVq4ZKFNIDV2f1f0+w84o0SOnhYMIFr10q0neHpeShqKwcvwdEIjQ5D6v+ewJtdVVkF4nQ3kIXG4Y7yQVUhzpbwtXWEOZ66vAJicGKU09QJpbA2lADyz9oD5+KtPCyQPqknnYY7WaNVvWYTS+b3T1voAP8w9JgqK2GgZVSHwNA62Y6uLaoH3TUBTUGfKvi8Z7PRq6PPvYmOHg9DkVl0jU0Kq+XXh1bYy1cW9xPLv21MkM6muOXi89QIpIorF9dk6HOlujR0hj6mtXXL1RVwcy+9pjQ0w6MMYXZsQPbm2GT71PYGGnBZ6IbhKp85BSJFAY5KFM5lXebambGVyUd2PD8vdu3TTOM616A9efC8DRVOmNbFkzn83nY+mlnDPs9BNejs7D69BOYVARtHS31EJNRCD1NAZfSv6OVNJj+ICEXI1ysuVnpjpZ6MNRSg6GmGnKKREjOLUGxSPo66ms9bw9XO0PAHwh6lsEF2wEgNqsI+67F4ujtBPB5wJaxndGrlTHMdNWRkleC5oaa6FOR4vujTpbo3tKIu84WJtrobW/MpS//4eMO6NbCCCUiMfSreR9aG2hywXQLfcXXQUuoin++7IncYhFMdIRwtTVAdEYhWhhryWVGqImxdt1nffRtY4p/7iTio06K2Rx4PJ5CIB2Qz1pgb6qDbi2McHNJf+jX8FnYMa4LwlMLcPhmHJfa30hLDY6Wz4PGVQebtDDRRtB8T6gL+NUuj8Dj8aCvqaY0nU9V1WWQAKQB7dq42xvjfnwO+DygZ0tj9G1jiqIyMQzrOHBBRtks9s+72WDv1RjEZhbBSEtNLnU+IaT+VLlgOs1MJ4SQN4Us+0pltra2tQ4Ac3Jywvnz55XuUzarSFl9NQ1WUzYwzcPDQ2k9yu5BRrYeeVU2NjY4cuSIwkyexYsXg8/no1WrVkrL1efcVWlpaWHlypVYuXJljcfp6+tj+fLlWL58eY3HCQQCzJ8/H/Pnz6/zNRBCXg4ej4dv+tlj/K4bOHA9FtPdW8ott0YIIUSqLv3OyjQ0NDBv3jzMmzev1mNNTEzw559/Kt1X3z5lbdepbJ+yfuiECROqnYFfXV8XAL788kt8+umn0NXV5fqvFy9eBCCdvV4XNZ1bpuogAx6Ph2nTpmHatGkKx1bXzx4/fjzGjx9f7TkMDAywatUqrFq1qtZrflloYSRCanA/PgdlYunMqazCMpx7nIKZB+/Izd5UJr9ExAXSJ/Swxa9jOnH7mumqw0xXHRIG3IrJxrOKQKbvk1QuJfiajx0VZrUCgIW+Bng8HoZ1toKhlhp0hKr4c7wrDLXUFFLQf9qtOVo306nTrOWqrA014T/PAydn9lIaKDPSFta6vnhj6dHKSG72tyyNeG2MtYVywWNl1AUqOP1Nb1z8rk+NwTxlTHRqrx+QBgmVBejsjLUQNN8T/33dC3oaAqgLVOoUSAek6eu1Kt4fdQ2mK+NmJz+AwFT3+Ze21s108OsYZwDA3quxOHxTmhlgtJs1Aud74sys3tzrIkt7/SAhBwAQVBHAlgW6DSoCmpHp0oEeqnwedCq1d+fm+uDzgIyCUm4/AMRnFWF7YBQAYOF7bdCntQn4fB5GuloDAKb2aSH3/m6mqy737ym9WwCQBqXdW5tAXaBSbSAdeJ4iXUuVcTO3q1JT5XNfbmXZJmRrzDe2wY7muLLAE1+6t6z94Aqaaqow1pbeY+uKgSfG2sIaBwEJVVXQwVIP8wa24QaI2BhpwkJfAzZGmjDRESodbGKopVZtO71s7zmaQ6DCg4eDKfQ0pZ+n+gbSq6OmyseS99tKMy04mNRrEBEhRJEKBdMJIYS8IVJSUhS27d+/H8HBwejfvz+0teu/DBwhhFTWx94YTtb6KBFJsONy1Ku+HEIIIW+o9PR0iMViuW05OTlYtGgRAOCjjz56BVf1dnk9noIT8pqSpWiXmX34HsolDEHP0jHKxRp8Pg8J2UX45WI4ojMKocrnYWbfVlyaYHM9dXh/2F6h3o5Wekh5Ik2pXHXN0A+dLGpdk1dPQ4Bzs3sDAEwr1rm2M36ePr26Nbfroz4zaJuSrroAnZvr42aM9LWwN23cBxa1zV5vSpVTd9cHj8dDB0td3IjOgks9ZtRX5WipD6EqH6Xl0gEjsveSTN82zTDU2QIn7iUhMUc6Y7uPvYlCkNLJSh8AEJqcjxKRGFfCpTPTZet8yzISyILp+pryWQ101AVoa66Lx0nS9cHbW+ohNCkPZWIJEnOKoammgnHdbbnjZ/Wzx4dO5rW+x91bm8B/rgfM9dTrFACVpUg3qONb37ONKQLneTT4dawNj8eTS9teV46WevB/mo7O9Xxv6GkIMMfLAUuPP0IXGwOo8Hk4MaMnyiWs3oNNXra25rrwn+vRoOwXdeHV3gyBcz3lBpwQQhpGUBFMpzXTCSGEvO569OiBzp07o127dlBRUcG9e/cQEBAAHR0dbNy48VVfHiHkLcDj8TC7nz0m+tzEvquxmNanhdIsdIQQQkhNDhw4gI0bN6JXr16wsbFBSkoKzp07h7S0NEyYMAHdu3d/1Zf4xnu9n44T0sRKy8VY9d8TtG6mg3HdbXH+cSq2PeHjcOot9LI34dZb7tfGFH5hadwsqryScjxLy8fTlHwsOPYAJaLn636WXwzHh04WAKQBHmWcrPXh+yQVvk9SAUjXzI5MK4BIzDBvYN1SblQNfLYweR5Mf9/RvI4t8GboY2+CmzHZ4PPk7/Ndtm2sM47+dwEtX6A91FT5cLbW597npkrSic31csDZRykoK5eghbGWXIp5GWtDDZjoCJGeX4otlyKQXSSCtlAVnZrrAwC3RnhUeiEA5en+XW0NuWB6C2Mt5JeIuOP7tW0mt461Cp+HVqZ1m5FfeZBJbWRpzS016x7gkaW6f538NrYzknKK0bqOWRwq+7ybDdxsDWFjJH2da5rJ/7ppyMCD+mhu1LT1E/KuUKFgOiGEkDfExIkTceHCBdy6dQuFhYUwMTHB2LFjsXTpUrRp0+ZVXx4h5C3h4WCCjlZ6eJCQix2Xo7HwPfr/hRBCSP3IBoEGBgYiOzsbKioqaNu2LZYuXYqvvvrqVV/eW4GC6eSdUVwmxsr/nmBAO1P0bSNNy+wTHMOtERyRVoD912IhYXwgNwtXo7K4sl/3s8fjpDyk5pfATFcdybkluBqZiV/9wlEikqCrnSGGOlti8b8P8SAhB80rAo7tqgmmd7SSBu1kD5I9HUzx25hOEEuY0mBlXeioC+DQTAfRGYX4oCKY/7bwam+GzX7h6GilB6GqYvr7d5GOugBmjRDbc7U1fB5MVzLr1tpQE1N62eH3gEh4tTdTWgePx8PwLlbYFhCJ3wMiAAA9WhpxafCrpnlXFkx3szOET0gMAGmK8ZyiMi6YPthR+Xkbm4eDCY5+4YboeyEv5XxNRVuo2qBAuozDCywdQAghtaE074QQQt4US5cuxYYNGxTWTCeEkMbE4/HwTV97TNl7C3uv/p+9e4+LKf//AP6amabpfiEUUSL3sCi3lFzKWpZ1Z12yyGWxLt9dm7WKtaz9LXthFysrd7msvdsKKblf153ILQqFUqmmmt8fmVltF80005ma1/Px8Hg053zmc97njd1x3vP+fG4jwMtFa9uWERGRYfDw8MAvv/yCtLS0Qnumk/Ywo2Qwfv/nAbaduIuJm07j5O0neJKRg5VRN1TnNx69g3wF8Eb1fLzf1UV13EJmBLc61tg1uSP+mt4Fw9zrAQB+jInH00w5qpsbY8v49hjuURc1LWWQ5ymw92IigJI701vWsSn82tEajrZm5e5y3fCeB/6c7qlWN25l0NjeEn9M98SaUe2EDqXKca9fTfXzf1c7UPqfb2NsD+iAGT1cS5xnhEc9iESAsjbS5eUS7wBQzbxgKf2HaQV7oiv35X5VO+d/lyR3rm6u+rtgZixB18Y1y3g35SMSidC6rg1k/L4GEZHOGL38B11uXv5rRhIRERERGYbuTWuieW0rZObkYV0s904nIiLSNyymk8E4l/AMACDPUyBg4ymMDT2J51m5aOZgBd9mBZ3qbevZYGTDfMzo3hBjOzsDKOiwlYgL9i5u6mAF9/oFRb/E1CwAgF8LexhJxBCJRKrCpHLZ96YOxXd4WptJ4fzKksEtX+45XV721iZwLUdHqj5rYm+FGsUsQ07l09bJFmbGEpgbS0rMr1gsQgeX6oWWWv+vutXM0O2Vore367/F9P92ohf3DeualiZo5mAFkQhoXttKtXpDrxb2pV6XiIgqF4mEy7wTEREREb1KJBJheveCBoYNR+7gWWaOwBERERHRq7jMOxmM8y+L6RYyIzzNlONpZsHrub2bwqN+NRy+mYw2jpY4uC8CAPDpW83g5VoDbi+Lekpv1LWFkVikWp70rVf2J3d3ssWf5wu60k2lklI7zVs62uB2SibqVjPl8k0kGAuZEXZM7AiFAuUuWo/p5Iz9Vx+hUS2LQvtLV7co/Oe7pH24145ph6TUF3CtZYkGNSxgYyZF+/rVyxUTERHpFymXeSciIiIiKsK3WS00dbDClcQ0/BR7C7N8GwsdEhEREb3EYjoZhCx5Hq4mPgcA7JjYEf8kPMOLnDw425nB09UOQMG+5XK5XPUesVgEnyZFl5c2NZagRR1rnLv3DNXMjdH+lWWyX10yu4mDpWpf0OK0d6mG3/55wGIhCa5FHevXDyoDr0Y1sGmcB5yqFf4SyX87022LWeYdAOrYmKKOjSmAgr9/3ZrU0kpcRESkP5SfjdiZTkSVgULB/1YR8e8BUcUo2Du9ISZvOYP1h29jnKcLrEt4fkJEhon/TyYqO23/fWExnaoUhUKBnacTcCUxDcYSMfq2qo0WdaxxOTENufkKVDc3RlMHSzSrXfxe5mXVuWF1nLv3DL3dCpZ4V2pibwVLmRGeZ+eWuF+60jD3erA0kaJLQ7tyxUKkT7q8sry70n9XXrDlSgxERAZLws50IqoEJJKCFZvkcjlMTU0FjoZIWMqmA+XfCyLSHb/m9mhcyxLXHj7H+iO3MKNHI6FDIiI9wM+mROrT9mdYFtOpSvlu/w18ve+66vWPh+Ixsr0THG0L/ifT0tEaIlHJ3eJl9b5PQzjamqFvq9qFjkvEInRoUB2Rlx+idV2bUueQiEV4+z/vJ6qK/ls8/2+nOhERGQ4jZTE9j8V0ItJfUqkUMpkMqampsLS01Mq/IYkqI4VCgdTUVMhkMkil7JAl0jWxWIRp3Rti6taz+Cn2Ft7zrA8rE/7dIzJ0/GxKpB5dfIZlMZ2qjD1nE1SF9GHudZH6Qo69F5Ow6dgdGL/sHm/paKOVa5kZG2G4R71izy3s1xw+jWtiwBt1tHItosrOUmYEqUQE+cvCSUnLvBMRUdWnXNEnLz9f4EiIiEpnZ2eH+/fvIyEhAdbW1pBKpXr54DI/Px85OTnIysqCWCx+/RuoTAw9rwqFAnK5HKmpqUhPT0edOny+QVRRerdwgGvNOMQ9SseGw7cxrbur0CERkR6oLJ9Ny8rQP2vpAnOq28+wLKZTpff4eTY+/eUi/r6UBAAY51kfn/ZpBgDYf+UhAjadRk5ewQPbVnW1szd0aRysTTGiffGFdiJDJBKJYGtmjEfPswFwmXciIkNmxGXeiaiSsLIq2LYrOTkZ9+/fFziakikUCrx48QKmpqaV+oGqvmFeC8hkMtSpU0f194GIdK+gO90V07edRUjsLfh3doYlu9OJDF5l+WxaVvyspX3M6b908RmWxXSq1DJzcuG//gQuPUiDRCzCe52d8fGbTVXnuzetheC3m+PTXy5CJNJeZzoRqaea+SvFdC7zTkRksJR7puexmE5ElYCVlRWsrKwgl8uRl5cndDjFksvliImJgZeXF5fh1iLmtWB/SUO9dyKhveXmgO/2x+HGo3T8FHsbH/RgdzoRVY7PpmXFz1rax5wW0NVnWL0tpp88eRJBQUE4cuQI5HI53NzcMGvWLAwZMqRM73d2dsadO3dKHRMTE4MuXboUOhYeHo7FixfjzJkzEIlEaNu2LebNm4fu3btrfC9UfvK8fPx1IRFpL+SwMpXCr7k9jMQi/G/nP7j0IA3VzI2xeVx7NKtd9Jsmozo4QWYkhlQigp2FTIDoiUhZQBeJAGtTw/2fORGRoZOwM52IKiGpVKq3D6QkEglyc3NhYmKitzFWRswrEQlJIhZhRg9XTN16FiGH4jGmkxNs2JhARC/p82fTsuJnLe1jTnVLL4vpUVFR8PPzg4mJCYYNGwZLS0vs3r0bQ4cOxb179zB79uzXzjFjxgw8e/asyPHk5GR8//33sLW1hbu7e6FzmzdvxqhRo1CjRg34+/sDAMLCwtCzZ0/s2LEDgwYN0sbtkQZ2n07Axz9fUL12qm4GEyMJrj18DqlEhDWj2hZbSFca0q5uRYRJRCWoZlHwjz4rE6mqkEJERIaHy7wTEREREb1e7xYOaGJ/A1eTnuPHmHh81KuJ0CEREREZLL0rpufm5mLChAkQi8WIiYlB69atAQDz58+Hh4cH5s6di0GDBsHJyanUeWbMmFHs8WXLlgEARo4cCRMTE9Xxp0+fYtq0abCzs8OZM2fg6OgIAJgzZw7eeOMNTJ48GX5+frC0tCz/TZLaDt1IBgA0c7BCcno27qRkAgBszaRYMqAl3J2rCRkeEb1GtZffoK7G/dKJiAyakYTLvBMRERERvY5YLMJs38aYsPEU1h++jfc863PFTSIiIoGIhQ7gvw4cOICbN29ixIgRqkI6AFhbW2Pu3LnIycnBhg0bNJ5/3bp1AIBx48YVOr5z5048e/YM06ZNUxXSAcDR0RFTp05FcnIy9uzZo/F1SXMKhQKnbj8BAHzapxn2z/bGtG4NEeDlggOzu6JXC3uBIySi17F9WUS3MeMSM0REhsxIXPDPD3amExERERGVrkfTmmjlaI0X8jysOnhT6HCIiIgMlt4V0w8ePAgA8PX1LXLOz88PABAdHa3R3EeOHMGVK1fQrl07tGrVqsKuS+Vz78kLPEzLhlQiwhv1bGBpIsVs38aY27upqkBHRPrN7uUy79X5d5aIyKApt/pgZzoRERERUelEIhFm+TYGAGw6dgdJqVkCR0RERGSY9G6Z97i4OACAq6trkXP29vawsLBQjVGXsit9/Pjxal1Xeex1183OzkZ2drbqdVpaGgBALpdDLpdrFHNplHPqYm59cvTmIwBAi9pWkCAfcnm+zq5lKDmtaMyr9lW2nPZobIfjbvYY7u6o1zFXtrxWBsyp+pgrqspeLaYrFAqIRCKBIyIiIiIi0l9ernZwd7bFydtPsTIqDov6uwkdEhERkcHRu2J6amoqgIJl3YtjZWWlGqOO9PR07NixA2ZmZhg+fLha17Wysio0piRLlizBggULihyPiIiAmZmZ2jGXVWRkpM7m1gd7booBiFEt7yn++uuvCrlmVc+pUJhX7atMOfW1AFKuJOCvK0JH8nqVKa+VBXNadpmZmUKHQKQzRuJ/i+e5+QpIJSymExERERGVRCQq2Dt92I/HEHbyHiZ6NUDdarp7zkxERERF6V0xXVfCwsKQnp6OMWPGqIrj2hYYGIhZs2apXqelpaFu3brw9fXVyTXlcjkiIyPRs2dPSKVVZx9ihUKBB6lZqG1tApFIhG+/jQWQicE+bdC9SU2dXruq5lRozKv2Mae6wbxqH3OqPuXKNkRV0avF9Lx8BaQSAYMhIiIiIqoEOrhUh2dDO8TeSMaKA3H4clCr17+JiIiItEbviunKzvCSusDT0tJga2ur9rylLfH+3+tWr169yDVfHVMSmUwGmUxW5LhUKtVpAUHX81e0kEPxWPTnFQT1bYY3WzggPrmgQ69DgxoVdp9VLaf6gnnVPuZUN5hX7WNOy455oqrsv53pRERERET0erN8GyH2RjJ2n7mPSd4N4FLDQuiQiIiIDIZY6AD+q7T9yZOSkpCenl7svualuXz5Mo4ePYomTZrA09NT7euWtp86aZc8Lx9rD8UDAH6MicfW43cAAO7OtrAxMxYyNCIiIiIqJ8mrnel5LKYTEREREZVFm3q26NakJvLyFfh2f9Hn10RERKQ7eldM9/b2BlCwz/h/hYeHFxpTVsqu9HHjxlXodUl9kZcf4mFaNgAgMTULPxy8CQAY2cFJyLCIiIiISAteLabL8/MFjISIiIiIqHKZ1bMRAOC3fx7gWtJzgaMhIiIyHHpXTO/evTtcXFywdetWnDt3TnU8NTUVixcvhrGxMUaPHq06npiYiKtXr5a4LLxcLsemTZsglUoLve+/hgwZAmtra6xYsQIJCQmq4wkJCVi5ciXs7OzwzjvvlP8GSSU7N6/IsU1HCzrRq5kXdKHn5itgZ2GMXi3sKzQ2IiIiItI+kUgEsaigIz2Py7wTEREREZVZizrWeLOFPRQKYHnkNaHDISIiMhh6V0w3MjJCSEgI8vPz4eXlhYCAAMyePRutWrXC9evXsXjxYjg7O6vGBwYGomnTptizZ0+x8/322294/Pgx+vbti5o1a5Z4XVtbW6xcuRLJyclo06YNpk2bhmnTpqFNmzZISUnBDz/8AEtLS23fbpWXn6+AQlH0QemRG8loERSOwJ/Pq86fvP0ER+NTIBYBq0e2hehl49Iw93qQGUkqMmwiIiIi0hHlpzrumU5EREREpJ6ZPRtBJALCLz3EuXvPhA6HiIjIIOhdMR0AfHx8EBsbi86dOyMsLAyrVq1CrVq1sH37dsyePVutuZRLvI8fP/61Y0eOHIm9e/eiSZMmWL9+PUJDQ9GsWTNERERg8ODBGt2LIUtJz0b7JfsxbsMp5OT+u4xnbl4+gn+/BHmeAttO3MOq6Ju4k5KByZtPAwD6v1EHHvWrwb+TMxrWtMDojlzinYiIiKiqUK70zj3TiYiIiIjU06iWJd55ow4AYOneq8U2MREREZF2GQkdQEk8PDywd+/e144LDQ1FaGhoief/+usvta7bq1cv9OrVS633UPGO3EzB4+fZOHD1Eeb/ehFLBrhBJBJh1+kEXH+YDmOJGDl5+fjy72v48u+CpYmaOVhhUf8WAICgvs2FDJ+IiIiIdEBZTOee6URERERE6pvVsxH++CcRR+NTEBOXDO9GNYQOiYiIqErTy850qhquJKapft5+8h7WH76N5PRsLIu8DgCY82YTTPJuoHqg2qCGOdaOaQczY739jgcRERERlZOqM53LvBMRERERqc3R1gwjOxSs5Ll071Xk83M1ERGRTrFqSTpz+WUxvaWjNc4npGLRn5ex9cRdPH6eDZca5hjVwQnGRmJ80N0Vufn5MDc2glj5dJWIiIiIqiTJy497uVzmnYiIiIhII1O7NcSOU/dwOTENv59/gH6t6wgdEhERUZXFznTSGWVnelDfZhjc1hH5CuDGo3RYmhjhx1HtYGxU8MfP1FgCSxMpC+lEREREBoCd6URERERE5VPN3BgTvVwAAMsiriMnl1soERER6QqL6aQ16dm5WPLXFfRdEYsjN5PxMC0bANDY3gqL3mmBLq52MDOW4PsRbdCwpoXA0RIRERGREFSd6dwznYiIiIhIY+O61IedhQx3n2Ri+8m7QodDRERUZXGZd9KKpNQsvPPDYSSmZgEAZoadAwA4VTeDhazgj9nG9zzwQp7HPdGJiIiIDJhYVUxnZzoRERERkabMjI3wQfeG+PTXS/hufxwGtnGEuYzPXYmIiLSNnemkFTtO3UNiahZqWckAQNWV3tTeSjVGJBKxkE5ERERV0v379/HNN9/A19cX9erVg7GxMezt7TFw4EAcP35crbny8/OxYsUKuLm5wdTUFDVq1MDw4cMRHx9f4nvCw8Ph7e0NS0tLWFlZwcfHB/v37y/vbemEmHumExERERFpxTCPenCqbobk9Bysi70ldDhERERVEovppBWH4h4DAD7o3ggdXKqpjjerbVXSW4iIiIiqjBUrVmDmzJmIj4+Hr68vZs+eDU9PT/z666/o1KkTwsLCyjzXxIkTMX36dCgUCkyfPh29evXCzz//DHd3d8TFxRUZv3nzZvTq1QtXrlyBv78/xowZg0uXLqFnz57YtWuXNm9TKyTcM52IiIiISCukEjFm+zYGAKyJvomU9GyBIyIiIqp62CZM5ZaWJceZu88AAF6N7GBtKsWx+CcAgKYOLKYTERFR1efh4YGDBw/C29u70PFDhw6he/fumDx5Mvr37w+ZTFbqPFFRUQgJCYGXlxciIyNhbGwMABgxYgR69+6NqVOnIjw8XDX+6dOnmDZtGuzs7HDmzBk4OjoCAObMmYM33ngDkydPhp+fHywtLbV8x5oTc890IiIiIiKt6ePmgB9jbuLi/TSsjLqBoL7NhQ6JiIioSmFnOpXbkRspyMtXwKWGORxtzeDbvBacq5vBzFiC1nVthA6PiIiISOcGDBhQpJAOAF26dIGPjw+ePn2KCxcuvHaetWvXAgA+++wzVSEdAN5880107doVERERuHv3rur4zp078ezZM0ybNk1VSAcAR0dHTJ06FcnJydizZ095bk3rJFzmnYiIiIhIa8RiEeb0agIA2HLsLu49yRQ4IiIioqqFxXQqt5iXS7x7udYAULC80O7JnRAx0ws1LEvvviIiIiKq6qRSKQDAyOj1i0IdPHgQ5ubm6Ny5c5Fzfn5+AIDo6OhC4wHA19e3TOP1wb+d6SymExERERFpQxfXGujcsDpy8vKxPPK60OEQERFVKSymU7k8y8zBwauPABQs8a5U3UIGR1szocIiIiIi0gt3797Fvn374ODgADc3t1LHZmRkIDExEfXr14dEIily3tXVFQAK7Zuu/Fl57nXj9QH3TCciIiIi0j5ld/qes/dx8X6qwNEQERFVHdwznTQWG5eMadvO4GmmHJYmRujgUl3okIiIiIj0hlwux6hRo5CdnY2lS5cWWyB/VWpqwQMva2vrYs9bWVkVGve69xQ3/r+ys7ORnZ2tep2WlqaKXS6XlxqvJuRyOcQiBQARsnV0DUOkzCPzqT3MqW4wr9rHnOoG86o+5opIeC0dbdC/dW38cu4BFv15GdsmdIBIJBI6LCIiokqPxXTS2ILfL+FpphyNallgyYCWMDPmHyciIiIiAMjPz4e/vz9iYmIwYcIEjBo1SuiQirVkyRIsWLCgyPGIiAiYmelmlSHxy8Wxzpw9B0nCWZ1cw1BFRkYKHUKVw5zqBvOqfcypbjCvZZeZyT2aifTBh72a4K+LSTgW/wT7rjxCz2a1hA6JiIio0mP1kzTyJCMHcY/SAQDbAzqimrmxwBERERER6Yf8/Hy899572Lp1K0aOHInVq1eX6X3K7vKSOsmVXeOvdqG/+p7q1au/dvx/BQYGYtasWYXeU7duXfj6+qo627VJLpdjzZX9AIBmLVqid9s6Wr+GIZLL5YiMjETPnj0hlUqFDqdKYE51g3nVPuZUN5hX9Sk/dxCRsOrYmGKcZ32sOngTS/66gq6Na0Aq4U6vRERE5cFiOmnk1O0nAICGNS1YSCciIiJ6KT8/H2PHjsXGjRsxfPhwhIaGQiwu28Mrc3NzODg44NatW8jLyyuyLHxx+6O7urri1KlTiIuLK1JML20/dSWZTAaZTFbkuFQq1VnxQLlnOkRiFii0TJe/b4aKOdUN5lX7mFPdYF7Ljnki0h9TujbAjpP3EJ+cgW0n7mJ0R2ehQyIiIqrU+LU00sjJl8V0d+dqAkdCREREpB9eLaQPHToUmzZteu0+6f/l7e2NjIwMHD58uMi58PBwAICXl1eh8UDBsuwljVeO0RfKYnpefr6wgRARERERVUGWJlLM6NkIAPDNvjikZckFjoiIiKhyYzGdNHLi9lMAgEd9W4EjISIiIhKecmn3jRs3YvDgwdi8eXOphfTk5GRcvXoVycnJhY4HBAQAAD799FPk5OSoju/duxcHDx6Er68vnJycVMeHDBkCa2trrFixAgkJCarjCQkJWLlyJezs7PDOO+9o6za1QvyymJ6brxA2ECIiIiKiKmq4e100qGGOJxk5+D7qhtDhEBERVWpc5p3UlpmTi0v3C/byZGc6EREREbBw4UJs2LABFhYWaNSoERYtWlRkTP/+/dG6dWsAwMqVK7FgwQIEBQUhODhYNcbHxwfjx49HSEgI2rRpg7feeguJiYkICwtDtWrVsGLFikJz2traYuXKlRg1ahTatGmDoUOHAgDCwsKQkpKCsLAwWFpa6uy+NSFWdaazmE5EREREpAtGEjHm9m6KcRtOYX3sbYxs74S61cyEDouIiKhSYjGd1PLn+UQcv5WC3HwFHKxNUMfGVOiQiIiIiAR3+/ZtAEB6ejo+//zzYsc4OzuriumlWbNmDdzc3PDjjz/i22+/hYWFBd555x18/vnnaNCgQZHxI0eOhJ2dHRYvXoz169dDJBKhbdu2mDdvHnr06FGe29IJZTFdnsdiOhERERGRrnRrUhOdGlTHkZsp+L/wa/hu+BtCh0RERFQpsZhOpUrNlOPQjcfo0bQWDt9Ixvtbz6jOta9fDSKRSMDoiIiIiPRDaGgoQkNDyzw+ODi4UEf6q8RiMaZPn47p06eXeb5evXqhV69eZR4vJO6ZTkRERESkeyKRCJ+81RR9VsTit38e4D3P+mhd10bosIiIiCodFtOpVN8diMO62Fvo0bQmbqdkAgA8nKuhkb0FJnRxETg6IiIiIqpsuGc6EREREVHFaF7bGgPbOGLX6QQs+uMydk7qyOYoIiIiNbGYTqW6lvQcALDvyiMAgK2ZFCH+7WBlIhUyLCIiIiKqpCTcM52IiIiIqML8z7cx/jj/AKfuPMXfF5PwppuD0CERERFVKmKhAyD9du9pZqHXM3o0YiGdiIiIiDTGPdOJiIiIiCqOvbUJAl6uMLp47xVkyfMEjoiIiKhyYTGdSpSXr8CDZy8AAB90d0WAlwtGtK8ncFREREREVJmJuWc6ERERUZmdPHkSvXv3ho2NDczNzdGhQwfs2LFDrTmys7OxcOFCuLq6wsTEBLVr10ZAQAAePXpU4nu2bNkCDw8PmJubw9bWFn369MGZM2e0FueZM2cwePBg1K9fH6ampnByckK/fv0QExOj1r1R2Uzq2gD2Via49+QF1sXeEjocIiKiSoXFdCpRUloW5HkKSCUiTO/uirm9m0Iq4R8ZIiIiItKchHumExEREZVJVFQUOnfujNjYWAwZMgSTJk1CUlIShg4dimXLlpVpjvz8fPTr1w9BQUGws7PDjBkz0LFjR4SEhKBjx454/Phxkfd8/vnnGDlyJB49eoRJkyZh8ODBiImJQadOnXD48OFyx/nLL7/A3d0df/75Jzp16oQPPvgAnp6eiIyMhLe3N0JDQ9XOFZXOzNgIgb2bAAC+j7qBpNQsgSMiIiKqPLhnOpUo4UnBEu+1bUwhUbYQERERERGVg5h7phMRERG9Vm5uLiZMmACxWIyYmBi0bt0aADB//nx4eHhg7ty5GDRoEJycnEqdZ8OGDQgPD8fw4cOxZcsWiEQFH8ZWr16NyZMnY968eVizZo1qfFxcHIKDg9GoUSOcOHEC1tbWAIApU6agQ4cOmDBhAi5evAixWKxxnHPnzoVCocCRI0dU44GCbvV27dph4cKF8Pf3L2cG6b/eblUbG4/ewek7T7H076v4emhroUMiIiKqFNhmTCW697Rgife6tmYCR0JEREREVYVEVFBEZ2c6ERERUckOHDiAmzdvYsSIEYUKztbW1pg7dy5ycnKwYcOG186zdu1aAMCSJUtUhXQAmDhxIlxcXLBlyxa8ePFCdXz9+vXIzc3FJ598oiqkA0Dr1q0xfPhwXLlyBbGxseWKMz4+Hg4ODoXGA0CbNm3g4OBQbLc8lZ9IJEJw3+YQiYA9Z+/j9J2nQodERERUKbCYTiW697IzvW41U4EjISIiIqKqQtmZnpvHPdOJiIiISnLw4EEAgK+vb5Fzfn5+AIDo6OhS58jKysLx48fRuHHjIh3sIpEIPXv2REZGBk6dOqXxdTWJs0WLFkhMTMS5c+cKHT9z5gwSExPRvXv3Uu+LNOfmaI3BbR0BAAt+v4R8fsGViIjotbjMO5Uo4WVnuiM704mIiIhIS5Tf5mVnOhEREVHJ4uLiAACurq5Fztnb28PCwkI1piQ3b95Efn5+sXO8OndcXBy6dOmi+tnCwgL29valji9PnF9//TXeeustdOrUCQMGDEDdunVx9+5d7NmzB127dsXq1atLva/s7GxkZ2erXqelpQEA5HI55HJ5qe/VhHJOXcwthJndG+DPC4k4n5CKsJN3MKhNnQqPoarlVF8wr9rHnOoG86p9zKn61MkVi+lUontPCzrTHW3ZmU5ERERE2iF5WU3nnulEREREJUtNTQWAQkutv8rKyko1pjxzvDpO+XPNmjXVGq9unF26dMGhQ4cwePBgbNmyRXXcyckJ/v7+xRbyX7VkyRIsWLCgyPGIiAiYmemuKSgyMlJnc1e0HvYi/HpHgsV/XIQ44R+YCFQlqEo51SfMq/Yxp7rBvGofc1p2mZmZZR7LYjqVKEG1zDs704mIiIhIO9iZTkRERGTY/vzzT4wYMQJ9+vTBb7/9BicnJ9y5cwefffYZxowZg4sXL+LLL78s8f2BgYGYNWuW6nVaWhrq1q0LX19fVcFfm+RyOSIjI9GzZ09IpVKtzy+EHrn5OL/yCG6lZCJO1hBz/BpV6PWrYk71AfOqfcypbjCv2secqk+5sk1ZsJhOxcrJzUdSWhYAdqYTERERkfYo90zPy2MxnYiIiKgkyk7vkrrP09LSYGtrW+45Xh2n/Fnd8erEmZKSgnfffReurq7YtGkTxOKCr1o2adIEmzZtwrVr17B8+XJMnToV9erVK3ZOmUwGmUxW5LhUKtVpAUHX81ckqRSY37c5xoaexIajd/BuB2fUtzMXII6qk1N9wrxqH3OqG8yr9jGnZadOnsSvHyKMkydPonfv3rCxsYG5uTk6dOiAHTt2qD3Po0ePMHPmTLi6usLExATVq1dHx44dsWrVqiJjRSJRib/8/f21cFeVR2LqC+QrABOpGDUsin44JSIiIiLShORlMT03P1/YQIiIiIj0WHH7kyslJSUhPT29xL3QlVxcXCAWi0vcW724/c5dXV2Rnp6OpKSkMo9XJ84jR44gNTUV3t7eqkK6klgshpeXF/Ly8nD+/PlS743Kz6dJTXRtXAPyPAUW/XFZ6HCIiIj0ll4W06OiotC5c2fExsZiyJAhmDRpEpKSkjB06FAsW7aszPOcO3cOLVq0wMqVK9G8eXPMnDkTI0aMgLm5OX7//fdi3+Pk5ISgoKAiv/r376+lu6sc4h9nAAAcbc0gEokEjoaIiIiIqop/i+nsTCciIiIqibe3N4CCfcD/Kzw8vNCYkpiamsLDwwPXrl3DnTt3Cp1TKBSIjIyEubk52rVrp/F11R2fk5MDAHj8+HGxMSuPF9d5Ttr3aZ9mMBKLsP/qI0RdeyR0OERERHpJ75Z5z83NxYQJEyAWixETE4PWrVsDAObPnw8PDw/MnTsXgwYNgpOTU6nzpKWloV+/fgCA06dPo2XLlkWuUxxnZ2cEBweX+z4qM4VCgdXRNwEA7ZxKXy6KiIiIiEgdqmXeWUwnIiIiKlH37t3h4uKCrVu3Yvr06apnpKmpqVi8eDGMjY0xevRo1fjExESkpqbCwcGh0DLsAQEBOHbsGAIDA7FlyxZV08yaNWsQHx+PgIAAmJr+u8Xj2LFj8dVXX+Hzzz9Hv379VHOdO3cO27ZtQ9OmTeHp6alxnO3bt4dEIsGuXbvwv//9r9Az23PnzmHXrl0wMzND+/bttZdMKlGDGhYY29kZaw/dwoLfLqHjjOowkUqEDouIiEiv6F1n+oEDB3Dz5k2MGDFC9eELKNh/Z+7cucjJycGGDRteO88PP/yAu3fv4osvvihSSAcAIyO9+x6B3th35RGO33oCmZEY07qXvlwUEREREZE6lMX0XO6ZTkRERFQiIyMjhISEID8/H15eXggICMDs2bPRqlUrXL9+HYsXL4azs7NqfGBgIJo2bYo9e/YUmmfMmDHw8/PDtm3b0KlTJ3z88ccYNGgQpkyZgvr162PRokWFxjdq1AjBwcG4fv06WrVqhdmzZyMgIABeXl4AgLVr1xZanl3dOB0dHTFnzhy8ePEC7u7uGDZsGObMmYOhQ4eiffv2yMrKwhdffAErKyvtJ5WKNb27K2paynA7JRNrY+KFDoeIiEjv6F1F+eDBgwAAX1/fIuf8/PwAANHR0a+dJywsDCKRCAMHDsS1a9cQERGBFy9eoEmTJujVqxeMjY2Lfd+zZ8/w448/Ijk5GdWqVUPnzp3h5uam+Q1VMgqFAl/svQIAGOdZH3VsTF/zDiIiIiKishNzz3QiIiKiMvHx8UFsbCyCgoIQFhYGuVwONzc3LF26FEOHDi3THGKxGL/++iu++OILbNq0CV9//TWqVauGcePGYdGiRahRo0aR93zyySdwdnbGN998g1WrVsHY2BhdunTBZ599hjZt2pQ7zs8//xwtW7bEmjVrEB4ejufPn8Pa2ho+Pj744IMP8Oabb6qfLNKYpYkU8/o0w/RtZ7Ey6gb6v1EHdauZCR0WERGR3tC7YnpcXBwAwNW1aEe0vb09LCwsVGNKkpOTgwsXLqBGjRpYsWIFgoKCkP/KwzoXFxf88ssvxRbJ//nnH0ycOLHQsV69emHDhg2oWbNmqdfNzs5Gdna26nVaWhoAQC6XQy6Xl/peTSjn1ObclxPTcPNxBkylYozvXE8nceszXeSUmFddYE51g3nVPuZUfcwVVXXcM52IiIio7Dw8PLB3797XjgsNDUVoaGix52QyGYKCghAUFFTm67777rt49913yzy+rHEqDR06tMxfCCDd69vSAduO38XR+BQs+P0SQsa4Cx0SERGR3tC7YnpqaioAFNrb51VWVlaqMSV58uQJ8vLykJKSgoULF+LLL7/EqFGjIJfLsWbNGixatAh9+/bF1atXYWJionrf7NmzMXDgQDRq1AjGxsa4ePEiPvvsM+zduxd9+vTB0aNHIZGUvGfMkiVLsGDBgiLHIyIiYGamu2/zRUZGam2u/fdFACSob56LQwe0N29lo82c0r+YV+1jTnWDedU+5rTsMjMzhQ6BSKe4ZzoRERERkX4RiUT4rH9z9PrmEPZdeYR9lx+iR7NaQodFRESkF/SumK4Nyi70vLw8TJ06FbNnz1adW7hwIa5du4YdO3Zg165dGDlypOrcV199VWiejh074o8//kC3bt0QHR2NX3/9FQMGDCjxuoGBgZg1a5bqdVpaGurWrQtfX1+d7PMjl8sRGRmJnj17QiqVamXO7etPAXiCgZ2boXeHelqZszLRRU6JedUF5lQ3mFftY07Vp1zZhqiqknDPdCIiIiIivdOwpiXGdamPNdHxWPDHJXi62sFEWnJjGRERkaHQu2K6siO9pO7ztLQ02NralmkOAHj77beLnH/77bexY8cOnDp1qlAxvThisRgTJkxAdHQ0Dh8+XGoxXSaTQSaTFTkulUp1WkDQ1vyZObk4fecZAMCnSS2DLnro+vfMUDGv2sec6gbzqn3MadkxT1TVsTOdiIiIiEg/Te/mit/OPcC9Jy/wQ9QNzPJtLHRIREREghMLHcB/KfdKL25f9KSkJKSnpxe7n/qrzM3NUadOHQCAjY1NkfPKYy9evChTTHZ2dgCAjIyMMo2vLPLzFQj8+Tx+OHgDAHAsPgU5eflwtDVFfTtzgaMjIiIioqpILCooostfriZFRERERET6wVxmhPl9mgEAVkfH43Zy1XoeTkREpAm9K6Z7e3sDKNhn/L/Cw8MLjSlNt27dAACXL18uck55zNnZuUwxHT9+XK3xlcXFB6nYduIevvz7Gu6kZCDmejIAwKtRDYhEIoGjIyIiIqKqSMLOdCIiIiIivdWrhT26uNohJy8fQb9dgkLBz+1ERGTY9K6Y3r17d7i4uGDr1q04d+6c6nhqaioWL14MY2NjjB49WnU8MTERV69eLbIs/KRJkwAAX3zxBZ49e6Y6npSUhG+//RZisRgDBw5UHb9w4QLkcnmReI4cOYKlS5dCKpVi8ODBWrpL/XA7JVP183f7b2DX6QQAQLfGNYUKiYiIiIiqODH3TCciIiIi0lsikQgL+7WAsUSM6OuPEX7podAhERERCUrviulGRkYICQlBfn4+vLy8EBAQgNmzZ6NVq1a4fv06Fi9eXKhDPDAwEE2bNsWePXsKzdOpUyfMmjULly5dQsuWLfH+++8jICAArVq1wv3797Fo0SI0atRINX7ZsmWoXbs23nnnHUyfPh2zZ89Gr1694OnpiaysLHz33Xdo0KBBRaWhQtxN+XeZnt1nEpCenYsWdazQrQmL6URERESkG+xMJyIiIiLSb/XtzBHg5QIAWPj7JWTm5AocERERkXCMhA6gOD4+PoiNjUVQUBDCwsIgl8vh5uaGpUuXYujQoWWeZ9myZXBzc8P333+P0NBQiEQivPHGG1i9ejXeeeedQmP79euHZ8+e4Z9//kFkZCRycnJgb2+PYcOGYcaMGfDw8ND2bQru1c50pbm9m0Is5hLvRERERKQbym/z5nLPdCIiIiIivfW+T0PsOXsf95+9wDf74jC3d1OhQyIiIhKEXhbTAcDDwwN79+597bjQ0FCEhoaWeN7f3x/+/v6vneedd94pUmCv6u6+LKa3crTGPwmp6NG0Jjo1sBM4KiIiIiKqylTLvLMznYiIiIhIb5kaS/BZ/+Z4L/QU1sXeQr/WtdG8trXQYREREVU4vVvmnSrO7ZfLvAe/3Rw/+bfDd8PfEDgiIiIiIqrqVMu8c890IiIiIiK91q1JLbzl5oC8fAUCf77ArZqIiMggsZhuoDJzcvHoeTaAgj1wujWpBTNjvV2ogIiIiIiqCHamExERERFVHkF9m8HSxAjnE1Kx8ehtocMhIiKqcCymG6i7TwqWeLcyMYKNmbHA0RARERGRoVB1prOYTkRERESk92pamWBOryYAgK/Cr+HBsxcCR0RERFSxWEw3UHde7pfubGcucCREREREZEiUneny/HxhAyEiIiIiojIZ4VEPbZ1skZGTh6DfLgkdDhERUYViMd1A3Xm5X3q9amYCR0JEREREhkRZTFcogHx2pxMRERER6T2xWITF77jBSCxC5OWH+PtiktAhERERVRgW0w2UqjO9OjvTiYiIiKjiKJd5B7hvOhERERFRZdHY3hITvV0AAMG/XcLzLLnAEREREVUMFtMNlHLP9HrV2ZlORERERBVH/EoxnfumExERERFVHtO6ucK5uhmS0rLwVfg1ocMhIiKqECymG6j4xwXLvDtxmXciIiIiqkCFO9O5bzoRERERUWVhIpXg83fcAAAbj93B2btPBY6IiIhI91hMN0BpWXLcf/YCQMHyPERERERUPps3b8bEiRPRrl07yGQyiEQihIaGqjVH165dIRKJSv21adOmQu9xdnYucWzXrl21d4Na9Gpnem4eO9OJiIiIiCqTzg3tMOCNOlAogMCfL0Cexy/IEhFR1WYkdABU8a4mPgcA1LY2gY2ZscDREBEREVV+8+bNw507d2BnZwcHBwfcuXNH7Tn8/f2LLYDL5XIsWbIEYrEY3bt3L3Le2toaM2bMKHLc2dlZ7RgqglgEiESAQsE904mIiIiIKqNP3mqKqGuPcDXpOdZE38TUbq5Ch0RERKQzLKYboMsPUgEATR2sBI6EiIiIqGoICQmBq6srnJyc8MUXXyAwMFDtOfz9/Ys9vnv3bigUCvTu3Ru1a9cuct7GxgbBwcFqX09IRmIR5HkK7plORERERFQJVbeQYX7fZpgZ9g++238Dfs3t4VqLK6ASEVHVxGXeDdCVl53pzWqzmE5ERESkDT169ICTk5NO5l63bh0AYNy4cTqZXwiSl2u9c890IiIiIqLKqX/rOujWpCZy8vLx4a7z/KIsERFVWSymG6ArSWkA2JlOREREpO8SEhIQHh4OBwcHvPXWW8WOyc7ORmhoKBYvXoyVK1fi+PHjFRyl+lTFdO6ZTkRERERUKYlEInz+TgtYyoxw7t4zrD98S+iQiIiIdILLvBuY3Lx8XEsq6ExnMZ2IiIhIv61fvx75+fkYM2YMjIyK/+ielJSEsWPHFjrm7u6Obdu2oUGDBqXOn52djezsbNXrtLSCL13K5XLI5fJyRl+Uck6pWAwgD5nZOZDLjbV+HUOjzKsufs8MFXOqG8yr9jGnusG8qo+5IjJMDtammPtWUwT+fAFfRVxDj6a14GxnLnRYREREWsViuoG5nZKB7Nx8mBlL4FTNTOhwiIiIiCpMs2bNMGHCBIwePRrVq1cXOpzXUigUWL9+PYCSl3gfO3YsunTpghYtWsDCwgLXr1/H8uXLsWnTJnTv3h0XLlyApWXJexcuWbIECxYsKHI8IiICZma6+6yoyM0BIEJUdAzi+KxNayIjI4UOocphTnWDedU+5lQ3mNeyy8zMFDoEIhLIMPe6+P2fBzhyMwVzdp/HtgkdIH65EhUREVFVwGK6gbn0oKDbqIm9JT/UEBERkUG5e/cu/ve//2Hu3Lno378/JkyYgG7dugkdVokOHDiAW7duwdvbGw0bNix2TFBQUKHXrVu3xsaNGwEAmzZtwtq1azFr1qwSrxEYGFjofFpaGurWrQtfX19YWWl/FSO5XI7IyEhYmpsi9VkW3Dt0wht1bbR+HUOjzGvPnj0hlUqFDqdKYE51g3nVPuZUN5hX9SlXtyEiwyMSifDFgJbw+yYGx289wdYTdzGyg5PQYREREWkNi+kG5nIi90snIiIiw5SUlIQtW7YgJCQEYWFh2LFjB+rXr4/x48fD398f9vb2QodYyLp16wAA48ePV/u9EydOxKZNm3D48OFSi+kymQwymazIcalUqtPigbGRGACggJhFCi3S9e+bIWJOdYN51T7mVDeY17JjnogMW73qZvioV2Ms+P0ylvx1BT5NaqKOjanQYREREWmFWOgAqGIduZECAGhTz1bgSIiIiIgqloWFBSZOnIiTJ0/in3/+wZQpU/D06VPMnTsX9erVw4ABA7B3714oFAqhQ8XTp0+xZ88e2NjYYNCgQWq/387ODgCQkZGh7dC0wlhS8M+QnLx8gSMhIiIiIiJtGNPRGW2dbJGRk4e5P1/Qi39XERERaQOL6QYkJT0bFx+kAgC6NLITOBoiIiIi4bi5uWHFihV48OABNm3aBE9PT/z666/o06cPnJycsGDBAty/f1+w+DZv3oysrCy8++67MDExUfv9x48fBwA4OztrOTLtUHam5+SymE5EREREVBWIxSIsHdgSxkZiRF9/jN1nhPv3FBERkTaxmG5AYm8kQ6EoWOK9pqX6D2WJiIiIqhqZTAY/Pz/07t0b9vb2UCgUSEhIwIIFC+Di4oL3338fmZmZWr1mcnIyrl69iuTk5BLHKJd4HzduXIljrl69WmxsV69exZw5cwAAI0aMKGe0uiF92ZkuZ2c6EREREVGV0bCmBWb0cAUALPz9EpJSswSOiIiIqPxYTDcg0dcfAwC8XNmVTkRERBQREYEhQ4bA0dERc+bMgUgkwqeffoobN25gx44daNOmDVavXo3333//tXOFhITA398f/v7+2LlzZ5FjISEhqrErV65E06ZNsXLlymLnOn36NP755x+0adMGb7zxRonX3L59O+zt7dGnTx+8//77+Oijj9C/f3+0bNkSSUlJCAwMhJeXl5pZqRjKzvRsdqYTEREREVUpAV1c0NLRGmlZuZiz+zyXeyciokrPSOgAqGIoFAociivofvJqVEPgaIiIiIiEcf/+ffz0009Yv3497ty5AwDw9fXFxIkT0bdvX0gkEgCAi4sLBg0ahL59++LXX3997byxsbHYsGFDoWOHDx/G4cOHVa/Hjx9fphiVXemvG+/j44MrV67g7NmzOHToEDIzM2FnZ4fevXtjypQp8PX1LdP1hKDaM53FdCIiIiKiKsVIIsaywa3w1opYRF9/jO0n72G4Rz2hwyIiItIYi+kG4mrSczx+ng1TqQTtnG2FDoeIiIiowvXp0wfh4eHIy8tDrVq1MGfOHAQEBJS6r3inTp3w119/vXbu0NBQhIaGlimO4OBgBAcHl3j+hx9+wA8//PDaeby9veHt7V2ma+obqUQEAJDnsUuFiIiIiKiqca1liY/8GmPRn1ew6I/L8Gxoh7rVzIQOi4iISCMsphuIW8kZAIBmta0gM5IIHA0RERFRxdu7dy98fHwwceJEvPPOOzAyev1H4b59+6J27doVEJ1hUS7znpObJ3AkRERERESkC2M710fEpYc4cfsJZu/8B9sndIBYLBI6LCIiIrWxmG4gktOzAQA1LGQCR0JEREQkjGvXrqFhw4ZqvadFixZo0aKFjiIyXKpl3vO4zDsRERERUVUkEYvw1eBW6PVtDE7ceoL1R25jnGd9ocMiIiJSm1joAKhiJKfnAADsLI0FjoSIiIhIGP8tpOfm5uLp06fIzc0VKCLDJX3Zmc5l3omIiIiIqq561c3wyVtNAQBf/n0VNx6lCxwRERGR+lhMNxApLzvTq5uzM52IiIgMV15eHr7++mu0atUKJiYmsLOzg4mJCVq3bo1vvvmGhfUKouxMz85lZzoRERERUVU2wqMeurjaITs3H7N3/oNcrk5FRESVDIvpBkK5zLudBTvTiYiIyDClp6fDy8sL//vf/3D58mXUq1cPHh4eqFevHi5duoTZs2eja9euyMjIEDrUKu/fPdP5II2IiIiIqCoTiUT4clBLWJoY4Z97z7A6+qbQIREREamFxXQDkaJc5p17phMREZGBmj9/Po4ePYrhw4fj5s2biI+Px9GjRxEfH4+bN29i2LBhOHLkCObPny90qFWeVCICAMjZlUJEREREVOU5WJtiwdvNAQDf7o/D5cQ0gSMiIiIqOxbTDYSyM706i+lERERkoHbs2IF27dph8+bNqFevXqFz9erVw5YtW9C2bVuEhYUJFKHhUC7zzs50IiIiIiLD8M4bdeDXvBbkeQp8uOsi5PynABERVRIsphuIfzvTucw7ERERGaaUlBT06NGj1DE9evTAkydPKigiw8Vl3omIiIiIDItIJMLn77jBzsIY1x+l4/c7LE0QEVHloLf/xzp58iR69+4NGxsbmJubo0OHDtixY4fa8zx69AgzZ86Eq6srTExMUL16dXTs2BGrVq0qdnx4eDi8vb1haWkJKysr+Pj4YP/+/eW9HUFlyfPwPDsXADvTiYiIyHC5urri0aNHpY55/PgxGjZsWEERGS7py850LvNORERERGQ47Cxk+L9BrQAA0UliHIpLFjgiIiKi19PLYnpUVBQ6d+6M2NhYDBkyBJMmTUJSUhKGDh2KZcuWlXmec+fOoUWLFli5ciWaN2+OmTNnYsSIETA3N8fvv/9eZPzmzZvRq1cvXLlyBf7+/hgzZgwuXbqEnj17YteuXdq8xQqVklHQlW4sEcPKxEjgaIiIiIiE8cEHHyAsLAyXLl0q9vyFCxewfft2zJgxo2IDM0DKzvRsFtOJiIiIiAyKT5OaGNm+LgBgzs8XkfJye1IiIiJ9pXeV1dzcXEyYMAFisRgxMTFo3bo1AGD+/Pnw8PDA3LlzMWjQIDg5OZU6T1paGvr16wcAOH36NFq2bFnkOq96+vQppk2bBjs7O5w5cwaOjo4AgDlz5uCNN97A5MmT4efnB0tLSy3dacVJUe2XbgyRSCRwNERERETCcHV1Rbdu3dCuXTuMGTMGnp6eqFWrFh4+fIhDhw5h48aN8PPzQ8OGDRETE1PovV5eXgJFXTVJJQWfSeVc5p2IiIiIyODM8WuEyPN38TA9Bx//fAE/jmrL59ZERKS39K6YfuDAAdy8eRNjx45VFdIBwNraGnPnzoW/vz82bNiA+fPnlzrPDz/8gLt372LdunVFCukAYGRU+NZ37tyJZ8+eYcGCBapCOgA4Ojpi6tSpCA4Oxp49ezB69Ojy3aAAlPulV+d+6URERGTAunbtCpFIBIVCgR9//BFr165VnVMoFACA33//vdgVjPLy8iosTkNg/HKZ9xx2phMRERERGRwTqQSjXfPwzSUpIi8/xLYT9zCifT2hwyIiIiqW3hXTDx48CADw9fUtcs7Pzw8AEB0d/dp5wsLCIBKJMHDgQFy7dg0RERF48eIFmjRpgl69esHYuHBh+XXXDQ4ORnR0dKUspj9Wdqabc790IiIiMlzz589nt4OeUC7znsPOdCIiIiIig+RoDszu6Yov/r6Oz/64jPYu1dCghoXQYRERERWhd8X0uLg4AAXLcP6Xvb09LCwsVGNKkpOTgwsXLqBGjRpYsWIFgoKCkJ//74M6FxcX/PLLL3BzcyvTdZXHXnfd7OxsZGf/u8dLWloaAEAul0Mul5f6Xk0o53zd3I9SXwAAqplLdRJHVVLWnJJ6mFftY051g3nVPuZUfcyV7gQHBwsdAr0kfdmZLmdnOhERERGRwRrb0QmHbqTg8I0UzNh+Drsnd1J98ZaIiEhf6F0xPTU1FUDBsu7FsbKyUo0pyZMnT5CXl4eUlBQsXLgQX375JUaNGgW5XI41a9Zg0aJF6Nu3L65evQoTE5PXXtfKyqrQmJIsWbIECxYsKHI8IiICZmZmpb63PCIjI0s9f+q2GIAYqQ8T8Ndfd3UWR1XyupySZphX7WNOdYN51T7mtOwyMzOFDoFI59iZTkREREREYrEIywa3ht83MbhwPxXf7LuOj3o1ETosIiKiQjQqph8/fhzt27fXdixao+xCz8vLw9SpUzF79mzVuYULF+LatWvYsWMHdu3ahZEjR2rtuoGBgZg1a5bqdVpaGurWrQtfX19VQV6b5HI5IiMj0bNnT0il0hLH7d95AUhMhEfLJujd2VnrcVQlZc0pqYd51T7mVDeYV+1jTtWnXNmGdCcjIwO//PILzp07h7S0NFhZWaF169bo378/zM3NhQ7PICj3TM9mMZ2IiIiIyKDZW5vgiwFumLzlDFZF34RXoxro4FJd6LCIiIhUNCqmd+zYEW5ubpgwYQJGjhwJGxsbrQWk7AwvqQs8LS0Ntra2ZZoDAN5+++0i599++23s2LEDp06dUhXTX71u9eqF/2etfKhdUre8kkwmg0xWdF9yqVSq0wLC6+Z/+qJgudiaVqYsZJSRrn/PDBXzqn3MqW4wr9rHnJYd86Rbu3fvRkBAAJ49ewaFQqE6LhKJYGNjg7Vr12LAgAECRmgYpJKCveu5zDsREREREb3p5oAh7Ryx41QCZmw/h70fdIGtubHQYREREQEANNqAZOTIkbhx4wamT5+O2rVrY/To0Th06JBWAiptf/KkpCSkp6cXu6/5q8zNzVGnTh0AKLbQrzz24sWLMl23tP3UK4Pk9BwAQHWLooV+IiIiIkNx5MgRDBs2DBkZGRg/fjy2bt2KqKgobNu2DRMmTEBmZiaGDRuGo0ePCh1qlada5p3FdCIiIiIiAhDUtzlcapgjKS0L/9v5T6EvPxMREQlJo2L6xo0b8eDBA6xYsQJNmjTB5s2b0bVrVzRp0gTLli1DcnKyxgF5e3sDKNhn/L/Cw8MLjSlNt27dAACXL18uck55zNnZWevX1UfJ6dkAADsLfpuPiIiIDNfixYshk8lw/PhxrFmzBsOGDYO3tzeGDh2K1atX4/jx4zA2NsbixYuFDrXKUy7zzj3TiYiIiIgIAMxlRlg5vA2MjcTYf/URfjp8W+iQiIiIAGhYTAcKljx///33cebMGZw6dQoBAQF4+PAhPvzwQzg6OmLo0KHYt2+f2vN2794dLi4u2Lp1K86dO6c6npqaisWLF8PY2BijR49WHU9MTMTVq1eLLAs/adIkAMAXX3yBZ8+eqY4nJSXh22+/hVgsxsCBA1XHhwwZAmtra6xYsQIJCQmq4wkJCVi5ciXs7OzwzjvvqH0/QlMoFHiS8bIz3Zyd6URERGS4jh49iqFDh6JVq1bFnm/ZsiWGDBmCI0eOVHBkhkdZTJfnsduEiIiIiIgKNKtthU/fagoA+GLvFZxPeCZsQERERChHMf1Vbdq0wapVq/DgwQOEhobCzs4Ou3btgp+fH1xcXPDll1/i+fPnZZrLyMgIISEhyM/Ph5eXFwICAjB79my0atUK169fx+LFiwt1lAcGBqJp06bYs2dPoXk6deqEWbNm4dKlS2jZsiXef/99BAQEoFWrVrh//z4WLVqERo0aqcbb2tpi5cqVSE5ORps2bTBt2jRMmzYNbdq0QUpKCn744QdYWlpqI10VKjdfgbz8goeUpsYSgaMhIiIiEk5mZiZq1apV6phatWohMzOzgiIyXKpl3tmZTkRERERErxjZwQm9mttDnqfAtG1n8TxLLnRIRERk4LRSTAeAp0+f4scff8T//d//4cGDBwCAzp074/nz5/j444/RuHFjnDx5skxz+fj4IDY2Fp07d0ZYWBhWrVqFWrVqYfv27Zg9e3aZY1q2bBnWr1+PWrVqITQ0FFu3bkWjRo3w888/IzAwsMj4kSNHYu/evWjSpAnWr1+P0NBQNGvWDBERERg8eHCZr6tPsl95QCkz0tpvNxEREVGl4+zsjMjIyFLH7N+/v9AXN0k3WEwnIiIiIqLiiEQiLB3YEnVsTHEnJRNz91zk/ulERCSocldXo6KiMGLECNSpUwczZ87Eo0eP8OGHHyIuLg4xMTFISEjA999/j+fPn2PatGllntfDwwN79+5FamoqMjMzcfz4cQwdOrTIuNDQUCgUCvj7+xc7j7+/P06ePImMjAykp6fj0KFDpS7X3qtXL8TExCA9PR3Pnz/HwYMH0aNHjzLHrW+y5Xmqn5XLaRIREREZoiFDhuD06dMYM2aM6sufSomJifD398fp06eL/cxJ2iWViAAAOXn5fDBGRERERESFWJtJ8d3wNyARi/D7Pw8QdvKe0CEREZEBM9LkTQ8fPsT69euxbt06xMfHQ6FQwNvbG5MmTcKAAQMglUpVY2UyGSZPnowbN27g+++/11rgVDY5eQXdPsYSMcRikcDREBEREQlnzpw5+Pvvv7Fp0yaEhYWhYcOGqFWrFh4+fIgbN24gJycHHh4emDNnjtChVnmvfslTnqeAsRE/pxIRERER0b/aOtnif76NsfTvqwj+/RLaONmiUa3Ktw0rERFVfhoV0x0dHZGfnw9bW1vMmDEDAQEBaNy4canvqVGjBnJycjQKkjSXLS8opnOJdyIiIjJ0ZmZmiImJwdKlS7Fx40ZcvnwZly9fBgC4uLhgzJgx+OijjyCTyQSOtOozfuWzaU5efqHXREREREREADDRywVH41MQc/0xpm49g1/f94SpsUTosIiIyMBo9NSqffv22LBhA+7fv49ly5a9tpAOAB9//DHy87knYkVT7pkuk/IBJREREZFMJsP8+fNx48YNpKam4t69e0hNTcWNGzfw6aefspBeQaSvdqZz33QiIiIiIiqGWCzC8iGtUMNShusP0zH/14tCh0RERAZIowprbGwsRo4cyYeNlUB2bsGe6dwvnYiIiAydRCLBu+++q3ptaWmJOnXqwNKSSwVWNIlYBIn4333TiYiIiKh4J0+eRO/evWFjYwNzc3N06NABO3bsUGuO7OxsLFy4EK6urjAxMUHt2rUREBCAR48elfieLVu2wMPDA+bm5rC1tUWfPn1w5swZrcb5zz//YMSIEahTpw5kMhlq166NN998E1FRUWrdH1VtdhYyfDu0NcQiYOfpBOzg/ulERFTBNKqwJiQk4LfffsOzZ8+KPf/06VP89ttvuH//fnliIy3IUXWmc/kbIiIiMmxWVlaoW7eu0GHQS8ove+awM52IiIioWFFRUejcuTNiY2MxZMgQTJo0CUlJSRg6dCiWLVtWpjny8/PRr18/BAUFwc7ODjNmzEDHjh0REhKCjh074vHjx0Xe8/nnn2PkyJF49OgRJk2ahMGDByMmJgadOnXC4cOHtRLnxo0b0bZtW4SHh6NHjx6YPXs2+vTpg4cPH+LIkSPqJYqqvE4N7TDbt2B13E9/vYhLD1IFjoiIiAyJRnumL1q0CDt37sSDBw+KPW9mZob33nsPw4YNw8qVK8sVIJWPapl37kNJREREBs7DwwP//POP0GHQS1KJCC/k7EwnIiIiKk5ubi4mTJgAsViMmJgYtG7dGgAwf/58eHh4YO7cuRg0aBCcnJxKnWfDhg0IDw/H8OHDsWXLFohEBasDrV69GpMnT8a8efOwZs0a1fi4uDgEBwejUaNGOHHiBKytrQEAU6ZMQYcOHTBhwgRcvHgRYrFY4zhPnz6NcePGwd3dHX/99RdsbW2L3DvRf032boDTd57iwNVHmLLlDH6b6glrU6nQYRERkQHQqMJ64MAB+Pr6lrjMu0wmg6+vL/bt21eu4Kj8VMu8s5hOREREBi44OBgHDhzAxo0bhQ6FABgbFaycxM50IiIioqIOHDiAmzdvYsSIEaoCNQBYW1tj7ty5yMnJwYYNG147z9q1awEAS5YsURXSAWDixIlwcXHBli1b8OLFC9Xx9evXIzc3F5988omqkA4ArVu3xvDhw3HlyhXExsaWK85PPvkEeXl52LRpU5FCOgAYGWnU/0VVnHL/9Do2priTkokPd/4DhUIhdFhERGQANPpkcv/+fQwcOLDUMU5OTvj99981Coq0J1vOznQiIiIiAIiMjETXrl0xduxYrFixAu7u7qhVq1ahh4oAIBKJ8OmnnwoUpeEwlrzcM53FdCIiIqIiDh48CADw9fUtcs7Pzw8AEB0dXeocWVlZOH78OBo3blykg10kEqFnz55Ys2YNTp06hS5dupTpuqGhoYiOjoaXl5dGcT579gwRERF444030LBhQ0RHR+PEiRMwMjJC+/bt0alTp1LviQybjZkxVo1sg0GrjiLi8kOsPRSPAK8GQodFRERVnEbFdGNjY6SlpZU6Ji0trciDSap4ymUzZUbcM52IiIgMW3BwsOrn06dP4/Tp08WOYzG9YihXTpJzmXciIiKiIuLi4gAArq6uRc7Z29vDwsJCNaYkN2/eRH5+frFzvDp3XFycqpgeFxcHCwsL2Nvblzpe0zjPnDkDhUKBunXrom/fvvjjjz8Kvadnz57YuXNnoa54ole1dLTB/L7NMO+Xi1j69zW0crRBe5fqQodFRERVmEbFdDc3N/z+++9Yvnx5sUu9Z2Vl4bfffoObm1u5A6TyYWc6ERERUYGoqCihQ6BXKIvp7EwnIiIiKio1NRUASiwqW1lZqcaUZ45Xxyl/rlmzplrj1Ynz0aNHAIA//vgDdnZ2+OWXX+Dj44MHDx5gzpw5+O233xAQEICwsLAS7ys7OxvZ2dmq18qmL7lcDrlcXuL7NKWcUxdzG6ry5nRIGweciE/Bb+cTMXXrGfw6pSNqWBa/Ja0h4Z9V7WNOdYN51T7mVH3q5EqjYvrYsWMxbtw4vP3221i1ahVcXFxU527evIkpU6bgwYMHWLhwoSbTkxZxz3QiIiKiAt7e3kKHQK+QSl4W09mZTkRERGQw8vMLPvvl5eVh9erV6NevH4CCovuOHTvQqFEj7Ny5E1999RXq1q1b7BxLlizBggULihyPiIiAmZmZzmKPjIzU2dyGqjw59TQBTphKkJSeg9GrozClWT4kXCgXAP+s6gJzqhvMq/Yxp2WXmZlZ5rEaF9P/+usv7N69G02aNEH9+vVRp04d3L9/H7du3UJubi6GDh2KsWPHajI9aVF2LjvTiYiIiABg4cKF6Nq1q2p/x+IcOnQIUVFRmD9/fgVGZpjYmU5ERERUMmWnd0nd52lpabC1tS33HK+OU/6s7nh14lSOl0gkeOuttwqNlclk8PX1RUhICE6fPl1iMT0wMBCzZs0qdI26devC19dX1T2vTXK5HJGRkejZsyekUqnW5zdE2sppyw4ZGLj6GG6kAZck9fFxr8ZajLLy4Z9V7WNOdYN51T7mVH2v2878VRoV0wFgx44d+P777/HDDz/g6tWrqr1vmjVrhvfffx+TJ0/WdGrSon+L6dwznYiIiAxbcHAwgoODSy2mx8TEYMGCBWoX0zdv3oxDhw7h9OnTuHDhAnJycrB+/Xr4+/uXeY6DBw/Cx8enxPMlzXf9+nXMmzcPBw4cQEZGBho1aoRJkyZh0qRJEIn0tzXDmJ3pRERERCV6dX/ytm3bFjqXlJSE9PR0eHh4lDqHi4sLxGJxiXurF7ffuaurK44ePYqkpKQi+6aXNF6dOBs3Lih2mpmZFfuw38bGBgDw4sWLEu9LJpMVu/WoVCrVaQFB1/MbovLmtEltG/zf4FaYsuUM1h2+g1b1quHtVrW1GGHlxD+r2sec6gbzqn3MadmpkyeN25VFIhGmTp2Ky5cv4/nz50hISMDz589x8eJFFtL1iLKYzmXeiYiIiF4vJycHEon6X0KcN28efvzxR9y5cwcODg7lisHb2xtBQUFFfrVu3brI2MuXL8PDwwO//vor3nzzTUyfPh15eXmYMmUKpk+fXq44dE35+VTOYjoRERFREcotiiIiIoqcCw8PLzSmJKampvDw8MC1a9dw586dQucUCgUiIyNhbm6Odu3aaXxddcc3aNAA9erVUz1P/q/Lly8DAJydnUu9NyKl3m4OmNy1AQDgo13/4PKDsncaEhERlYVWKqzm5uaoXbs2zM3NtTEdaZFyz3Qu805ERESEUju1c3JycOjQIdSsWVPteUNCQnD79m08fvwYkyZNKk+I6Nq1q6qL/tVfxRXTJ0+ejNTUVPzyyy/YtGkTli5dijNnzqBLly5YuXIljh49Wq5YdEnVmc5l3omIiIiK6N69O1xcXLB161acO3dOdTw1NRWLFy+GsbExRo8erTqemJiIq1evFlluPSAgAEDB0ugKhUJ1fM2aNYiPj8e7774LU1NT1fGxY8fCyMgIn3/+eaG5zp07h23btqFp06bw9PTUOE6RSKT6vDx37lzVHuoAEB0djb1798LZ2Rnu7u7qpowM2P98G8OrUQ1kyfMRsOkUnmbkCB0SERFVIRov806Vg/LhpEzKYjoREREZHhcXl0Kvv/76a6xfv77IuLy8PCQnJyMrKwsTJkxQ+zo9evTQOEZNXb9+HTExMfDx8cGbb76pOm5sbIzPPvsMXbt2xdq1a9GxY8cKj60suGc6ERERUcmMjIwQEhICPz8/eHl5YdiwYbC0tMTu3btx584dfPXVV4W6twMDA7Fhw4YiWwONGTMGYWFh2LZtG27dugVvb2/cuHEDP//8M+rXr49FixYVum6jRo0QHByMefPmoVWrVhg4cCCeP3+O7du3AwDWrl0Lsfjf54zqxgkAs2bNwh9//IFNmzbh8uXL8PLyQmJiInbv3g2ZTIaffvoJRkZ8bE1lJxGL8N2w1nh75WHcfZKJadvOInSsO4wkfCZORETlp/H/Te7du4eJEyeiQYMGMDU1hUQiKfKLH3qExz3TiYiIyJDl5+dDoVBAoVBAJBKpfv7vL6lUiubNm+PDDz/EsmXLBI05Li4O33zzDZYsWYJNmzbh/v37xY47ePAgAMDX17fIOU9PT5ibmyM6OlqXoZaLVLVnuuI1I4mIiIgMk4+PD2JjY9G5c2eEhYVh1apVqFWrFrZv347Zs2eXaQ6xWIxff/0VwcHBePz4Mb7++mscPnwY48aNw9GjR1GjRo0i7/nkk0+wefNm1KhRA6tWrcKOHTvQpUsXHDlyBJ07dy53nDKZDJGRkfj000+RmpqK77//HhEREejTpw+OHTsGHx8f9ZNFBs/GzBg/jm4LU6kEsTeS8X/h14QOiYiIqgiNqt3x8fFo3749nj59iubNmyM7OxtOTk4wMTFBfHw85HI5WrVqBRsbGy2HS+rKlnPPdCIiIjJct2/fVv0sFosxc+ZMzJ8/X7iAymDr1q3YunWr6rWRkRGmTZuG//u//yu0n3tcXBwAwNXVtcgcEokE9evXx+XLl5Gbm1vil1yzs7ORnZ2tep2WVrC/oFwuh1wu18r9vEo5p1wuh/Lj6Yts3VzLkLyaV9IO5lQ3mFftY051g3lVH3OlOx4eHti7d+9rx4WGhiI0NLTYczKZDEFBQQgKCirzdd999128++67ZR5f1jiVzMzMsHDhQixcuLDM7yF6nSb2Vvi/wS0xdetZrImJR4s61ujbqrbQYRERUSWnUTF9wYIFSE1Nxf79++Ht7Q2xWIyxY8di/vz5SExMxOTJk3H58mXs27dP2/GSmrhnOhEREVGBW7du6fWXPWvUqIEvvvgCffr0gbOzMzIyMnD06FF8/PHH+PrrryESiQp1zSv3sLS2ti52PisrK+Tn5+P58+ewtbUtdsySJUuwYMGCIscjIiJgZmamhbsqXmRkJJIeiAGIcenKVfyVfkVn1zIkkZGRQodQ5TCnusG8ah9zqhvMa9llZmYKHQIREQCgT8vauHg/Daujb+KjXefRoIYFmtW2EjosIiKqxDQqpu/btw+9e/eGt7e36phCUbA8o4ODA8LCwuDm5oa5c+dizZo12omUNJLDZd6JiIiIAABOTk5Ch1Cq5s2bo3nz5qrX5ubm6NevH9q3b4+WLVviu+++w5w5c1CzZk2tXTMwMBCzZs1SvU5LS0PdunXh6+sLKyvtP3CSy+WIjIxEz549cSriJo48vAvnBg3Ru0fR7noqu1fzKpVKhQ6nSmBOdYN51T7mVDeYV/UpV7chItIHH/o1xqUHqTgUl4yJm0/h1/c9Uc3cWOiwiIioktKomJ6cnIwmTZr8O4mRUaFvoMpkMvTs2RO//PJLuQOk8lHumc5l3omIiIiAx48fY/369Th58iSePXuGvLy8ImNEIhH2798vQHTFs7e3R79+/RASEoLjx4+jb9++AP7tSFd2qP9XWloaRCIRLC0tS5xbJpNBJpMVOS6VSnVaPJBKpTA1LvinSJ5CxEKFluj6980QMae6wbxqH3OqG8xr2TFPRKRPJGIRVgx/A2+vPIy7TzIxefNpbBrXns/IiYhIIxoV0+3s7JCRkVHo9av7UQIFBfZnz56VJzbSAi7zTkRERFTg/Pnz6NatG54+fapaVak4IpGoAqMqGzs7OwAo9BlcuVe6cu/0V+Xl5eHWrVuoX79+ifulC81YUvD5VLmSEhERERERkbbYmBkjZEw7DPjhCI7feoKg3y5i8TtuevnvPSIi0m8aVVhdXV1x8+ZN1WsPDw+Eh4cjPj4eQEHHz65du9CgQQPtREkay1Yt885iOhERERm22bNn48mTJ/jkk09w69YtyOVy5OfnF/lVXLe60I4fPw4AcHZ2Vh1TbrkUERFRZHxsbCwyMjIKbcukb6TKYnoei+lERERERKR9jWpZYsXwNyAWAdtO3MP6w7eFDomIiCohjSqsb775JqKiolSd5zNmzMDz58/RsmVLuLu7o1GjRkhKSsK0adO0GStpQLVnupR7phMREZFhO3r0KPr374+FCxfCyckJEokwn4+Sk5Nx9epVJCcnFzp++vTpYsd/++23iIqKgqurK9zd3VXHGzduDC8vL0RFRWHv3r2q4zk5Ofj0008BAOPHj9fBHWiHcolFdqYTEREREZGu+DSpibm9mwIAFv15GQevPRI4IiIiqmw0WvNx8uTJ6Nq1q+oBZNeuXbF9+3YEBwfj4sWLcHJywqJFizBhwgStBkvqU+2ZLmFnOhERERk2Y2Njna2cFBISgtjYWADAhQsXVMcOHjwIAPD09FQVtleuXIkFCxYgKCgIwcHBqjkGDhwIqVSKdu3awdHRERkZGTh27BjOnj0LGxsbbN68ucgXAH744Qd07twZ/fv3x9ChQ+Hg4IA///wTly5dwtSpU9GpUyed3K82sJhOREREREQVYZxnfVx/+Bw7TiVg2taz2PN+JzSsaSl0WEREVEloVEy3srJC+/btCx0bPHgwBg8erJWgSHtUe6ZLWUwnIiIiw+bt7Y1Tp07pZO7Y2Fhs2LCh0LHDhw/j8OHDqtev6xKfPHkywsPDERMTg5SUFIjFYjg5OWHGjBmYPXs2HB0di7ynefPmOH78OObNm4c///wTGRkZaNSoEb7//ntMnjxZOzenI8aSgr0K5VzmnYiIiIiIdEgkEmFRfzfcTs7EidtPMG7DKfwypTNszY2FDo2IiCoBjSqs3bp1Uy0dSfotW84904mIiIgA4KuvvsLFixfx1VdfaX3u0NBQKBSKEn+FhoaqxgYHB0OhUBTqSgeAOXPm4MCBA7h//z6ysrKQmZmJK1eu4Ouvvy62kK7UuHFj7Ny5EykpKcjKysL58+cxZcoUiEQird+nNrEznYiIiAxJWlpakc9/RFRxjI3EWDWyDRxtTXEnJROTt5zmF3uJiKhMNOpMP378ODp06KDtWEgHcvKUxXTumU5ERESG7fPPP0eLFi0wZ84crF69Gq1bt4aVlVWRcSKRCOvWrRMgQsMifbkNUQ4fYBEREVEVlpGRgW+++QbLly/Hs2fPWFAnElB1CxnWjXHHgB8O41j8E8z/9RIWv9NC77+ITEREwtKomN6kSRPcuXNH27GQDrAznYiIiKjAq93h8fHxiI+PL3Yci+kVg53pREREVNnFxcVh8eLFOH36NIyMjNClSxd88sknqFmzJhQKBVasWIFFixYhJSUFpqammDVrltAhExm8xvaW+G74Gxi/8RS2nbiL+nZmCPBqIHRYRESkxzQqpk+bNg1Tp07F5cuX0axZM23HRFqk2jOdxXQiIiIycLdu3RI6BHqFMTvTiYiIqBK7ceMGPDw8kJaWBoVCAQA4d+4cIiMjERsbi8GDB+PgwYMwMTHBjBkzMGfOHNSsWVPgqIkIALo3rYV5bzXDZ39cxuK/rsLR1gy93RyEDouIiPSURsV0FxcXdO3aFR06dMDEiRPh7u6OWrVqFbscipeXV7mDJM3k5uUjv+CzPJd5JyIiIoPn5OQkdAj0Cik704mIiKgSW7x4MVJTUzFx4kSMGzcOABASEoIff/wRnp6euHr1KkaOHIkvv/wS9vb2AkdLRP/1Xmdn3HuSidAjtzEz7BxqWZmgrZOt0GEREZEe0qiY3rVrV4hEIigUCixbtqzUPUXy8vI0CuzkyZMICgrCkSNHIJfL4ebmhlmzZmHIkCFlen9oaCjGjh1b4vmoqCh07dq10DFnZ+cSl6/39vbGwYMHyxq+Xsh+5cGkMTvTiYiIiEiPyF52psvZmU5ERESVUFRUFDw8PLBq1SrVsXbt2uHs2bM4deoUPvzwQyxdulTACImoNCKRCJ/2aYaEp5nYd+URJmw8hT1TOsGpurnQoRERkZ7RqJg+f/78Ugvo5RUVFQU/Pz+YmJhg2LBhsLS0xO7duzF06FDcu3cPs2fPLvNc/fr1Q+vWrYscd3Z2Lna8tbU1ZsyYUebx+ozFdCIiIjJ03bp1g7+/P0aPHq06dvz4cRw/fhzTp08vMn7p0qX48ssvkZKSUpFhGiSZtODzaTY704mIiKgSSkxMxIABA4oc9/T0xKlTpzBz5kwBoiIidUjEInw3/A0MXXMMF+6nYuz6k/h5SifYmBkLHRoREekRjYrpwcHBWg7jX7m5uZgwYQLEYjFiYmJUhfD58+fDw8MDc+fOxaBBg8q8TGf//v3h7+9f5uvb2Njo9P4qknK/dKlEBIlYd19+ICIiItJXBw8eLLIa0d9//42FCxcWW0zPysrCs2fPKiY4A2ciLdiG6EWOZitZEREREQkpJycH1tbWRY5bWVkBAJd2J6okzIyNsG5MO7zzwxHEJ2cgYONpbBrvwW1TiYhIRe/alQ8cOICbN29ixIgRhTrKra2tMXfuXOTk5GDDhg3CBViJKPef5P/4iYiIiEjfmCqL6XIW04mIiIiISDg1rUywfqw7LGVGOHH7CT7adR4KhULosIiISE9o1JmuS8p9yX19fYuc8/PzAwBER0eXeb6zZ88iJSUFubm5cHZ2Ro8ePVC9evUSx2dnZyM0NBQPHjyAlZUV3N3d0b59e/VuQk8ol8zkEu9EREREpG9MjQuK6VksphMREVEl9ccffyApKanQsVOnTgEApkyZUmS8SCTC999/XyGxEZF6GtWyxOpRbTHmpxP49dwDONqa4kO/JkKHRUREekCjYrpYLC7TnukikQi5ublqzR0XFwcAcHV1LXLO3t4eFhYWqjFl8d133xV6bWpqiqCgIMyZM6fY8UlJSRg7dmyhY+7u7ti2bRsaNGhQ6rWys7ORnZ2tep2WlgYAkMvlkMvlZY65rJRzljR3xoscAICxRKST61dFr8spaYZ51T7mVDeYV+1jTtXHXJGhUHamy/MUkOflQyrhF0CJiIiocjl16pSqeP5fq1evLnKMxXQi/da5oR0WD3DDR7vO4/uom7C3MsGojs5Ch0VERALTqJju5eVVbDE9NTUVcXFxyMjIQKtWrWBjY6P23KmpqQBQ7J5DQMG+Q8oxpalfvz5WrFgBPz8/ODo64smTJzhw4AACAwPx8ccfw8zMDNOmTSv0nrFjx6JLly5o0aIFLCwscP36dSxfvhybNm1C9+7dceHCBVhaWpZ4zSVLlmDBggVFjkdERMDMzOy1MWsqMjKy2OPxaQBghNycLPz11186u35VVFJOqXyYV+1jTnWDedU+5rTsMjMzhQ6BqEIoO9OBgqXeWUwnIiKiyiQqKkroEIhIB4a0q4uk1Cwsj7yO+b9dQnULGXq7OQgdFhERCUijYrpyKfbiZGZm4uOPP8bff/8t6INzb29veHt7q17XqVMHo0aNQps2bdCuXTsEBwdj8uTJMDL6NwVBQUGF5mjdujU2btwIANi0aRPWrl2LWbNmlXjNwMDAQufT0tJQt25d+Pr6wsrKSlu3piKXyxEZGYmePXtCKpUWOX80PgW4dBq2Vhbo3buz1q9fFb0up6QZ5lX7mFPdYF61jzlVn3JlG6KqzlgihlgE5CuArJw8WJnwvxFERERUebz63LEsli5divDwcBw4cEBHERGRtkzr1hAP07Kw5fhdzNh+DtXMjdHBpeStY4mIqGrT+p7pZmZm+O677+Du7o4PP/wQ69evV+v9yo70krrP09LSYGtrq3F8zZs3h6enJ/bt24crV67Azc3tte+ZOHEiNm3ahMOHD5daTJfJZJDJZEWOS6VSnRYQSpo/T1HQ3WMiNWIBQ026/j0zVMyr9jGnusG8ah9zWnbMk/b9dy/L0vaxPHnyZIXFZehEIhFMpRJk5OThBfdNJyIioiru6tWriI6OFjoMIioDkUiEhf1aICU9B39fSsKEDaewY1JHNHXQfsMcERHpP60X05W6dOmCzZs3q/0+5V7pcXFxaNu2baFzSUlJSE9Ph4eHR7lis7OzAwBkZGToZLy+yM4teCgpM+KSmURERGS4StrLsrh9LAEUu50R6YapsREycvKQmcNiOhERERER6Q+JWIRvhrXG6HUncOL2E4z56QR+ntIJjra6286ViIj0k86K6Y8fP0Z6erra7/P29saSJUsQERGBYcOGFToXHh6uGqOpvLw81cNUJyenMr3n+PHjAABnZ2eNryuE7Nx8AIBMymI6ERERGSbuZanfTI0LPqeyM52IiIiIiPSNiVSCtWPaYcjqo7j28DlG/3QCuyZ1QjVzY6FDIyKiCqT1Ynp+fj62bNmCsLAwtGvXTu33d+/eHS4uLti6dSumT5+O1q1bAyhY9n3x4sUwNjbG6NGjVeMTExORmpoKBwcH1RLxAHD69Okine15eXn4+OOPcePGDfj4+MDBwUF17urVq6hXrx7MzAp/s+zq1auYM2cOAGDEiBFq34+QlMV0YwmL6URERGSYyvMlTNI9U6kEQMGe6URERERERPrG2lSKDe95YMAPhxH/OAPvhZ7E1gntYWassz5FIiLSMxr9F9/FxaXY47m5uXj06BHkcjmkUimWLFmifkBGRggJCYGfnx+8vLwwbNgwWFpaYvfu3bhz5w6++uqrQh3igYGB2LBhA9avXw9/f3/V8Xbt2qFly5Zo2bIl6tSpgydPniA6OhrXr1+Ho6MjQkJCCl13+/btWL58Oby8vODk5ARzc3Ncv34df/31F+RyOQIDA+Hl5aX2/QhJ1ZluJBE4EiIiIiKiokxfPoBiZzoREREREekre2sTbBzngUGrj+LcvWeYvPkM1o5uB2Nur0pEZBA0Kqbn5+cXu5ekVCpFixYt4O7ujqlTp6J58+YaBeXj44PY2FgEBQUhLCwMcrkcbm5uWLp0KYYOHVqmOWbPno1jx44hMjIST548gbGxMRo2bIh58+Zh1qxZsLW1LXLNK1eu4OzZszh06BAyMzNhZ2eH3r17Y8qUKfD19dXoXoSU/fKhJJd5JyIiIiJ9ZPrycyr3TCciIiIiIn3WsKYl1o1xx8iQ44i+/hgzw87hu+FvQCIuWichIqKqRaNi+u3bt7UcRlEeHh7Yu3fva8eFhoYiNDS0yPGvvvpKret5e3tXuWVAc/K4zDsRERER6S/lMu/sTCciIqLKpnfv3mqNv3Dhgo4iIaKK0tbJFmtGtcW4DSfx54VEWMiM8MVAt2IbD4mIqOrgxh5VWLb85TLv7EwnIiIiIj2k3Gcwi8V0IiIiqmT+/vtvtd/DghtR5efVqAa+G/YG3t96BmGn7sHSxAifvNWUf7+JiKowjYrpCQkJOHPmDLy8vGBjY1Pk/NOnT3Ho0CG0bdsWderUKW+MpCHumU5ERERE+szkZWc6l3knIiKiyubWrVtCh0BEAnnTzQFfDGyJj3adR0jsLVibSjGtu6vQYRERkY5oVExftGgRdu7ciQcPHhR73szMDO+99x6GDRuGlStXlitA0lx27ss9043YmU5ERERE+sfUuOBz6gsW04mIiKiScXJyEjoEIhLQkHZ1kZ6Vi4V/XMayyOuwNDGCf+f6QodFREQ6oFGV9cCBA/D19YVMJiv2vEwmg6+vL/bt21eu4Kh8cl52phuzmE5EREREeki5ZzqXeSciIiIiosrmPc/6mNGjoCM9+PfL2HU6QeCIiIhIFzSqst6/fx/Ozs6ljnFycsL9+/c1mZ60hMu8ExEREf3r+fPniI+Ph1wuL3Q8LCwM7777LsaNG4czZ84IFJ1hMn25Z/oLFtOJiIiIiKgS+qC7K8Z5FnSkf7TrH+y9kChwREREpG0aFdONjY2RlpZW6pi0tDSIRCKNgiLt+LeYzs50IiIioo8++gitWrUqVExftWoVRowYgW3btmH9+vXo0qULrl69KmCUhsWUe6YTEREREVElJhKJMO+tphjSzhH5CmDatrOIvPxQ6LCIiEiLNKqyurm54ffff0d2dnax57OysvDbb7/Bzc2tXMFR+WS/7PDhMu9EREREQHR0NHr06AEzMzPVsS+++AJ16tRBTEwMduzYAYVCgf/7v/8TMErDYip9uWc6O9OJiIiIiKiSEolEWDKgJfq1ro3cfAWmbDmNqGuPhA6LiIi0RKMq69ixY5GQkIC3334b8fHxhc7dvHkT/fr1w4MHDzB+/HitBEmaycjJBQCYGXOZdyIiIqLExETUr19f9frKlSu4d+8epk+fDk9PTwwaNAhvv/02YmJiBIzSsJi9XOY9i53pRERERERUiUnEIiwb3Aq93ewhz1Ng4qbTiI1LFjosIiLSAo2L6QMHDkRkZCSaNGmCxo0bo1u3bmjcuDGaNm2KyMhIDBkyBGPHjtV2vKSGlPQcAEA1c2OBIyEiIiISXnZ2NoyN//1cFB0dDZFIBF9fX9UxFxcX3L9/X4jwDJKJMZd5JyIiIiKiqsFIIsa3w95Az2a1kJObj/EbT+LozRShwyIionLSeP3vHTt24LvvvkPDhg0RFxeHgwcPIi4uDo0aNcL333+Pbdu2aTNO0sCTjIJiup2FTOBIiIiIiITn6OiI8+fPq17/8ccfqFatGlq2bKk6lpKSAgsLCyHCM0jKPdO5zDsREREREVUFUokYK0e8gW5NaiJLno9xG07i5O0nQodFRETloHExXSQSYerUqbh8+TKeP3+OhIQEPH/+HBcvXsTkyZO1GSNpQKFQ4GkmO9OJiIiIlN58801ERETgf//7H+bNm4e///4bffv2LTTm+vXrqFevnkARGh7ldkRZLKYTEREREVEVITOS4Id326CLqx0yc/Iwdv1JnLn7VOiwiIhIQxoX019lbm6O2rVrw9zcXBvTkRakZeVCnqcAwGI6EREREQAEBgaiXr16WL58ORYvXoxatWph4cKFqvOPHj3C4cOH4eXlJWCUhsVEymXeiYiIiIio6jGRSrB2dDt0alAd6dm5GLPuBM7deyZ0WEREpAGNiumHDx/GrFmzkJSUVOz5xMREzJo1C8eOHStXcKS5lPRsAIC5sUT1kJKIiIjIkNnb2+PSpUv47bff8Ntvv+HKlStwdHRUnU9OTsb//d//ISAgQMAoDQuXeSciIiIioqrKRCpByJh28HCuhufZuRgVcpwd6kRElZBGxfTly5fj999/h729fbHnHRwc8Mcff+Drr78uV3CkOeV+6dW5XzoRERGRiqmpKfr06YM+ffrAysqq0LlmzZrhgw8+QJMmTQSKzvColnlnZzoREREREVVBZsZGWD/WHR71Cwrqo9edwCnuoU5EVKloVEw/efIkPD09Sx3j5eXFznQBpWRwv3QiIiKi/8rPzy9y7OjRo/jkk0+waNEiJCQkCBCV4TI1Zmc6ERERERFVbeYyI4SOdUdHl4Il30f/dALH41OEDouIiMpIo2L6o0ePUKdOnVLH2Nvb49GjRxoFReWn6kxnMZ2IiIgIADBz5kyYmZnh2bNnqmO7du1Cly5dsGTJEsyfPx9t2rTRqKC+efNmTJw4Ee3atYNMJoNIJEJoaKhac8TGxmL27Nlo27YtqlevDhMTEzRp0gRz5swpFPOrnJ2dIRKJiv3VtWtXte+joim3I8rNVyAnt+gXHYiIiIiIiKoCM2Mj/OTvDs+GdsjMyYP/+pM4epMFdSKiysBIkzfZ2Njg7t27pY65c+cOLCwsNAqKyk+5Z3p1CxbTiYiIiAAgKioK3bp1g42NjerY/PnzYW1tjW+//RZJSUkIDAzEV199hW+++UatuefNm4c7d+7Azs4ODg4OuHPnjtrxDRo0CMnJyfD09MTo0aMhEolw8OBBfPnll9i1axeOHDmCWrVqFXmftbU1ZsyYUeS4s7Oz2jFUNOUy70BBd7qxkUbf9SUiIiIiItJ7psYFe6gHbDqNmOuPMTb0BNaNcUfnhnZCh0ZERKXQqJjeoUMH7NmzB/fu3UPdunWLnL979y5++eUXdOvWrdwBkmb+Xeade6YTERERAcC9e/fg7e2ten3r1i1cvXoVQUFBGDlyJADg0KFD+Pvvv9WeOyQkBK6urnBycsIXX3yBwMBAteeYOXMmRo0ahdq1a6uOKRQKvP/++1i1ahUWLlyI77//vsj7bGxsEBwcrPb19IFUIoaRWITcfAWy5HmwNpUKHRIREREREZHOmEgl+HFUW0zefBpR1x7jvdCTWDu6Hbwa1RA6NCIiKoFGrR+zZs1CZmYmOnfujI0bNyIxMREAkJiYiA0bNqBz58548eIFZs+erdVgqey4zDsRERFRYRkZGTA3N1e9jo6Ohkgkwptvvqk61qxZM42Wee/RowecnJzKFd+cOXMKFdIBQCQS4dNPP1XFWxWZvlzqPTOH+6YTEREREVHVZyKVYPWotujRtCayc/MxfuMpRF5+KHRYRERUAo060728vLB8+XLMnj0bY8eOBVDwoE+hUAAAxGIxvv32W3h5eWkvUlLLE1VnOovpRERERABQu3ZtXLt2TfX677//hoWFBdq2bas6lpaWBplMv1b2kUoLurWNjIr/6J6dnY3Q0FA8ePAAVlZWcHd3R/v27SsyxHIxMZbgeXYuXrCYTkREREREBkJmJMEP77bFtG1nEH7pISZtPo3lQ1qhX+s6QodGRET/oVExHQA++OAD+Pj4YPXq1Th58iRSU1NhY2MDDw8PTJo0CS1atEB2drbePYw0FMnpLzvTuWc6EREREQDA29sb27Ztw8qVK2FiYoKff/4Z/fv3h0Ty777dN2/ehKOjo4BRFvXTTz8BAHx9fYs9n5SUpPqCq5K7uzu2bduGBg0alDp3dnY2srOzVa/T0tIAAHK5HHK5vDxhF0s556tzm0oLFstKf5Gtk2saguLySuXDnOoG86p9zKluMK/qY66IiNRnbCTG9yPa4MNd57Hn7H3MCDuHzJw8DPeoJ3RoRET0Co2L6QDQsmVL/PDDD0WOnzlzBu+//z62b9+OlJSU8lyCNPQko+ChaHXumU5EREQEAPjkk0/wyy+/4IMPPoBCoYC5uXmhvcafP3+OmJgY+Pv7Cxbjf507dw4LFixAzZo18dFHHxU5P3bsWHTp0gUtWrSAhYUFrl+/juXLl2PTpk3o3r07Lly4AEtLyxLnX7JkCRYsWFDkeEREBMzMzLR6L6+KjIxU/SzPkgAQ4eDho0i8qNDZNQ3Bq3kl7WBOdYN51T7mVDeY17LLzMwUOgQiokrJSCLGssGtYC6TYPOxuwj8+QIysnMxvouL0KEREdFL5Sqmv+rZs2fYvHkz1q1bh/Pnz0OhUMDU1FRb05MaFArFv8u8szOdiIiICADQsGFDXL58Gbt37wYA9O3bt9A+53FxcZg4cSJGjBghVIiFxMfH46233kJeXh62b98OOzu7ImOCgoIKvW7dujU2btwIANi0aRPWrl2LWbNmlXiNwMDAQufT0tJQt25d+Pr6wsrKSkt38i+5XI7IyEj07NlTtXz9T/eOIzEzFS1bt0X3pjW1fk1DUFxeqXyYU91gXrWPOdUN5lV9ytVtiIhIfWKxCJ/1awFzmRHWRMdj0Z9X8DwrFzN6uEIkEgkdHhGRwSt3MX3fvn1Yt24dfv31V2RnZ0OhUKBjx44YO3Yshg4dqo0YSU3Ps3Mhzyvo6qnOPdOJiIiIVBwcHDB16tRiz7Vp0wZt2rSp4IiKd+vWLfj4+CA5ORm7d++Gj4+PWu+fOHEiNm3ahMOHD5daTJfJZMVuyySVSnVaPHh1fnNZwT9JchQiFizKSde/b4aIOdUN5lX7mFPdYF7LjnkiIiofkUiEj3s1gZWJFP8Xfg3f7o9DenYu5r3VlAV1IiKBaVRMv3fvHtavX4/169fj7t27UCgUqFOnDu7fvw9/f3/Vvo4kjJSX+6WbG0tgIpW8ZjQRERGR4cnNzcW1a9eQlpYGKysrNG7cGEZGWlu0qVzi4+Ph4+ODxMRE7Ny5E3369FF7DmUXe0ZGhrbD0zrTl59Xs3LyBI6EiIiIiIhIOCKRCO/7NIS5sQTBv1/GuthbSM/KxefvtICRRCx0eEREBqvM/wWWy+XYuXMnevXqBRcXFwQHByM5ORnvvvsuIiIicOfOHQDQm4eQhky5XzqXeCciIiIq7MmTJ5gwYQKsra3RsmVLeHp6omXLlrCxsUFAQABSUlIEje/VQnpYWBj69eun0TzHjx8HADg7O2sxOt0wMS4opmfm5AocCRERERERkfD8O9fHl4NaQiwCwk7dw5QtZ5Al55ePiYiEUubKd+3atfHkyROIRCL4+Phg9OjRGDBgAMzNzXUZH2lA2Zlezbzokp1EREREhurJkyfo0KEDbty4gWrVqqFLly5wcHBAUlISTp06hZCQEERHR+Po0aOoVq2azuJITk5GcnIy7OzsCu2Drlza/cGDBwgLC8M777xT6jxXr15FvXr1YGZmVuT4nDlzAEBv9n8vjdnLzvQX8nyBIyEiIiIiItIPQ9rVhZWJEaZvP4eIyw8x+qcTWDu6HaxNua0GEVFFK3MxPSUlBWKxGDNnzsRHH32EGjVq6DIuKocnGQXFdO6XTkRERPSvzz77DDdu3MCHH36I+fPnF/pSaGZmJj777DMsXboUn3/+OZYtW6bW3CEhIYiNjQUAXLhwQXXs4MGDAABPT0+MHz8eALBy5UosWLAA6SfulAAAkCZJREFUQUFBCA4OVs3h4+ODu3fvokOHDjh//jzOnz9f5Dqvjt++fTuWL18OLy8vODk5wdzcHNevX8dff/0FuVyOwMBAeHl5qXUfQjA1VhbT2WlBRERERESk1KuFAzaMNUbAxlM4cesJhq45io3veaCmlYnQoRERGZQyF9P9/f2xc+dOLF++HN999x38/PwwatQo9OvXD8bGLNrqkxQW04mIiIiK+PXXX9G1a1csXbq0yDkzMzMsWbIEx48fx549e9QupsfGxmLDhg2Fjh0+fBiHDx9WvVYW00ui3Dbp2LFjOHbsWLFj/lt8v3LlCs6ePYtDhw4hMzMTdnZ26N27N6ZMmQJfX1+17kEoyj3TX3CZdyIiIiIiokI6NqiOsIkdMWb9CVxNeo4Bq45g07j2qG/HFYOJiCpKmfdM/+mnn5CYmIg1a9agTZs2+OOPPzBs2DDUqlULEydOVHXikPBUy7xzz3QiIiIilQcPHqBjx46ljunYsSMePHig9tyhoaFQKBQl/goNDVWNDQ4OhkKhKFQYB1Dq+5W/XuXt7Y2wsDBcv34dqampkMvlSExMxC+//FJpCukAYGZc8P3ezBx2phMREREREf1Xs9pW2D2pE5yrmyHh6QsMWnUEFxJShQ6LiMhglLmYDgAWFhYYP348jh49ikuXLmHGjBkwNjbG2rVr4e3tDZFIhGvXrqm6akgYTzKyAbAznYiIiOhV1tbWr/2ceufOHVhbW1dQRAQA5rKCznQW04mIiIiIiIpXr7oZdk7qhBZ1rJCSkYNhPx7FobjHQodFRGQQ1Cqmv6pp06ZYtmwZ7t+/jx07dsDX1xcikQiHDh1CgwYN0L17d2zatEnjwE6ePInevXvDxsYG5ubm6NChA3bs2FHm94eGhkIkEpX4S7l/pbavqw/+XeZdJnAkRERERPrD29sbO3fuxL59+4o9v3//fuzcuRNdu3at2MAMnLIzPSOby7wTERER/Zc2nlVmZ2dj4cKFcHV1hYmJCWrXro2AgAA8evSoxPds2bIFHh4eMDc3h62tLfr06YMzZ87oJM6jR49CIpFAJBLhiy++UOveiAxJDUsZtk3ogM4NqyMjJw9j15/ErtMJQodFRFTllXnP9BInMDLCoEGDMGjQICQkJGD9+vUIDQ1FVFQUDh48iFGjRqk9Z1RUFPz8/GBiYoJhw4bB0tISu3fvxtChQ3Hv3j3Mnj27zHP169cPrVu3LnLc2dlZp9cVEpd5JyIiIioqKCgIf/75J/z8/NC7d294e3ujVq1aePjwIQ4ePIi9e/fCzMwM8+fPFzpUg8LOdCIiIqLiaeNZZX5+Pvr164fw8HB06NABAwcORFxcHEJCQrB//34cO3YMNWrUKPSezz//HPPmzYOTkxMmTZqE58+fY/v27ejUqRP279+Pzp07ay3OzMxMjBkzBqampsjIyNAsUUQGxNJEip/83fG/nefx+z8P8L+d/+D+0xeY3r2h0KEREVVZ5S6mv8rR0RGffvopPv30U+zfvx8//fST2nPk5uZiwoQJEIvFiImJURXC58+fDw8PD8ydOxeDBg2Ck5NTmebr378//P39K/y6Qnqi6kxnMZ2IiIhIqXnz5ggPD4e/vz/+/PNP/PnnnxCJRKq9yBs0aIDQ0FA0b95c4EgNi7IzPZ2d6UREREQq2npWuWHDBoSHh2P48OHYsmULRCIRAGD16tWYPHky5s2bhzVr1qjGx8XFITg4GI0aNcKJEydUWyBNmTIFHTp0wIQJE3Dx4kWIxWKtxDlnzhw8evQIgYGBmDdvXnlSRmQwZEYSfDu0NRxtTbHq4E18ve867j3NxII+TYQOjYioStJ4mffX6d69O7Zs2aL2+w4cOICbN29ixIgRhTrKra2tMXfuXOTk5GDDhg1ajFTY62qbQqFQFdOrsZhOREREVIinpyfi4uIQExODb7/9FgsXLsS3336LmJgYXL9+vUiXDemeubGyM53FdCIiIiIlbT2rXLt2LQBgyZIlqkI6AEycOBEuLi7YsmULXrx4oTq+fv165Obm4pNPPlEV0gGgdevWGD58OK5cuYLY2FitxBkVFYXvv/8ey5cvR506dV57L0T0L7FYhDm9muDzd1pALAJ2nU7AhM1n8IL/rCIi0jqtdqZrg3Ivc19f3yLn/Pz8AADR0dFlnu/s2bNISUlBbm4unJ2d0aNHD1SvXl3n1xVKenYucvLyAXDPdCIiIqJXvffee3Bzc8PMmTPh6ekJT09PoUMiAGYy5Z7pXOadiIiISEkbzyqzsrJw/PhxNG7cuEhnuEgkQs+ePbFmzRqcOnUKXbp0KdN1Q0NDER0dDS8vr3LF+fz5c4wdOxa+vr547733EBoaWuq9EFHx3m3vhNrWpnh/6xkcufkEtxIl6OSdhXp2UqFDIyKqMvSumB4XFwcAcHV1LXLO3t4eFhYWqjFl8d133xV6bWpqiqCgIMyZM0en1xWKcr90M2MJTF92+RARERERsHXrVsycOVPoMOg/2JlOREREVJQ2nlXevHkT+fn5xc7x6txxcXGqYnpcXBwsLCxgb29f6vjyxjlz5kw8ffpU1TmvjuzsbGRnZ6tep6WlAQDkcjnkcrna872Ock5dzG2omFPt8mxgi63j3DF+0xkkpudg0JpjWDuqDZo5WAkdWqXHP6u6wbxqH3OqPnVypXfF9NTUVAAotIzQq6ysrFRjSlO/fn2sWLECfn5+cHR0xJMnT3DgwAEEBgbi448/hpmZGaZNm6bV6+rDB7lHqZkAgGpmUv6l0QD/g6MbzKv2Mae6wbxqH3OqPuZKdxo0aIDExEShw6D/UHWm57AznYiIiEhJG88qyzLHq+OUP9esWVOt8erGuXfvXqxbtw5r1qxB3bp1S72H4ixZsgQLFiwocjwiIgJmZmZqz1dWkZGROpvbUDGn2vV+I2DNFQmSnudg8OqjGOWaj5bVFEKHVSXwz6puMK/ax5yWXWZmZpnH6l0xXVu8vb3h7e2tel2nTh2MGjUKbdq0Qbt27RAcHIzJkyfDyEh7KdCHD3IXnogASCCWv8Bff/2ls2tWdfwPjm4wr9rHnOoG86p9zGnZqfNBjtTz3nvv4YsvvsD9+/e5J6MesTAu+Dyek5sPeV4+pBKxwBERERERka48ffoU48ePR/fu3REQEKDRHIGBgZg1a5bqdVpaGurWrQtfX19VwV+b5HI5IiMj0bNnT0ilXDpbG5hT3ZDL5TCRROK35Bo4euspfrouwewergjo4gyRSCR0eJUS/6zqBvOqfcyp+pQN0WWhd8V05bcYS/pmZVpaGmxtbTWev3nz5vD09MS+fftw5coVuLm5ae26+vBBLuN0AnDtMlzq1EDv3m20fs2qjv/B0Q3mVfuYU91gXrWPOVWfOh/kSD0DBw5EVFQUOnXqhI8++gju7u6oVatWsQ8V6tWrJ0CEhunVrYkyc/JgbcpiOhEREZE2nlWWZY5Xxyl/Vne8OnHOmjULqampCAkJKTX20shkMshksiLHpVKpTv/dqev5DRFzqn1mRsBPY9piSXgcNh69g68i4xCfnInFA9xgIuW2sJrin1XdYF61jzktO3XypHfF9Ff33mnbtm2hc0lJSUhPT4eHh0e5rmFnZwcAyMjI0Op19eGD3NMXBctj2lma8C9MOfA/OLrBvGofc6obzKv2MadlxzzpjouLC0QiERQKBaZPn17iOJFIhNxc7t9dUYyNxDCWiJGTl4/MnFxYm/LvABEREZE2nlW6uLhALBaXuLd6cfudu7q64ujRo0hKSiqyb3pJ49WJ8+zZs8jIyED9+vWLjSkwMBCBgYH44IMP8M0335R6f0RUPCOJGAv7tYBrTQsE/34ZP5+9j9spGVgzqh1qWBatXxARUen0rpju7e2NJUuWICIiAsOGDSt0Ljw8XDVGU3l5eTh16hQAwMnJqcKuW1GeZOQAAKqbGwscCREREZF+GT16NJe201NmMglyMvORkc0vMRAREREB2nlWaWpqCg8PDxw7dgx37twp9CxUoVAgMjIS5ubmaNeuXaHrHj16FBERERg9evRrr6tunAMGDCh0PaW4uDjExMTA3d0dLVu2RMeOHUu9NyJ6vVEdnVHfzgJTtpzGmbvP0P/7wwgZ0w5NHbS/ii4RUVWmd8X07t27w8XFBVu3bsX06dPRunVrAAVLBS1evBjGxsaFPsglJiYiNTUVDg4OhZYYOn36dJFvQ+bl5eHjjz/GjRs34OPjAwcHB42vq69UxXQLFtOJiIiIXhUaGip0CFQCc2MjPMuUIyM7T+hQiIiIiPSCtp6RBgQE4NixYwgMDMSWLVtUXy5ds2YN4uPjERAQAFNTU9X4sWPH4quvvsLnn3+Ofv36qeY6d+4ctm3bhqZNm8LT01PjOOfPn1/s/YaGhiImJgYDBgzAxx9/XL7kEZGKp6sdfnm/M8ZtOIVbyRkYuOoIvh32Bno2qyV0aERElYbeFdONjIwQEhICPz8/eHl5YdiwYbC0tMTu3btx584dfPXVV3B2dlaNDwwMxIYNG7B+/Xr4+/v/P3v3Hdfktf8B/POEhDDDnrJxK25xoKJVgaqtte62Vjocba23V29vr17r+LXVemunvbfLVmitVVvt1oIL3HtvHCAyZBNmCOT5/YFEIyDDhBD4vF+vvCpPTs7zfb6J9Jjvc87RHu/Tpw+6deuGbt26oU2bNsjJyUF8fDyuXLkCLy+vavvyNPS8zVX2nWK6ozWXayEiIiIi02B1Z9/0ojLOTCciIiIC9Pcd6fTp07Fx40b88MMPuHHjBkJDQ3H16lVs2bIF/v7+ePvtt3XO2759eyxduhSLFi1C9+7dMX78eBQUFGDDhg0AgK+++goSiaTRcRJR0wtwscEvL4fg5fXHsf9qNmZ+dwz/DO+I2aEBXL2NiKgeJHU3aXrDhg3Dvn37EBISgo0bN+Kzzz6Dm5sbNmzYgPnz59erj/nz58PW1hbbt2/HBx98gPXr18PS0hKLFi3CmTNnEBAQYJDzGlt2oQoAl3knIiIiqvLOO+9g4cKFUKvVtbYpKyvDwoUL8e677zZhZFTFSl55j28xZ6YTERERaenju0qJRIJff/0VS5cuRWZmJj788EPs378fL7zwAg4ePAgXF5dqr/n3v/+NdevWwcXFBZ999hk2bdqEwYMH48CBAwgJCTFInERkWHZWMkQ9F4xn+vtAFIGVf13C3A2nUMwbmomI6tTsZqZXCQ4OxrZt2+psFxUVVeOSnatWrTLoeZurHO3MdBbTiYiIiHbs2IHFixfjP//5D2QyWa3tzM3N4ezsjNdffx39+vXDsGHDmjBKsubMdCIiIqIaPex3pAAgl8uxZMkSLFmypN7nffrpp/H000/Xu/3DfqcaGRmpM6OeiPRPZibB208EoYObLZb9fgG/n05Fwu0CfDGtN3ydrI0dHhFRs9UsZ6ZT44iiqF3mnXumExEREQHffvstHBwcMGfOnDrbvvLKK3B0dMTatWubIDK6l5X5nZnpZZyZTkREREREZEjTBvhh/Yz+cLaR41J6AR5bvQ9xlzOMHRYRUbPFYnoLUlRWgbJyDQDAiXumExEREeHAgQMYMWIE5PK6x0ZyuRwjRozA/v37myAyupe1/M7MdBVnphMRERERERlasL8j/nh1EHr62ENZWo7noo7iv7uvQhRFY4dGRNTssJjeguTemZUul0pgeWepTCIiIqLWLDU1FQEBAfVu7+/vj7S0NANGRDWxvrNnehH3TCciIiIiImoS7nYW2DCzP57qV7mP+nsxlzF73XEUlKqNHRoRUbPCYnoLUrUsZtWXkUREREStnUQigVpd/y8C1Go1JBIOkZta1Z7pxdwznYiIiIiIqMnIpWZYPi4I7z4ZBHMzCWLO38YT/92Pa5mFxg6NiKjZ4DeFLUjVl4+WMs5KJyIiIgIAT09PnDt3rt7tz507hzZt2hgwIqpJ1Z7pRSymExERERERNbkpwT7YOKs/3BUWuJZZhLGf7sdf59KNHRYRUbPAYnoLUnJnZroVl3gnIiIiAgAMHjwYu3btQmJiYp1tExMTsWvXLgwZMsTwgZGOqj3Ti7nMOxERERERkVH09HHA768OQrC/IwpV5Zi97jje/uMC1BUaY4dGRGRULKa3ICVqFtOJiIiI7vXKK69ArVZjwoQJyMrKqrVddnY2Jk6ciPLycrz00ktNGCEBnJlORERERETUHLjYyvH9i/3w4iB/AMCafTcw6YuDSMkrMXJkRETGw2J6C1K1Z7oli+lEREREAIBevXrhtddew4kTJ9C5c2csXrwYu3fvRkJCAhISEhAXF4c333wTnTt3xvHjx/H3v/8dvXr1MnbYrY52ZnoZZ6YTEREREREZk8xMgkVjOuPLab2hsJDi5M08jP5kL3Zdum3s0IiIjEJq7ABIf+4u8863lYiIiKjK+++/DwsLC7z33nt455138M477+g8L4oizMzMsGDBArz99ttGirJ1085MV3FmOhERERERUXMQ1sUdf3ooMGf9CZy+lY/no45hdmgg/hHWHlIzztMkotaDVdcWpPjOspicmU5ERER0lyAIWL58OV544QWsXbsWBw4cQHp6OgDA3d0dISEhiIyMRGBgoJEjbb2stcV0zkwnIiIiIiJqLrwdrbBp9gCs2HoJUQcS8Xn8NRxPysHqqb3gbmdh7PCIiJoEi+ktSHHVnukyFtOJiIiI7hcYGMiZ582U1Z1l3rlnOhERERERUfMil5ph6eNdEOzviDd+OoOjibkY9clefDS5B4a0dzF2eEREBse1OFqQu8u8s5hORERERKajamY690wnIiIiIiJqnkYFeeD3Vwehs4cCOUVlmL72CN7ddgll5Rpjh0ZEZFAsprcgVV8+WrCYTkREREQmxLpqZjr3TCciIiIiImq2/JytseXlgXi6nw9EEfg8/homfH4AN7KKjB0aEZHBsJjeglQV061kXL2fiIiIiExH1cx0VbkG5RWc1UBERERERNRcWcjM8M64IHz+TG/YW8lw5lY+Rn+yF5uOJUMURWOHR0SkdyymtyAld/aY5DLvRERERGRKqvZMB4BiNZd6JyIiIiIiau4iurpj298GY0CAE4rLKvDPn85gzg8nkV+iNnZoRER6xWJ6C1I1M92SxXQiIiIiMiHmZhJIJQIAoFjFYjoREREREZEp8LCzxLoX++GfER0glQj480waRn28F0cTc4wdGhGR3rCY3oKU3JnFw5npRERERGRKBEHQjmGLyrhvOhERERERkakwkwh4eWhbbH5pIPycrJCSV4LJXxzEB9uvcBsvImoRWExvQUrKWEwnIiIiItNkLa/cN71IxWI6ERERERGRqenubY8/5g7GhN5e0IjAJzsTMPGLg7ieWWjs0IiIHgqL6S3I3WXepUaOhIiIiIioYapuCC1kMZ2IiIiIiMgk2cilWDWxOz6Z2hO2FlKcvJmHUZ/sRdT+G9BoRGOHR0TUKCymtyBc5p2IiIjIeNatW4dZs2ahT58+kMvlEAQBUVFRDe5Ho9Fg9erVCAoKgqWlJVxcXDB16lRcv3691tfExMQgNDQUtra2UCgUGDZsGHbu3PkQV9P0bC1kAICCUhbTiYiIiIiITNnj3T0R89oQDGrrjFK1Bkt/v4Bnvj6MlLwSY4dGRNRgLKa3IMV39pe0lLGYTkRERNTUFi1ahC+//BJJSUnw8PBodD+zZs3C3LlzIYoi5s6di4iICGzZsgV9+/ZFQkJCtfbr1q1DREQELl68iMjISEyfPh3nz5/HyJEj8dNPPz3MJTUpR2tzAEBuUZmRIyEiIiIiIqKH5WlviW+fD8b/je0CC5kEB65lI+LDPfjxWDJEkbPUich0sJjegtxd5p3FdCIiIqKmtmbNGiQmJiIzMxOzZ89uVB+7d+/GmjVrMGTIEJw4cQIrV67Ed999h19++QU5OTmYM2eOTvvc3Fy8+uqrcHZ2xokTJ7B69WqsXr0aJ06cgJOTE1566SUUFBTo4/IMzt6qcmZ6brHayJEQERERERGRPkgkAp4d4IdtfxuCXj72KFCV4/WfzmDGt8eRWaAydnhERPXCYnoLUlLGZd6JiIiIjGXEiBHw9fV9qD6++uorAMBbb70Fc3Nz7fFHH30UQ4cORWxsLG7evKk9/uOPPyIvLw+vvvoqvLy8tMe9vLwwZ84cZGVl4eeff36omJqKo9WdmenFnJlORERERETUkvg7W+PH2QPxz4gOkJkJ2HHxNsI+jMfWs2nGDo2IqE4sprcQZeUalGsql0axkkmNHA0RERERNUZcXBysra0REhJS7bnw8HAAQHx8vE57AAgLC6tX++bMgcu8ExERERERtVhmEgEvD22L3+YMQicPBXKL1Xj5+xN4Zf0JzlInomaNVdcWompWOsBl3omIiIhMUVFREdLS0tC1a1eYmVUfz7Vr1w4AdPZNr/pz1XN1tb+fSqWCSnX3SwulUgkAUKvVUKv1v9x6VZ819W0rr7zPN6dIZZBzt2QPyis1DnNqGMyr/jGnhsG8NhxzRURE9dXJQ4FfXwnBxzuv4PP46/jzTBr2X83Cksc644kebSAIgrFDJCLSwWJ6C1GsLgcASCUCzKVccICIiIjI1OTn5wMA7OzsanxeoVDotKvrNTW1v9+KFSuwbNmyasdjY2NhZWVVz8gbbvv27dWO3cgWAJjhekoGtm7darBzt2Q15ZUeDnNqGMyr/jGnhsG81l9xcbGxQyAiIhNiLpXg9fCOeLSrB17/6Qwupinx942n8eupVLwzLght7C2NHSIRkRaL6S1E8Z2Z6ZyVTkRERET1tWDBAsybN0/7s1KphLe3N8LCwrTFeH1Sq9XYvn07Ro4cCZlMpvOc040crL1yDILcGqNGDdL7uVuyB+WVGoc5NQzmVf+YU8NgXhuuanUbIiKihujaxg6/zQnBl3uu4+MdCYi7nImwD+Lxr1Gd8HSwDyQSzlInIuNjMb2FqFrm3YrFdCIiIiKTVDW7vLaZ5FVfUt87C/3e1zg5OdXZ/n5yuRxyubzacZlMZtDiQU39uygqZ8LnlZSzcNFIhn7fWiPm1DCYV/1jTg2Dea0/5omIiBpLZibBK8PaIryLG/750xmcuJmHN385h99Pp2Ll+G7wd7Y2dohE1MpxPfAWokRdVUzn/RFEREREpsja2hoeHh64ceMGKioqqj1f0/7oD9oX/UH7qTdHDlaVX8LnFZdBoxGNHA0RERERERE1pbautvhx9kAsfawzrMzNcORGDiI+2oPP4q5BXaExdnhE1IqxmN5CaJd5l3FmOhEREZGpCg0NRVFREfbv31/tuZiYGADAkCFDdNoDlXuc19a+qk1zZ29lDgDQiICyVG3kaIiIiIiIiKipmUkERIb4I+a1IRjU1hmqcg1W/nUJYz7Zh2OJOcYOj4haKRbTW4iSsnIA3DOdiIiIyBRkZWXh0qVLyMrK0jk+c+ZMAMCbb76JsrIy7fFt27YhLi4OYWFh8PX11R6fNGkS7OzssHr1aty6dUt7/NatW/j000/h7OyMcePGGfhq9MNcKoGNvHKVpZyisjpaExERERERUUvl7WiF714IxnsTusHBSobLtwsw4fOD+NfmM8jlvxeJqIlxTfAWoph7phMREREZ1Zo1a7Bv3z4AwNmzZ7XH4uLiAACDBg3Ciy++CAD49NNPsWzZMixZsgRLly7V9jFs2DC8+OKLWLNmDXr16oXRo0cjLS0NGzduhKOjI1avXq1zTgcHB3z66aeYNm0aevXqhcmTJwMANm7ciOzsbGzcuBG2trYGvnL9sbeSoVBVjtxizkwnIiIiIiJqzQRBwMQ+3hjRyQ0rtl3EpmO3sOFoMmIv3MbCUZ0wvlcbCIJg7DCJqBVotjPTjx49ilGjRsHe3h7W1tbo378/Nm3a1Oj+cnNz0aZN5S/XiIiIGtsIglDrIzIystHnbgpc5p2IiIjIuPbt24fo6GhER0fjxIkTAID9+/drj1UV2uvyxRdf4OOPPwYAfPzxx9i6dSvGjRuHI0eOoH379tXaP/PMM9i2bRs6duyItWvXIioqCp07d0ZsbCwmTpyovwtsAo7WlUu95xVzpgEREREREREBDtbm+M+E7tg0awDaudogp6gM//jxNKZ8eQhXMwqMHR4RtQLNcmb67t27ER4eDgsLC0yZMgW2trbYvHkzJk+ejOTkZMyfP7/Bfc6ZMwf5+fl1tvP19a2xcN6jR48Gn7MplXBmOhEREZFRRUVFISoqql5tly5dqjMj/V4SiQRz587F3Llz633uiIiIWm8YNSVV+6ZzmXciIiIiIiK6V7C/I/6cOxhf77uBj3deweEbOXj0472YNSQQcx5pCwtONCQiA2l2xfTy8nLMmDEDEokEe/bs0RaxFy9ejODgYCxcuBATJkzQ2SuyLps3b8b69evx6aefYs6cOQ9s6+fnV+sXm82Zdma6ebN7S4mIiIiI6sXBSgYAyOMy70RERERERHQfc6kELw0NxJhuHljy23nsupSBT3dfxc8nU7BodCdEdHXn0u9EpHfNbpn3Xbt24dq1a3jqqad0ZoPb2dlh4cKFKCsrQ3R0dL37y8zMxEsvvYRp06Zh9OjRBoi4eShWlwPgzHQiIiIiMl0Od2am53KZdyIiIiIiIqqFt6MVvp7eB5893QuedhZIySvBS9+fwDNfH0bCbS79TkT61eymMcfFxQEAwsLCqj0XHh4OAIiPj693f7Nnz4aZmRk+/vjjei3znpeXhy+//BJZWVlwdHRESEgIgoKC6n0+Y+Ey70RERERk6lhMJyIiIiIiovoQBAGPBnkgtIMLPo+7hs/3XMf+q9mI+Hgvpg/ww2sj20FhITN2mETUAjS7YnpCQgIAoF27dtWec3d3h42NjbZNXdatW4ctW7bgl19+gYODQ72K6adPn8asWbN0jkVERCA6Ohqurq4PfK1KpYJKpdL+rFQqAQBqtRpqtf6XqqzqU61Wo0hV+We5mWCQc7UW9+aU9Id51T/m1DCYV/1jThuOuaLWzNG68ouO3CL+PSAiIiIiIqK6WZlLMS+sAyb09sbbf15A7IXb+Gb/Dfx2OgX/DO+ICb29IJFw6XciarxmV0yvKnjb2dnV+LxCoahXUTw1NRVz587F1KlTMXbs2Hqde/78+Rg/fjzat28Pc3NznDt3Dm+99Ra2bduGMWPG4ODBgzAzq33m94oVK7Bs2bJqx2NjY2FlZVWvGBpj+/btuJ4kASDBjYRL2Fp40WDnai22b99u7BBaJOZV/5hTw2Be9Y85rb/i4mJjh0BkNPacmU5ERERERESN4ONkhS+f7YM9VzKx9PfzuJ5ZhH9uPoPvDydh6eNd0NPHwdghEpGJanbFdH158cUXIZPJ8Mknn9T7NatWrdL5ecCAAfjjjz/wyCOPID4+Hr/++iuefPLJWl+/YMECzJs3T/uzUqmEt7c3wsLCoFAoGn4RdVCr1di+fTtGjhyJn7PPAtlZ6N0jCKN6e+n9XK3FvTmVybgEjL4wr/rHnBoG86p/zGnDVa1sQ9QacZl3IiIiIiIiehhD2rvgr78NQfSBRHy8MwGnb+Vj3P8OYGwPT7we3gFeDoab+EhELVOzK6ZXzUivbfa5UqmEg8OD7yCKjo7Gtm3b8OOPP8LZ2fmh4pFIJJgxYwbi4+Oxf//+BxbT5XI55HJ5teMymcygBQSZTIbScg0AwMZSzmKFHhj6PWutmFf9Y04Ng3nVP+a0/pgnas0cqpZ5L+Yy70RERERERNQ45lIJZgwJwNienvjPX5ex+cQt/HoqFdvOpeOFQf54eWggbLmfOhHVk8TYAdyvaq/0mvZFT09PR2FhYY37qd/r5MmTAICJEydCEATtw9/fHwAQExMDQRDQo0ePesVUVZAvKiqq72U0uZKyCgCAlaz2ZeiJiIiIiJozR+s7M9OLyqDRiEaOhoiIiIiIiEyZq60FVk3sjt/nDMKAACeUlWvwWdw1DH0vDusOJaG8QmPsEInIBDS7memhoaFYsWIFYmNjMWXKFJ3nYmJitG0eZMCAASgsLKx2vLCwEBs3boSXlxfCw8Ph4+NTr5gOHz4MAPDz86tXe2Moriqmm7OYTkRERESmycVGDokAlGtEZBWp4GprYeyQiIiIiIiIyMR1bWOH9TP6YcfFDKzYehHXs4qw6JdziD6QiIWjOmFoBxcIgmDsMImomWp2xfThw4cjICAA69evx9y5c7Wzx/Pz87F8+XKYm5vj2Wef1bZPS0tDfn4+PDw8tEvET548GZMnT67Wd2JiIjZu3IguXbpgzZo1Os+dPXsWHTt2rLa06oEDB7By5UrIZDJMnDhRz1erP1XFdGt5s3tLiYiIiIjqRWomgZvCAmn5pUjNK2UxnYiIiIiIiPRCEASM7OyGoR1csP7wTXy04woSMgrxXNRRDGrrjH892hFd29gZO0wiaoaa3TLvUqkUa9asgUajwZAhQzBz5kzMnz8f3bt3x5UrV7B8+XKdGeILFixAp06d8PPPPz/Ued9//314enpi3LhxmDt3LubPn4+IiAgMGjQIpaWl+OSTTxAYGPiQV2c4RWXlAABrOWemExEREZHp8rCrLKCn5ZUYORIiIiIiIiJqaWRmEkwf6Ie414dh5pAAmJtJsO9qFsas3odXfziJxKzmu90vERlHs5zGPGzYMOzbtw9LlizBxo0boVarERQUhJUrV9Y441wfxo4di7y8PJw+fRrbt29HWVkZ3N3dMWXKFLz22msIDg42yHn1pUhVWUy3Mm+WbykRERERUb142lvixM08pLCYTkRERERERAZiZynDwlGdMK2/L96LuYzfTqfi99Op2HY2DVOCvTH3kXZwsOTkRSJqpsV0AAgODsa2bdvqbBcVFYWoqKh69enn5wdRFGt8bty4cRg3blxDQmw2yso1UFdUXheXeSciIiIiU+ZpbwkASMsvNXIkRERERERE1NJ5O1rhk6k9MSs0AO/FXEbc5UysO3QTm4+nIHKAD3zKjR0hERkbK68tQNV+6QBgZc47pYiIiIjIdFUt857KmelERERERETURLp42iHquWAcup6NlX9dwsmbefhszw1YmZkh1/EGnh8UCAsZ6y9ErVGz2zOdGq5qv3RzqQQyM76lRERERGS6qmamp3JmOhERERERETWx/gFO2PLSQHw5rTfaulijuELAf2ISEPrebnx7MBGq8oq6OyGiFoWV1xagWFX5y9uas9KJiIiIyMR52t0ppnNmOhERERERERmBIAgI6+KOP+YMxNOBFfC0s8BtpQqLfz2PYe/F4fvDSSgr1xg7TCJqIiymtwBVM9O5XzoRERERmTpP+8pl3jMLVLzjn4iIiIiIiIzGTCIg2FVE7GuD8NbYLnBTyJGaX4p//3wOw1bFYcORm1BXsKhO1NKxmN4CFJVVzUxnMZ2IiIiITJujtTnk0sp/ptzOVxk5GiIiIiIiImrt5FIJpg3wQ/zrw7D0sc5wsZUjJa8E/9pyFo+8H4dNx5JRzqI6UYvFYnoLULXMu5Wcy7wTERERkWkTBOGefdO51DsRERERERE1DxYyM0SG+GPvP4fhzTGd4WwjR3JOCf750xkM/yAem44lc6Y6UQvEYnoLUHxnmXcbLvNORERERC2Ah13lUu/cN52IiIiIiIiaGwuZGV4YVFlU//eoTnCyNkdSdjH++dMZDH0vDt8eTESpmtuWEbUULKa3AIV3lnm3MufMdCIiIiIyfVUz09PyS40cCREREREREVHNLM3NMGNIAPb8cxgWjuqoXf598a/nMWjlbnwefw0FpWpjh0lED4nF9BagamY690wnIiIiopbA887M9BTOTCciIiIiIqJmzlouxcwhgdj7z2F4a2wXtLG3RFahCu9uu4SQd3fhg+1XkFtUZuwwiaiRWExvAar2TLfmMu9ERERE1AJ4OVoBAK5lFBo5EiIiIiIiIqL6sZCZYdoAP8S9PhSrJnZHgIs1lKXl+GRnAkJW7sI7f15AhpIrsBGZGhbTW4CiqmXe5VzmnYiIiIhMXy8fBwDAqeQ87jNHREREREREJkVmJsGE3l7Y/vdQ/PepXujsoUBxWQW+2nsDg/6zGwt/Povrmbx5nMhUsJjeAnCZdyIiIiJqSQJdrOFsI4eqXIPTyXnGDoeIiIjIaI4ePYpRo0bB3t4e1tbW6N+/PzZt2tSgPlQqFf7v//4P7dq1g4WFBTw9PTFz5kxkZGTU+prvv/8ewcHBsLa2hoODA8aMGYMTJ048dJxFRUVYt24dJk2ahPbt28PS0hL29vYIDQ3FDz/80KDrIiJq7swkAkZ388CfcwdhbWRf9PZ1QFm5BusP38TwD+Ix49tjOHIjB6IoGjtUInoAVl9bgCIu805ERERELYggCOgX4Ig/z6Th8I0c9AtwMnZIRERERE1u9+7dCA8Ph4WFBaZMmQJbW1ts3rwZkydPRnJyMubPn19nHxqNBmPHjkVMTAz69++P8ePHIyEhAWvWrMHOnTtx6NAhuLi46LzmnXfewaJFi+Dr64vZs2ejoKAAGzZswMCBA7Fz506EhIQ0Os69e/di2rRpcHJywvDhwzF+/HhkZGRgy5YteOqpp7B//358+umn+kkgEVEzIQgChnV0xdAOLjh8Iwdr9l7HjosZ2H7hNrZfuI3u3vaYMdgfEV3cITXjHFii5obV1xag+M4y79bmXOadiIiIiFqG/gFOd4rp2QDaGTscIiIioiZVXl6OGTNmQCKRYM+ePejRowcAYPHixQgODsbChQsxYcIE+Pr6PrCf6OhoxMTEYOrUqfj+++8hCAIA4PPPP8dLL72ERYsW4YsvvtC2T0hIwNKlS9G+fXscOXIEdnZ2AICXX34Z/fv3x4wZM3Du3DlIJJJGxenu7o7vvvsOkyZNgrm5ufa8y5cvR79+/fDf//4Xzz77LIKDg/WSRyKi5kQQBPQPcEL/ACdczSjE1/uuY/OJFJxOzsOc9Sfh5WCJFwb5Y1Ifb06eJGpGeItLC1B0Z5l3K/5yJSIiIqIWor+/IwDgeFIuyso1Ro6GiIiIqGnt2rUL165dw1NPPaUtUAOAnZ0dFi5ciLKyMkRHR9fZz1dffQUAWLFihbaQDgCzZs1CQEAAvv/+e5SUlGiPr127FuXl5fj3v/+tLaQDQI8ePTB16lRcvHgR+/bta3ScPXr0wDPPPKNTSAcANzc3zJo1CwCwZ8+eOq+LiMjUtXW1wYonu+HAvx7B34a3g6O1OW7llmDZ7xcwYMVOrPzrEm4rS40dJhGBxfQWoWpmuo2cM9OJiIiIqGVo62oDJ2tzlKo1OH0rz9jhEBERETWpuLg4AEBYWFi158LDwwEA8fHxD+yjtLQUhw8fRocOHarNYBcEASNHjkRRURGOHTvW6PPqI84qMpkMACCVcsIQEbUezjZy/H1ke+x/4xG8/URX+DtbQ1lajs/iriHk3V2Y+8NJHE/ivupExsSRSQtQtWe6lTnfTiIiIiJqGQRBQEhbZ/x2OhVr999AXz9HY4dERERE1GQSEhIAAO3aVd/uxt3dHTY2Nto2tbl27Ro0Gk2Nfdzbd0JCAgYPHqz9s42NDdzd3R/YXp9xAkBFRQW+/fZbCIKAESNGPLCtSqWCSqXS/qxUKgEAarUaarW6znM1VFWfhui7tWJODYN51b+mzKlUACb39sTEnh7YdTkTX+9PxLGkPPx2OhW/nU5FF09bTOvngzFB7pDLTHtiJT+r+secNlxDcsXqawtQtcy7NYvpRERERNSCvDwsEH+cScXWs+k4fD0b/QKcjB0SERERUZPIz88HAJ2l1u+lUCi0bR6mj3vbVf3Z1dW1Qe0fNk4AePPNN3H27Fk8//zz6Nq16wPbrlixAsuWLat2PDY2FlZWVnWeq7G2b99usL5bK+bUMJhX/TNGTqd5AsPsgD1pEpzIEnA+tQD/+vk83vr9HAa4ighx18BR3uRh6RU/q/rHnNZfcXFxvduy+toCVC3zbs1l3omIiIioBenorsCUYB+sP3wTb/15Ab+9MggSiVD3C4mIiIjIZHz++edYsWIFevbsiY8//rjO9gsWLMC8efO0PyuVSnh7eyMsLExb8NcntVqN7du3Y+TIkdql6OnhMKeGwbzqX3PI6UwAucVl2HQsBeuPJCM1vxQ7UgXsSpNgRCdXTOvng37+DhAE0/m3cnPIa0vDnDZc1co29cFiuokTxXuL6Xw7iYiIiKhlmTeyPX4/lYpzKUpsO5eO0d08jB0SERERkcFVzfSubVa3UqmEg4PDQ/dxb7uqPze0/cPEuWbNGrz88ssICgrC9u3bYWNjU2vbKnK5HHJ59emYMpnMoAUEQ/ffGjGnhsG86p+xc+pqJ8Oc4e0xe2hb7LiYgW8PJuLAtWzEXshA7IUMdHCzxdP9fTC2RxvYWZrOe2/svLZEzGn9NSRPEgPGQU1ArQEqNCIAwMqcM9OJiIiIqGVxtpHjhcH+AIAPd1zRjn2JiIiIWrKa9ievkp6ejsLCwlr3Qq8SEBAAiURS657lNe133q5dOxQWFiI9Pb3e7Rsb51dffYWZM2eic+fO2LlzJ5ycuKUPEdGDSM0kiOjqjvUz+iP270PwdD8fWMrMcPl2ARb/eh79lu/A6z+exombuRBF/tuZSF9YTDdxZZq7f7binulERERERnX06FGMGjUK9vb2sLa2Rv/+/bFp06Z6v97Pzw+CIDzwsXfvXp3XPKhtZGSknq/QOJ4f5A87SxmuZhTi99Opxg6HiIiIyOBCQ0MBVO4Dfr+YmBidNrWxtLREcHAwLl++jKSkJJ3nRFHE9u3bYW1tjT59+jT6vI2N86uvvsKsWbPQqVMn7Nq1Cy4uLg+8FiIi0tXezRbvjAvCoYXDsfSxzmjvZoNStQY/Hr+FJ/93AI9+vBffHkyEslRt7FCJTB6rryZOVbnCOyxlZjDj/pFERERERrN7926Eh4fDwsICU6ZMga2tLTZv3ozJkycjOTkZ8+fPr7OP1157DXl5edWOZ2Vl4b///S8cHBzQt2/fas/7+vrWWDjv0aNHI66k+VFYyDBzSADei7mM/+6+irE9PE1qPzgiIiKihho+fDgCAgKwfv16zJ07Vzuuy8/Px/Lly2Fubo5nn31W2z4tLQ35+fnw8PDQWYZ95syZOHToEBYsWIDvv/9eO4b64osvcP36dcycOROWlpba9s899xxWrVqFd955B2PHjtX2derUKfzwww/o1KkTBg0a1Og4gcql3WfNmoWOHTti165dcHV11WvuiIhaEztLGSJD/DF9oB9O3MzF94dv4s8zabiUXjlbffnWi3ismyee6ueDHt72/Lc0USOwmG7iSu8U063lXOKdiIiIyFjKy8sxY8YMSCQS7NmzR/sl4uLFixEcHIyFCxdiwoQJ8PX1fWA/r732Wo3H33//fQDAM888AwsLi2rP+/n5YenSpQ9zCc3etAG+WL0rAQkZhThxMw+9fR+8RygRERGRKZNKpVizZg3Cw8MxZMgQnZs1k5KSsGrVKvj5+WnbL1iwANHR0Vi7dq3OTZbTp0/Hxo0b8cMPP+DGjRsIDQ3F1atXsWXLFvj7++Ptt9/WOW/79u2xdOlSLFq0CN27d8f48eNRUFCADRs2AKicUS6R3F3stKFx7tq1CzNnzoQoihgyZAg+++yzatfeo0cPPPHEE3rJIxFRayEIAnr7OqK3ryOWjOmCLSdvYf3hm0jIKMSPx2/hx+O30NHdFlP6euPxHm3gaG1u7JCJTAaL6Sauapl3LvFOREREZDy7du3CtWvX8Nxzz+nMBrezs8PChQsRGRmJ6OhoLF68uFH9f/311wCAF154QR/hmiSFhQyjgzyx+cQtbDx6k8V0IiIiavGGDRuGffv2YcmSJdi4cSPUajWCgoKwcuVKTJ48uV59SCQS/Prrr3j33Xfx3Xff4cMPP4SjoyNeeOEFvP322zUur/7vf/8bfn5++Oijj/DZZ5/B3NwcgwcPxltvvYVevXo9VJw3b97U7uP7xRdf1Bjz9OnTWUwnInoIdlYyPBfij8iBfjielIv1R+7OVl/6+wW8s/UiRnRyw4TeXght7wKpGXeEJnoQVmBNnKqickkOaznfSiIiIiJjiYuLAwCEhYVVey48PBwAEB8f36i+Dxw4gIsXL6JPnz7o3r17jW3y8vLw5ZdfIisrC46OjggJCUFQUFCjztecTQn2xuYTt/D76TS8OaYzbC1kxg6JiIiIyKCCg4Oxbdu2OttFRUUhKiqqxufkcjmWLFmCJUuW1Pu8Tz/9NJ5++ul6t69vnJGRkTVuT0RERPonCAL6+Dmij1/lbPWfT97CTydu4VyKEtvOpWPbuXS42MrxZM82mNDbC+3cbI0dMlGzxAqsidMu827OZd6JiIiIjCUhIQEA0K5du2rPubu7w8bGRtumoapmpb/44ou1tjl9+jRmzZqlcywiIgLR0dEtag/KPr4OCHSxxrXMInx3KAkvD21r7JCIiIiIiIiImj07q8q91SND/HExTYmfjt/CLydTkFmgwhd7ruOLPdfR3dseE3p74fFunrCz4s3rRFVYTDdxZXeK6VacmU5ERERkNPn5+QAql3WviUKh0LZpiMLCQmzatAlWVlaYOnVqjW3mz5+P8ePHo3379jA3N8e5c+fw1ltvYdu2bRgzZgwOHjwIM7Oab7xUqVRQqVTan5VKJQBArVZDrVY3ON66VPX5MH1HDvDFm79dwHsxl9FGIceoIHd9hWey9JFX0sWcGgbzqn/MqWEwrw3HXBEREZmOTh4KvDmmM96I6Ii4yxn48fgt7L6UgdPJeTidnIe3/riAkZ3d8ESPNght7wJzKZeBp9aNFVgTp7qzZ7qNnDPTiYiIiFqajRs3orCwENOnT4dCoaixzapVq3R+HjBgAP744w888sgjiI+Px6+//oonn3yyxteuWLECy5Ytq3Y8NjYWVlZWD38Btdi+fXujX2srAoPcJNh3W4J5P55G4oUT8ONKdAAeLq9UM+bUMJhX/WNODYN5rb/i4mJjh0BEREQNZC6VIKyLO8K6uCOrUIVfTqbgp+O3cCm9AH+eScOfZ9JgZynDqCAPPNHDE339HCGRCMYOm6jJsZhu4qqWebcy51tJREREZCxVM9Jrm32uVCrh4ODQ4H7rs8R7TSQSCWbMmIH4+Hjs37+/1mL6ggULMG/ePJ04vb29ERYWVmvx/mGo1Wps374dI0eOhEzW+CXjIjQiXt1wGtsvZuDHFFv89nL/Vr1/ur7ySncxp4bBvOofc2oYzGvDVa1uQ0RERKbJ2UaOFwcH4IVB/jifqsTPJ1Pw++lUZBSo8MORm/jhyE20sbfEY9098URPT3R01/93BkTNFSuwJq6sovIuIO6ZTkRERGQ8VXulJyQkoHfv3jrPpaeno7CwEMHBwQ3q88KFCzh48CA6duyIQYMGNTgmZ2dnAEBRUVGtbeRyOeRyebXjMpnMoMWDh+1fBuD9yT0w6uO9uJVbgiV/XMYnU3pAEFr3HfKGft9aI+bUMJhX/WNODYN5rT/miYiIqGUQBAFd29ihaxs7LBzVCYeuZ+OXkyn461w6UvJK8Hn8NXwefw0d3W3xeA9PPN7dE14OhlvZjqg5aLYbHRw9ehSjRo2Cvb09rK2t0b9/f2zatKnR/eXm5qJNmzYQBAERERG1touJiUFoaChsbW2hUCgwbNgw7Ny5s9HnNTTVnZnp1twznYiIiMhoQkNDAVQuj36/mJgYnTb1VTUr/YUXXmhUTIcPHwYA+Pn5Ner1zZ3CQoZPpvaEmUTA76dT8eOxW8YOiYiIiIiIiKjFMJMICGnrjPcmdsfRRSPwv6d7IbyLG8zNJLiUXoD//HUZg1buxrj/7ceavdeRmldi7JCJDKJZFtN3796NkJAQ7Nu3D5MmTcLs2bORnp6OyZMn4/33329Un3PmzKl12c0q69atQ0REBC5evIjIyEhMnz4d58+fx8iRI/HTTz816ryGVspiOhEREZHRDR8+HAEBAVi/fj1OnTqlPZ6fn4/ly5fD3Nwczz77rPZ4WloaLl26VOv4VK1W47vvvoNMJtN53f3Onj0LtVpd7fiBAwewcuVKyGQyTJw4sfEX1sz18nHA/LD2AIAlv53H1YwCI0dERERERERE1PJYyMwwKsgDX0zrg6P/HoF3nwxC/wBHCAJw8mYe3v7zIga+uwtPsrBOLVCzK6aXl5djxowZkEgk2LNnD7788ku8//77OH36NNq3b4+FCxciKSmpQX1u3rwZ69evx8qVK2ttk5ubi1dffRXOzs44ceIEVq9ejdWrV+PEiRNwcnLCSy+9hIKC5vflXJmm8r9WXOadiIiIyGikUinWrFkDjUaDIUOGYObMmZg/fz66d++OK1euYPny5TozxBcsWIBOnTrh559/rrG/3377DZmZmXjsscfg6upa63nff/99eHp6Yty4cZg7dy7mz5+PiIgIDBo0CKWlpfjkk08QGBio78ttVmYPCcSgts4oUVdg5rfHkV9c/eYCIiIiIiIiItIPOysZpgT7YMPMATi8YDiWPd4Fwf6VhfUT9xXWv953A2n5LKyTaWt2xfRdu3bh2rVreOqpp9CjRw/tcTs7OyxcuBBlZWWIjo6ud3+ZmZl46aWXMG3aNIwePbrWdj/++CPy8vLw6quvwsvLS3vcy8sLc+bMQVZWVq1fdhoTl3knIiIiah6GDRuGffv2ISQkBBs3bsRnn30GNzc3bNiwAfPnz29QX1VLvL/44osPbDd27FiEhITg9OnT+Oabb7B69WpcuHABU6ZMwcGDBzF79uxGX4+pkEgEfDi5B9rYW+J6VhFmrTuGsnKNscMiIiIiIiIiavFcFRaYPtAPm2YNwKGqwrrf3cL6W39cwIAVuzD+swP4as91JGUXGTtkogZrdhXYuLg4AEBYWFi158LDwwEA8fHx9e5v9uzZMDMzw8cff/zAZd7rOu/SpUsRHx//wGU2jUFVIQAArM2b3VtJRERE1OoEBwdj27ZtdbaLiopCVFRUrc9v3bq1XucbN24cxo0bV9/wWiwXWzm+juyDCZ8dxKHrOfhkZwL+Ed7B2GERERERERERtRpudwrr0wf64bayFNvOpuHPs2k4mpiL40mVj3e2XkR7Vxv4ySTwTVWiu48jBEEwduhED9TsKrAJCQkAgHbt2lV7zt3dHTY2Nto2dVm3bh22bNmCX375BQ4ODg8spj/ovFXH6jqvSqWCSqXS/qxUKgFU7nlZ016WD0utVkN1Z9KN3Ew0yDlam6ocMpf6xbzqH3NqGMyr/jGnDcdcETVOR3cF/jOhG17+/gQ+i7+GiK7u6NrGzthhEREREREREbU6bgoLRIb4IzLEH+n5pfjrXBq2X7yNQ9dzcCWjEFcgQexnh+BpZ4GwLu4I6+yGvv6OkJk1uwW1iZpfMb2q4G1nV/MXXwqF4oFF8SqpqamYO3cupk6dirFjxz7UeRUKhU6b2qxYsQLLli2rdjw2NhZWVlZ1xtAYqorKvdLPnDiKoqsGOUWrtH37dmOH0CIxr/rHnBoG86p/zGn9FRcXGzsEIpM1KsgDo4M88OfZNMzbdAobZg6Ao7W5scMiIiIiIiIiarXc7e4W1vOKy7D9fBq+230GCQVSpOaXIupAIqIOJMLOUobhnVwR1tkdQ9o7w4orMlMz0WI/iS+++CJkMhk++eSTJjvnggULMG/ePO3PSqUS3t7eCAsL0xbk9UmtVuPNY7sAAMNDB6Gzh/7P0dqo1Wps374dI0eOhEwmM3Y4LQbzqn8lJSXYu3cvBg4cCKm0xf4qb3Ll5eU4cOAA86pHzCkgCAKkUinMzMzq1b5qZRsiapxlY7vg8I1sXLldiHH/24+o54Lh72xt7LCIiIiIiIiIWj17K3M80cMT5qmn8MjIYTicmI+Y8+nYcfE2covV2HIiBVtOpEAulWBAoBMe6eiKYR1c4e1omAmrRPXR7L7VrpoZXtsscKVSCQcHhwf2ER0djW3btuHHH3+Es7Nzg8/r5ORU7Zz3tqmNXC6HXC6vdlwmkxmsgKiqqPyvnZUFi5R6ZMj3rDVjXh+eUqlEVlYWSktL4e7ujrS0NO4po0eiKDKvesacVhIEAXZ2dnB3d68zD/w9SfRwnG3k2DCzPyLXHkVSdjGe/uoQfpkTAldbC2OHRkRERERERER3WMjMMKKzG0Z0dkN5hQbHk3IRe+E2Ys6n41ZuCeIuZyLuciaA82jnalNZWO/oit6+DlwOnppUsyum37s/ee/evXWeS09PR2FhIYKDgx/Yx8mTJwEAEydOrPH5mJgYCIKA7t2749SpU9rzHjt2DAkJCdWK6Q/aT92YNBoRZXf2TLeWN7u3koj0TKlUIiUlBTY2NnBycoJKpYKNjQ0kEg4c9EWj0aCwsJB51SPmtPKGgqKiImRmZsLS0hL29vbGDomoxWvraoufXw7B5C8P4npmEWZ+exwbZvaHhax+K0QQERERERERUdORmknQL8AJ/QKcsGh0J1y+XYDdlzKx+1IGjt/MRUJGIRIyCvHFnuuwtZBiSDsXDOvoiqEdXOBsU32SK5E+NbsKbGhoKFasWIHY2FhMmTJF57mYmBhtmwcZMGAACgsLqx0vLCzExo0b4eXlhfDwcPj4+Oic94cffkBsbCz69+/fqPM2tdLyCoionN1mLecXg0QtXVZWFmxsbODl5QVRFCGKIiwsLFptgdIQNBoNysrKmFc9Yk4rWVpaQqVSISMjA3Z2dq16lj5RU3GxlePr6X3xxH/341RyHiZ9cRD/faoXl4YjIiIiIiIiasYEQUBHdwU6uivw0tBA5BerEZ+QibhLGYi7komcojL8eTYNf55NgyAA3bzsMayDC4a0d0G3NnaQctY66VmzK6YPHz4cAQEBWL9+PebOnYsePXoAqFx+ffny5TA3N8ezzz6rbZ+Wlob8/Hx4eHhol2GfPHkyJk+eXK3vxMREbNy4EV26dMGaNWt0nps0aRLeeOMNrF69Gs8//zy8vLwAALdu3cKnn34KZ2dnjBs3zkBX3ThFd9Z4FwTAkrNsiFo0tVoNlUoFZ2dnCIIAURSNHRIRNZBCoYBSqURFRUWr3T+eqKn5O1vjq2f7YOZ3x3DmVj5Gf7IXXz7bB/0DnOp+MREREREREREZnZ2VDI9398Tj3T1RoRFx+lYedl/KwO7LGTiXosTp5DycTs7DRzsSoLCQIqStMwa3c8Hgds68oZ70otl9kyuVSrFmzRqEh4djyJAhmDJlCmxtbbF582YkJSVh1apV8PPz07ZfsGABoqOjsXbtWkRGRjb6vA4ODvj0008xbdo09OrVS1uM37hxI7Kzs7Fx40bY2to+5NXpV3FZZTHdytyMM9yIWriKisq/79xLmch0VRXQy8vLWUwnakLB/o74c+5gvPL9CZxKzsOz3xzBJ1N6IKKrh7FDIyIiIiIiIqIGMJMI6OXjgF4+Dpgf1gG3laWIu5yBuMuZ2H81C8rScmw7l45t59IBAH5OVhjczgWD2jljQKATFBb8fp0arll+kzts2DDs27cPS5YswcaNG6FWqxEUFISVK1fWOONcX5555hk4Oztj+fLlWLt2LQRBQO/evbFo0SKMGDHCYOdtrKKycgCAtXmzfBuJyAB44wyR6eLfXyLjaWNviQ0z++PVH05i+4XbeOn7E3hrbFc809/X2KERERERERERUSO5KSwwua8PJvf1QYVGxJlbediXkIW9CVk4cTMXidnFSMxOwneHkmAmEdDT215bXO/mZQcZl4Snemi2Vdjg4GBs27atznZRUVGIioqqV59+fn51Lo0cERGBiIiIevVnbFXLvFuZc4l3IiIiIqIHsZCZ4bOne+HNX8/jhyM3seiXc8goUOHvI9rxZhciIiIiIiIiE2cmEdDTxwE9fRzw6vB2KChV49D1HOxLyMTehCxczyrCsaRcHEvKxYc7rsDa3Ax9/BwxINAJAwKc0LWNHcwk/H6Aqmu2xXSqW3HVzHQ5i+lERERERHWRmkmwfFxXuNjK8cnOBHyyMwGZBSose7wLzKW8G52IiIiIiIiopbC1kGFkZzeM7OwGALiVW6ydtb7/WhbyitWIv5KJ+CuZle3lUgT7VxbX+wc4obOHAhIW1wksppu0u3um820kIiIiIqoPQRAwb2R7uNjKsfjXc/jhyE2cSs7DyvFB6OZlb+zwiIiIiIiIiMgAvBysMCXYB1OCfaDRiLiUXoCD17Nx8Fo2Dt/IRkFpOXZeysDOSxkAADtLGfrdKa4PCHRCe1dbFtdbKVZhTVghl3knIjIoQRAQGhqKuLi4RvcRFxeHYcOGYcmSJVi6dKneYiMiooczrb8v3BUW+OdPp3ExTYnHP92PYH9H/OvRjujl42Ds8IiIiIiIiIjIQCQSAZ09FejsqcALg/xRoRFxIVWJg9ezcPBaNo4m5iK/RI3YC7cRe+E2AEBhIUUfP0f08XNAsJ8jgrzsIJeyPtcasJhuwrTLvLOYTkQtWEP3sRVF0UCRtEzffvstpk+fDgA4cuQI+vbta+SIiIiazsjOboj9eyiWb72I306n4siNHEz/+gh+fiUEbV1tjB0eERERERERETUBM4mAIC87BHnZYeaQQJRXaHA2JV87c/14Ui6UpeXYdSkDu+7MXDeXStDdyw59/RzR188RvXwdYGcpM/KVkCGwmG7CqpZ5t5bzbSSilmvJkiXVjn300UfIz8+v8Tl9unjxIqysrB6qj+DgYFy8eBHOzs56ikq/vv76awiCAFEU8c0337CYTkStjoutHB9O7oE3IjpizvoTOJaUixeij+L7F/vBy+Hh/h9ARERERERERKZHaiZBTx8H9PRxwMtD20JdocHFNCWOJubi6I0cHEvKQVZhWeXPibkArkEQgA5utuhbNXvd3xEedpbGvhTSA1ZhTVgRl3knolagpqXRo6KikJ+fb/Bl0zt27PjQfVhZWemlH0NISEjAnj178Pjjj+PSpUv44Ycf8MEHH8DSkoM8Imp93O0s8Pm03hj76X4kZRfjkVXxeLJXG/T2dcCwjq5wtpEbO0QiIiIiIiIiMgKZmQTdvOzRzcseLwzyhyiKSMwuxtEbOTiamINjSbm4kVWES+kFuJRegO8OJQEA2thbooe3PXr6VD66eNrBQsaanqmRGDsAaryqZd5ZTCciAhITEyEIAiIjI3Hx4kWMGzcOTk5OEAQBiYmJAICff/4ZU6dORdu2bWFlZQU7OzsMHjwYmzdvrrFPQRAwdOhQnWORkZEQBAE3btzAJ598go4dO0Iul8PX1xfLli2DRqPRaR8XFwdBEKoV/v38/ODn54fCwkL87W9/g6enJ+RyObp164affvqp1mucPHkyHB0dYWNjg9DQUOzZswdLly6FIAgN3tv9m2++AQA8++yzmDZtGvLz82s9NwBcv34dM2fOhL+/P+RyOVxdXTF06FBERUVVa7tnzx488cQT8PDwgJubG3x9ffHkk09i37592jZVuax6f+5V0zXdm8sDBw4gLCwM9vb2OlsBfPPNNxg7diz8/PxgYWEBR0dHhIeHY/fu3bVeV1Wsbm5ukMvl8Pb21ol10aJFEAQBmzZtqjWPgiBgxYoVtZ6DiEyDs40c370QjP4Bjiir0GDD0WS8/tMZhH24B8cSc4wdHhERERERERE1A4IgwN/ZGpP6euO9id2x+x9DceTfw/HZ073wfIg/gtrYQSIAKXkl+PNsGt7+8yLGf3YQXZfE4PFP92HJr+fw88lbSMwq4ralJoAz001YUdUy7+Z8G4laM1EUUaKuMHYYdbKUmTV4//PGuHr1Kvr374+goCBERkYiOzsb5ubmAIAFCxbA3NwcgwYNgoeHBzIzM/Hbb79hwoQJ+OSTT/DKK6/U+zyvv/464uPjMWbMGISHh+OXX37B0qVLUVZWhnfeeadefajVaoSFhSE3Nxfjx49HcXExNmzYgEmTJuGvv/5CWFiYtm1KSgoGDhyItLQ0REREoGfPnrh8+TJGjhyJRx55pGFJAlBRUYHo6Gg4ODhgzJgx6NOnDxYvXoyvv/4a06ZNq9Z+3759GD16NAoKChAeHo4pU6YgNzcXJ0+exMcff4zIyEht248//hh///vfYWlpqS1SZ2VlYf/+/fjpp58waNCgBsd7rwMHDmD58uUYNmwYZs6ciZs3b2qfe+WVV9C9e3eMGDECLi4uSElJwS+//IIRI0Zgy5YtGDt2rE5f98Y6btw4+Pj4ICUlBfv27dPGOmPGDKxYsQJr1qzBpEmTqsXz1VdfQSqV4rnnnnuo6yKi5iHAxQY/zOiPA9eysetSBuIuZ+BaZhGe+uow/j6yPZ4L8eNd5ERERERERESkw9XWAo8GeeDRIA8AQKGqHGdu5eFUch5O3qx8ZBWqcOZWPs7cykf0wcrZ6w5Wsjuz1x3Qw9se3b3tufd6M8MqrAkrUlXOTLeW88s8otasRF2BzotjjB1GnS78XzismuDmn/3792Px4sVYtmxZtee2bt2KgIAAnWOFhYUYOHAg3nzzzQYVQ0+cOIEzZ87Aw6NycPTmm2+iXbt2WL16NZYsWaIt4D9Iamoq+vbti7i4OG37p556CiNGjMAHH3ygU0z/17/+hbS0NLzzzjtYuHCh9vg333yDF154od5xV9m6dSvS0tIwa9Ys7cz6wYMHY8+ePbh69Sratm2rbatSqTBlyhQUFhZi69atiIiI0Onr1q1b2j+fPn0a8+bNg4eHB/bv3w8fHx8olUooFAoIgoC0tLQGx3q/7du345tvvqnx/bpw4QL8/f11jqWlpaFPnz54/fXXdYrp98fq5+enfU4URW2svr6+CA8Px19//YXExESddufPn8ehQ4fwxBNPwN3d/aGvjYiaB0EQENLWGSFtnTE/rD3+vvEUYs7fxsq/LiHqwA082tUDYV3cEOznCKkZF/siIiIiIiIiIl02cikGBjpjYKAzgMrvG1PySrSF9VPJuTiXokRusRq7L2di9+VM7WsDnK3RtY0dunnZoWsbO3TxVMDWggV2Y+E3PyasuIx7phMR3c/d3R3//ve/a3zu/kI6ANjY2CAyMhL5+fk4evRovc/z5ptvagvpAODs7IyxY8eioKAAly9frnc/H374oU7hffjw4fD19dWJRaVS4ccff4Srqyvmz5+v8/rnnnsOHTp0qPf5qnz99dcAKpd4r/Lss89CFEXt8u9Vfv31V6SkpOCZZ56pVkgHAC8vL+2fv/jiC2g0Grz99ts6RWegsjjl6enZ4Fjv16tXr1pvfLi/kA4AHh4eGD9+PBISEpCUlNSoWGfPng1RFLV5q7JmzRoAwIwZMxp7OUTUzFmZS/HZ073x/sTu8LSzwG2lClEHEvHUV4fR++0dmLfxFP46lwZ1habuzoiIiIiIiIioVRIEAV4OVnisuycWP9YZW14OwdllYfjllRAsfawzxvbwhI+jFQDgelYRfjudirf/vIgpXx5Ct2WxeOT9OPxtw0ms2Xsdh69no/DOhFsyPM5MN2HFXOadiFC5fPqF/ws3dhh1smyiJXG7d+9e66zwjIwMvPvuu9i2bRuSkpJQUlKi83xqaip69uxZr/P07t272rGqonJeXl69+rC3t6+x+Ovl5YWDBw9qf758+TJUKhX69OkDuVyu01YQBAwcOLBBBfz09HT8+eefaNu2LQYOHKg9PnHiRLz66quIjo7GW2+9BTOzyvfsyJEjAKAzU742DWnbWH379q31uevXr2PFihXYtWsXUlJSoFKpdJ5PTU2Fr69vg2MdPXo02rRpg7Vr12Lp0qUwMzNDWVkZvvvuO3h7e9d4kwERtRwSiYDxvb0wupsH9iZkYfuFdOy4mIGcojJsOZmCLSdT4GFngedD/DEl2Jt3ixMRERERERFRneRSM/TwtkcPb3tE3jmWXajCuVQlzt7Kw9mUfJy9lY/U/FJczyzC9cwi/HoqFQAgCJUz2IPa2KGzhy0KlUBBqRqOMn4noW+swpqwqmXerbjMO1GrJghCkyyfbirc3NxqPJ6Tk4O+ffvi5s2bCAkJwYgRI2Bvbw8zMzOcOnUKv/76a7XC64MoFIpqx6TSyvehoqJ+e9jb2dnVeFwqlUKjuTvDUalUAgBcXV1rbF/bNdcmOjoa5eXl1fZGVygUGDt2LDZs2IC//voLo0ePBgDk5+cDANq0aVNn3/n5+RAEQWfWvr7Vdr1Xr15FcHAwlEolhg0bhsceewwKhQISiQRxcXGIj4/XeY8bEquZmRlefPFFLFu2DNu2bcOYMWPw888/Izs7G3PmzIFEwsV+iFoDC5kZRnZ2w8jObqjQiDielIvtF9Lx88lUpOWX4p2tF/HJzgSM6e6BYR1cEdLWGdZy/j+ayFT9eCwZuy5l4D8TuvEmGSIiIiIiahJONnKEtndBaHsX7bGsQhXOpuTj3K38ygJ7Sj7S8ktxLbMI1zKL8MspAJDik/O74e1oic4eCnS68+jsoYCXgyUEQTDWJZk8frNjwoo4M52IqJraBgVff/01bt68ibfeeguLFi3See7dd9/Fr7/+2hThNUpV4T4jI6PG52/fvt2g/qqWcV+yZAmWLFlSY5uvv/5aW0y3t7cHAKSkpNTZt729vXa/8bqK71UF6PLy6ksSVRXwa1Lbe/zhhx8iNzcX3333HZ555hmd52bPno34+PhGxwoAL774It5++2189dVXGDNmDNasWQOJRILnn3++ztcSUctjJhEQ7O+IYH9H/CO8A349mYov917H1YxC/HAkGT8cSYa5mQQ9vO3hbmeB/gFOmNzXG2YS/uOVyBSUV2jw9p8XkV+ixqB2zni6n2+DXq/RiDiSmIOubexgw5tqiIiIiIjoITjbyDGsgyuGdbg72SqzQIVzdwrrZ5Jzcex6BvLKBCTnlCA5pwQx5+9+Z2xrIdUW1qsK7e3cbGDRRKvJmjr+i86E3V3mnR92IqK6XLt2DQAwduzYas/t3bu3qcNpkA4dOkAul+P48eNQqVQ6S72LoqizJHxd9u7diytXriAwMBBDhw6tsc1vv/2GP/74AxkZGXB1dUVwcDAAIDY2Fk8//fQD+w8ODsaxY8cQGxtb677mVRwcHABUFunbtm2r89zJkyfreUV31fYei6KI/fv3P1SsQOXy+6NHj8bWrVtx4MAB7Ny5ExEREfDx8WlwrETUssilZpjU1xsTenvhwLVsbL+Qjl2XM5CcU4IjiTkAgN9Op+KHIzfh42gFZakawzq4wtfJClduF6K3rwOC/R2NfBVEdK8TN/OQX6IGAMRdzmxwMX3Z7+cRfTAJk/t4Y+WEboYIkYiIiIiIWjEXWzmGdXTFsI6uUKvV2Lp1KwYMHYGrWSW4kKrExbQCXEhT4mpGAQpKy3HkRg6O3MjRvt5MIiDQxRod3RXo4G6Ldq426OBuC28HK0g4EUAHi+kmrKiMy7wTEdVX1T7Z+/btQ1BQkPb4+vXrsXXrVmOFVS9yuRwTJkzA999/j48++ghvvPGG9rlvv/0Wly5dqndfX3/9NQDg3//+d60F5IULF2LFihX49ttv8Y9//AOPP/44vLy8sG7dOjz11FMIDw/XaZ+SkqKd2T179mx88cUXWLRoER555BF4e3tr21XNAvf09ARwd+/zqKgohIaGatv99NNP1WaR18e97/Gjjz6qPf7uu+/i3Llz1drfH2vV62uKtcqsWbPw22+/YeLEiRBFETNmzGhwnETUckkkAga1c8agds5YKoq4llmIcylKJGYX4eu9N7RLsQHA3oQsndc+3c8HT/RsA5Vag7jLGfC0t8RT/Xx4lziRkey8eHcWx4GrWSgr18BcWr9tXaIPJCL6YBIAIPZCOpZrgrgqBRERERERGZyDlTkGBlpjYKCz9lhZuQZXMwpxMU2JC2lK7X/zitW4crsQV24XAqfv9mEhk6Cdqy3au9mivZsN2rvbooObLTzsLFrtUvEsppuoCo2IUnXlfrrcK5mIqG7Tpk3DypUr8eqrr2L37t3w9fXF6dOnsXPnTjz55JPYsmWLsUN8oBUrVmDHjh3417/+hfj4ePTs2ROXL1/GH3/8gYiICPz111917tutVCrx448/wtraGhMnTqy1XWRkJFasWIGvv/4a//jHPyCXy7Fp0yZERETg0UcfRUREBLp37w6lUolTp06huLhYO5M8KCgIH330EebOnYsuXbpg7NixcHd3R25uLvbu3YvRo0fjo48+AlA5gzwwMBBRUVFITk5Gz549cfHiRezatQujRo1q8E0Os2fPxtq1azF+/HhMmjQJTk5OOHToEE6cOIHRo0fjzz//1Gl/f6xPPPEEfH19kZ6ejj179ujEWiUiIgK+vr5ISkqCu7s7HnvssQbFSESthyAIaOtqi7autgCAqcE+2HQ0GZZ3VpXadi4dyhI1PO0tEX8lE98fvonvD9/U6WPtgRsY270Nungq4ONkBTtLGTQawMPeAjIzCcorNBCb/MrImK5lFsJMEODnbG3sUJodURQRdzkTnvaW6OBuC1Gs/NtR15c9KXkl2J+QhfCu7rCzvLsv+o57iulFZRU4lpiDgW2da+pCx/eHk7Ds9/N3zg3kFqtxLiUf3b3tG3FVdcspKsONAoN0TURERERELYC5VILOngp09lRg/J1joigiXVmKC6lKXL5dgCvpBbh8uxDXMgtRqtboTAaoYiuXop2bzZ0i+91iu4utvMUX2VmFNVHFZXf3l7XhMu9ERHXy8vJCfHw8/vnPf2LHjh0oLy9Hr169EBsbi+Tk5GZfTPf29sbBgwfxxhtvIDY2FvHx8ejduzdiY2Px448/Ari7t3ptNmzYgOLiYkyfPh02Nja1tmvfvj1CQkKwf/9+HDhwAAMHDsSAAQNw4sQJrFixAjExMdixYwccHBzQuXNnzJ49W+f1c+bMQdeuXfH+++/jr7/+QmFhIVxdXdGvXz9MmjRJ287S0hI7duzA3//+d+zcuROHDh1C//79sWfPHvzxxx8NLqb37NkTsbGxWLRoEbZs2QIzMzMMHDgQ+/fvx2+//VatmH5/rNu2bas11ioSiQTTpk3D22+/jcjISEilHEoRUf24KSzw6vB22p9fHByg/fP+q1lYs/c6rtwuhLpCg0HtnLH/ahaSc0rw6e6r1fqylUvR2VOBC6lKqCo0GNnRFU4qAb6pSiTmlOJ6VhHKKzRo42CJiC7u0IjAjawiZBaoYGMhRUigEySCgNsFpXCztYBEIiA5pxhyqQSuCguD5uFWbjE87Sxb1ZJxhapyFJeVw9X24XL73cFELP39Aio0Ivr5O+LNMZ3RtY3dA1+TV1wGC5lZo1Y4KK/QIKuwDO52d+M+npSDH44k4/kQf3T2fPC4o0pxWblebgAXRRHqChHmUgkKStVIyi5GW9e7e/x9uec6VmyrXK2nrasNMpSlsDQ3w/cv9kdb1+rjngqNiC0nbmHZ7xdQqCrHe7GXseSxzhjTzROJWUW4llkEqUTAsI6u2H7hNnZfztAppt/KLUZJWQXautpovzj6PP4a3r0TwzP9fZBZoELM+duIv5Kpfa/unaFeUlaBvJIyeNhZ1njNp5Lz8M+fTsNNYYGIru6Y2Nsb5lIJRFGEIAiVq+SsO4Ezt6Ro0yEVE/s2bCn6plReoYHUrH4z+40pMasIZhIB7rayuhs3wsmbubAyl6KDu22tbUwlV0RERERkugRBgIedJTzsLDG8k5v2eHmFBkk5xUi4XYDL6YW4klFZaL+RVYQCVTlO3MzDiZt5On3ZWkgR6GJT+XC11v7Z18kKshYyrhXEqtu1Se+USiXs7OyQn59fZ4GjodLzS9F/xU5IIOLS/4XB3Nxcr/23VlX7SowaNQoymWH+8dwaMa8Pr7S0FDdu3IC/vz8sLCyg0WigVCqhUCjqnI1M9WeqeR00aBAOHjyI/Pz8BxbJjcFUc/ogY8aMwdatW3HlypVqe70/yP1/j2tjyPEDUV0M/fnjmKD+isvK8eupVJy8mYvL6QW4lVuCQlU5RFQu0fYwXGzlqNCIyCkqg6utHK4KOc6lKCERgJGd3dDRXQERgLJEDVEUobCUIb9EjdxiNXr72MPKXIqfjt+CXCbB+F5eaONgCYkAuNtZ4tC1bKw7nISunnZ4bUQ7SAQBJeoKONmY498/n8NPx2+hn78jPn+mN4rKynEtswhZBSpoRBFymRmcrM3h5WAJH0cr5BSV4VhSLsrKNcgqVOF4Ui4UljI8FeyjLUzWNPv4yu0CXEhVYkRnN9jI7xZxxTtL76fmlWrvzFdY6H4OC1Xl2HnxNn4/lYLLyRmYPaILpvTzg5lEQKGqHKdu5sFabgZvRys428ir5fZ8aj4OXc/B5XQl2thbQS6T4L+7r0Kl1uB/T/fCiM6VX1LkF6uRrixFoIt1taJZRkEpMpQqONvI4WorR1mFBu/8eRHfHUrSaedsY44/Xh0MN4UcGvFukVZdocGH269gy4kUpCtLYWVuhiHtXJBTVIayCg3eiOiIAYFOD/yMFJeV4+k1h3HyZh4WjuqImUMCcTm9AOM/O4BCVTnkUgleHOyPUrUGCgsZOnrYIrS9i07RXqMR8Y+fTuO3U6lY8lhnRHT1wIqtF5CTfgsvPhoMhZUcdpYy+DrdnWWvLFWjtKxCe1PH+dR83MotwbXMQmw8moyk7GLYyKUoVFXeXO5kbY6n+/uis4ctXv3hJNQVIiQCoLnnWw4fRyv8MLM/rM3NcC2zEBfTCnAxTYkdF2/jtlIFALCUmaFEXQEAiBzoh1u5Jdhx8TYGBDjhqX4+ePWHk/B2tMRPswciv0SNz+Ku4ddTKdCIQDcvO7w8tC1kZgJeiD4GAJg7vB3+PqIdNhxNxoItZ9HBzRYaUUShqhyfP9Mb3b3tkV2owrj/HUBKXgk+ndoTEV3dkZxTAoWlFJbmZth7JQt/23ASRWUV2msZ080Ds4YE4tUfTqBLGztM6OWF56KOAgAcrGTY/Y+hsLe6+92ARiOirEKjfV9yi8rwxZ7ruJ5ZiH9GdNCunJFTVIYbWYXo4mkHdYUG+69mwcfRWnvDRIVGxF/n0uFhb4FePg7IL1HjfEo+gv0dtZ/fK7cL8MeZNAxq64y+fg7av5OZBSrM//E0jifmYMX4bni8u6dOsTi/RI2CUjW8HKwAVH55t/NSBhKzihDS1hldPBXVZrkUlKrx88kUqCtEKCyk2JuQhbwSNR7r5oEx3Ty1K4DcTxRFFJVV6PxeqHLkRg7ei7mEo4m5kEsl+GZ6L2RdOIRRo0ZBI0igKtdof19U3cxQH8Vl5Th0PRsuNhb442wqvoi/DpmZgNVTe6GtqzVOJeejs4cCHe8U11fGXMLa/Yl4tr8v/vVoRwiCAIlQ9woLF1KVSMgowKggD8jMJCguK8fGo8m4nF6AOY+01ebXkDiGJWPiGNb0MKeGwbzqH3NqGMyr/hk6p2XlGtzIKsLl2wV3Cu0FSMgoRGJ2EWqrMptJBPg6WiHgviJ7Wxcb2FkZ/31vyPiBxXQDMuRA7lpmIYa/Hw9LMxFnlobzF46e8Je4YTCvD4/F9KbR3POalpYGDw8PnWPr1q3DtGnTEBYWhpiYGCNFVrvmntOGunDhArp27YqRI0c2ON8sppMp4BeRzZ9GI+JMSj4upSnRxdMOIkT8fOIWdp9JRF6FOfycKwtgMomAEzfzcDYlH4IAtLG3hJvCAolZRcguKqvWr5lEQIVGv/80lEoElN/p00Im0W5TBQByaWVxqjYKi8qCaW0hudjK4WFXeT2l6spZ+F3b2MHOUoofjiSjQiPCRi5FNy87lGtElFdocFupQkpeibYPW7kUk/t6o6isArdyi1GqrsDpW/nVblZoY2+Jtq42OJaYo1PY7OPrgPZ3lhPXaIBL6UqcvqW7DN69ZGYCJvT2wq3cEhy6ng11hQhbuRRd2ijgaV85M/lmdjGO38zVfhnhbGMOWwsZbmQVAQBeD++AcT3b4Pmoo7iUXgB/Z2vkl6hRqq7AsI6uaOtig31Xs3A8KfeBccwb2QG9fR1gZW6GW7nF2Hg0GVduF8LK3Azt3GyQXViGwzdytK8Z3tEVZ1PykVGggq2FFAWl5dX69XKwxKwhARAEAeZmEhxPysXGY8k671lmgara6x7t6g5XWzn+Op+uLW6Hd6m86SDm/O1q7atYmZuh+J73AwDCOrvh7XFdcSIpF842cszbdBo3c4pr7cPeSoaZQwLw3EB//Hf3VZ2VICQC8PkzvdHP3wlD3tuN/BJ1tc+tzEyAuqLyzar6OxQ50A9LH+8CoHIJ+ZB3d+mc00ImwauPtEP85UwcSazMsbmZBB09bHHmzufn3hsCBgY6IaStMz7cfgXlGlHn75W1uRmKyiogQIQIAYPaOmNoBxe421kgQ6nCF3uuIaNAhQBna8ilZkjKLtJ+huVSCSK6uiO7sAyHrmejXCPCQlY5Vqv6uzq4nTM6eygQfyUTl9ILYCYRsHBUJ0QduIHknBL4OVlhfC8vFKjKEbU/EWUVla9rY2+J0A4uEADEXritfd8FAejmZY+zt/LQ08cBE3p7YeVfl6AsUeOFQf5QWMiw/shNpOWXavPV0d0WbzzaEb6OVrieWYSTybn44Ugycmr4PVaV35BAZwS62kAAcOZWPnKLy2AulSAxqwjK0nL08XXA2B6ecFVYwNvBCrdyizHnh5M6f/et5WYY5lYGew8//Ho6DYWqytepyjU4l5KPTh4K9PJxQEZBKfKK1Sgt10ClroBEEDConTN6+dgjs0CF/8Vd07meez9f9/5+s7OUwcPOApfS767Z7+VgiYwCFewsZRgd5AGJICC7SAWpRAJzqQRyqQQjOrnBwVqGiZ8fRHFZBTp5KNDZQ4EdF28jv0St/ZwveLQjOror4OVgCacabgTSB45hyZg4hjU9zKlhMK/6x5waBvOqf8bKaam6AonZRbiWUYTrmZXLxF/LLMK1zMJq/167l7ONOQKcbeDvbA0/Z2v433n4Olk1amW1xmAxvZkw5EDu7K18PPbpPtibizj6Jovp+sJf4obBvD48FtObRnPPq5OTE3r27InOnTvDzMwMp06dQlxcHGxtbbF//34EBQUZO8RqmntO62v9+vW4fPkyvv32WyQlJWHfvn0YOHBgg/pgMZ1MAb+INE0PymtmgQo2cql2pmZZuQYHrmXBWi5FF08FDt/IQaZShWEdXZFXXIZfTqVAWVIOESIUFjJIBAH5JWrYWkhhZW6GPQlZUJaoMbZHG6jKK/DXuXSUlWtQVqFBen4p7K3M8VSwN3ZeysD5VCWAu0V1WwspFjzaCf+Lu4pbuSWQSgQEutjAVSGHmURAqboCWYVluJlTrC1qdXCzhaO1OazMzdDD2x4JGYXYejZNW0ysTW2FW3OpBAF3CtA1FbgAIMDZGhFd3JB8IwG7b8u1s6ABwPPOkueptbxWZiZgSDsXdPZU4HpWEVJySzCxjxcOXMvGn2fSdNref4PBvZxt5MgtLtPe4OBgJcMHk3pgWEdXAEBSdhHGrN5XY1EbqLxR4O1xXfFIR1dczSjE/qtZcLezxO7LGdXiqI2FTIJxPb3ww5Gb2mP+ztbY/NJA/HYqBSdu5sFNIUdOkRr7rmZqC+H3G9TWGfuuZgEA/Jys4CQU4laZJcwEAenK0lpvmAAqC9RBbezgaG2O8C5ueKSjG5SlathbymBnKcPWc+n4+cQtHLyeDRdbOX59ZRAcre/OzL6WWYjno44iKbuyoO6usEBHD1t0cLdFH19HhLZ3gbn07vhk29k0vP7TGbSxt8R/JnTT7nN+Ob0Ar/90Gmdu5cNMImBkJze8MqwtPO0t8M3+G/hqzw2UVWjQ08ceG2cO0OlzxAfxuJpRCFdbOdq72WpzUfU+9fCxx96ELO313vueh3dxx9LHu8BCZoZNx5Lxz5/OaN+HqhssZGYCng4oR1RC/b5w6uhuCycbc+y/mq1z3O7OChRAZRE3Na9E5725t4hfm+5edriaUahz0wlQuex+D297/HT8Vr1idLI2RzcvOxy8nl3r35EAZ2t09LBFVkEZevraQ2Ehw4ajN5GcU1Jj+/oY2dkNi0Z3wj9/OqNzM8nDcraRo0KjgZlEgjfHdEL85UxsOZkCyZ2bCxJuF2hzZm4mwfSBvlh36KZ2tYS6VN1UcT9fJytYm0txIU2pPdbJQ4Ftfxusnwu7D8ewZEwcw5oe5tQwmFf9Y04Ng3nVv+aW06o92a/fKaxfy7hbZK/t3+JVPO0s4FdVZHeyxtAOLmjnVvs2SY3VkPEDN/o0UUV39kyXc7t0IqJWY/bs2fj9999x7NgxFBUVwcXFBU899RTefPNNdOzY0djhtWhffvkl9u7dC19fX3z99dcNLqQTERmLi63uDERzqQRDO7hqfx52z59dbOV4PfzB/z+Z80g7nZ9fG9Fe++cKjahdjvi1Ee2RlFMMF1s5pBIBV24XwNfRGnZWMozp7oELqUp0bWNX43LLZeUaXLldACcb8xr3kl7+ZBASbhfgtlIFXycr2MilSMouxrGkHNzIKsJj3TwxvJMrjtzIQbqyFFKJBFIzATZyKXreWaZeoxERcz4dsRduw8POAv7O1rA0N0Ogiw06utuivLwcW7dewbJpg3EhvRjXswrR3s0W/fwdIQgC0vJLsOPCbeQWq7XXrLCU4dGu7jUu/z65jzf6+TvitrIU7goLDGzrDD8na1xIVVYuPZ9fAjNBgL2VDIPbucDT3hJl5RrtNY3o5Aa3e/az93WyRtRzfbH5RAqGd3SFk40cOy/eRm5xGeRSMzzT3xf+zpXLp/f0cUBPHwcAwJM926C3jwN2X85AUnYx1HeWAA/r4oaRndxQqtbgaGIOTiXn4cXB/hjczgURXd1xIVUJJxtzhHdxh52lDJEh/ogMuXt9xWXlWLP3Bg5dz4a1XIqycg2yi1R4pp8vJvXxxgfbryBdWYo3wtrhQNx2jBoVCplMhsvpBfhyz3UAwJjuHujr54jUvBJ8EHsFpeUV+Ned2bT3uvcz/Xh3Tzze3RNl5RoIAqrtxxfoYoPd84dqZ0zXNcPh0SAPDOvoCrlUorOsdgd3W2x5aSD2Xs1CR3dbnc/l6+EdMamPN3ZezMATPdvoFNIB4O8j2mP9kSQsHtMFAS7W2HDkJuKvZCExuwiLx3RGsL8j3t12CVbmZogM8YO1eeXMfzeFXCeGSX28IYoirmYU4u8j2+PtPy9i/eGbmNCrDXpKE/HIoN6IT8jBbWUpbitLUVauwYQ+3hjRyRWX78x2draRo7NHZT63nkvDzZxi2FnK0M/fCYEu1riUXoAKjYgungrczCnGn2fTkFNYBlsLGZ7u74N3t13CT8dvoYunAv97uhe2X7iNS+kFKK/Q4JFObnismwdK1BU4eC0bB65lQ2omoKunHUZ0coOFTIJgf0coS9To4+eID7dfwZ6ETEwf4IcBgU54d9slOFqb45n+PhgV5AG51Az5xWqs3pWA7w4lQSII8HG0QpCXHULaOuGxbp7Vtkh4eWggLqYVYP/VLGQUlEJVrkFnDwXaOFhCpdbA3c4CDtbm+PnELRxPykVOsRrXMwtRUFqOsT08sWpid8jMJFgzvQ/+tzsBxy5cQ6CfDx4N8kRbVxvsvpQBS5kZunvb4URSHq5lFcLTzhKO1uawkJnBQiZBXrEa2y/cxs2cYljLzTAw0BkvDPKH/M7nQhAEPNbNE+N6tUGgiw087S1RXqHBuVQlTiTlorevA7p72+PZAX44m5KPDu62uJFZhF2XM2Ajl8LFRo4KUURZuQa3covx0/FbKCqrQFtXG3z1bB9sOla5MsfQ9i7oF+CEco0Gn+66igPXsnErtxjeDtV/pxIRERER6du9e7KHtHXWea5IVY4bWZWF9euZRUjMLkJiVhFu3FlJKjW/FKn5pThwrfIGYDsrmUGK6Q3BmekGZMi7IhNuF+DLPdeQm56Mz2ZHNIs7TVqC5nb3TkvBvD48zkxvGsyr/jGnd3FmOpkCzuoxTcyr/jGnhsG86k+FRsTRxBx09bDBzti/miSnoijifKoSbV1t9LL0YpGqHNY13FBzv3tv1NE3URSRU1QGR2tznf5N5bN6KjkPMefTMa2/r3a7iAfRaERIJPrPI8AxLBkXx7Cmhzk1DOZV/5hTw2Be9a8l5FQUReQWq3EjqxA3soorC+zZRXgpNBBd29jp/Xycmd4KtHOzxfInumDr1iRjh0JERERERERETchMIqB/gBPUanWTnVMQBL1+iVWfQjpQea2GIgiCwfYQbwo9vO3R4852BPVhqEI6EREREdHDEgQBjtbmcLR2RG9fR2OHo6N1TxEjIiIiIiIiIiIiIiIiIiKqAYvpREQmhDtzEJku/v0lIiIiIiIiIiIiMi0sphMRmQAzs8o9CZtyGUci0q/y8nIAgFTKXXZasqNHj2LUqFGwt7eHtbU1+vfvj02bNtX79VFRURAEodZHXFycQc5LRERERERERERE1fHbXCIiEyCTySCXy5Gfnw9bW1tjh0NEjaBUKmFmZqa9OYZant27dyM8PBwWFhaYMmUKbG1tsXnzZkyePBnJycmYP39+vfsaO3YsevToUe24n5+fQc9LREREREREREREd7GYTkRkIpydnZGSkoJbt27B1tYWZWVlKC0thUTCRUb0RaPRMK96xpxWLu9eVFQEpVIJDw8PCIJg7JDIAMrLyzFjxgxIJBLs2bNHWwhfvHgxgoODsXDhQkyYMAG+vr716u+JJ55AZGRkk5+XiIiIiIiIiIiI7mIxnYjIRCgUCgBAVlYWUlNTUVJSAktLSxbm9EgUReZVz5jTSoIgwN7eHnZ2dsYOhQxk165duHbtGp577jmdGeV2dnZYuHAhIiMjER0djcWLF7eI8xIREREREREREbUGLKYTEZkQhUIBhUKBkpIS7Nq1C0OGDIFMJjN2WC2GWq3Gnj17mFc9Yk4ryWQyLu/ewlXtZR4WFlbtufDwcABAfHx8vfs7efIksrOzUV5eDj8/P4wYMQJOTk4GPy8RERERERERERHdxWI6EZEJkkqlKC8vh4WFRasuUOqbmZkZ86pnzCm1FgkJCQCAdu3aVXvO3d0dNjY22jb18cknn+j8bGlpiSVLluCNN97Q63lVKhVUKpX2Z6VSCaDyRhi1Wl3veOurqk9D9N2aMa/6x5waBvOqf8ypYTCvDcdcEREREVFL1WyL6UePHsWSJUtw4MABqNVqBAUFYd68eZg0aVK9Xr9t2zZER0fj1KlTSE9PR1lZGXx8fBASEoI33ngD7du3r/aaBy0/O336dERFRTX2coiIiIioBcvPzweAWpfyVygU2jYP4u/vj9WrVyM8PBxeXl7IycnBrl27sGDBAvzrX/+ClZUVXn31Vb2dd8WKFVi2bFm147GxsbCysqoz3sbavn27wfpuzZhX/WNODYN51T/m1DCY1/orLi42dghERERERAbRLIvpu3fvRnh4OCwsLDBlyhTY2tpi8+bNmDx5MpKTkzF//vw6+9i6dSsOHTqEfv364dFHH4VMJsPFixcRHR2N77//Hlu3bsUjjzxS7XW+vr6IjIysdvzePSiJiIiIiAwhNDQUoaGh2p/btGmDadOmoVevXujTpw+WLl2Kl156CVKpfobxCxYswLx587Q/K5VKeHt7IywsDAqFQi/nuJdarcb27dsxcuRIrlahR8yr/jGnhsG86h9zahjMa8NVrW5DRERERNTSNLtienl5OWbMmAGJRII9e/Zoi9iLFy9GcHAwFi5ciAkTJsDX1/eB/bz33ntYvXp1teM7d+7EiBEj8MYbb+Do0aPVnvfz88PSpUv1cSlERERE1EpUzQyvbRa4UqmEg4NDo/vv0qULBg0ahB07duDixYsICgrSy3nlcjnkcnm14zKZzKDFA0P331oxr/rHnBoG86p/zKlhMK/1xzwRERERUUslMXYA99u1axeuXbuGp556Smc2uJ2dHRYuXIiysjJER0fX2Y+FhUWNx4cPHw4HBwdcvXpVXyETERERUStXtWd5TfuTp6eno7CwsMZ9zRvC2dkZAFBUVNSk5yUiIiIiIiIiImqtml0xPS4uDgAQFhZW7bnw8HAAQHx8fKP7P3jwIHJzc9G1a9can8/Ly8OXX36J5cuX4/PPP8fZs2cbfS4iIiIiah2qlmaPjY2t9lxMTIxOm8aoqKjAsWPHAEBnhSZDn5eIiIiIiIiIiKg1a3bLvFfNqqlpBo27uztsbGxqnHlTm9jYWBw4cAAqlQoJCQn4448/4OzsjA8//LDG9qdPn8asWbN0jkVERCA6Ohqurq4PPJdKpYJKpdL+XLVflFqthlqtrnfM9VXVpyH6bq2YU8NgXvWPOTUM5lX/mNOGY65M0/DhwxEQEID169dj7ty52hWW8vPzsXz5cpibm+PZZ5/Vtk9LS0N+fj48PDy0S7UDwPHjx9G7d2+dvisqKvCvf/0LV69exbBhw+Dh4dHo8xIREREREREREVH9NbtietV+j/d+qXgvhUJR656QNYmNjcX777+v/blt27bYsGFDtS8pAWD+/PkYP3482rdvD3Nzc5w7dw5vvfUWtm3bhjFjxuDgwYMwMzOr9VwrVqzAsmXLqh3/5ZdfYGVlVe+YG+rXX381WN+tFXNqGMyr/jGnhsG86h9zWn/FxcUAAFEUjRwJNYRUKsWaNWsQHh6OIUOGYMqUKbC1tcXmzZuRlJSEVatWwc/PT9t+wYIFiI6Oxtq1axEZGak93qdPH3Tr1g3dunVDmzZtkJOTg/j4eFy5cgVeXl5Ys2bNQ523LlWfu6qbQvVNrVajuLgYSqWSe6vqEfOqf8ypYTCv+secGgbz2nBVYweOYckYOIY1PcypYTCv+secGgbzqn/MacM1aPwqNjMjR44UAYgJCQk1Pu/p6SkqFIoG91tQUCAePnxYHD16tCiXy8Xvv/++Xq+rqKgQQ0NDRQDi5s2bH9i2tLRUzM/P1z4uXLggAuCDDz744IMPPvho8CM5ObnB4x0yvsOHD4sRERGiQqEQLS0txeDgYHHDhg3V2k2fPl0EIK5du1bn+Pz588WQkBDRzc1NlMlkorW1tdi9e3dx0aJFYk5OzkOfty7JyclG/+zzwQcffPDBBx+m++AYloyBY1g++OCDDz744KOxj/qMXwVRbF63jE6cOBE//fQTjh07VuPscVtbWzg4OODmzZuN6r+8vBx9+vTB1atXcePGDbi4uNT5mu+//x7PPPMM5s2bpzPLvS4ajQapqamwtbWFIAiNivdBlEolvL29kZycDIVCoff+WyPm1DCYV/1jTg2DedU/5rThRFFEQUEBPD09IZFIjB0OtTIcv5om5lX/mFPDYF71jzk1DOa14TiGJWPiGNb0MKeGwbzqH3NqGMyr/jGnDdeQ8WuzW+a9aq/0hISEasX09PR0FBYWIjg4uNH9S6VSDBs2DKdPn8axY8fw6KOP1vkaZ2dnAEBRUVGDziWRSODl5dWoOBtCoVDwL4eeMaeGwbzqH3NqGMyr/jGnDVPbdjdEhsbxq2ljXvWPOTUM5lX/mFPDYF4bhmNYMhaOYU0Xc2oYzKv+MaeGwbzqH3PaMPUdvza7W0VDQ0MBVO51fr+YmBidNo2VmpoKAPXeN+Dw4cMA0KD9JomIiIiIiIiIiIiIiIiIyHQ1u2L68OHDERAQgPXr1+PUqVPa4/n5+Vi+fDnMzc3x7LPPao+npaXh0qVLyM/P1+nn2LFjNfYfExODn3/+Gfb29hgwYID2+NmzZ6FWq6u1P3DgAFauXAmZTIaJEyc+5NUREREREREREREREREREZEpaHbLvEulUqxZswbh4eEYMmQIpkyZAltbW2zevBlJSUlYtWqVzgzxBQsWIDo6GmvXrkVkZKT2eN++fdG1a1d069YNXl5eKCoqwpkzZ7B3717IZDJ88803sLa21rZ///338eeff2LQoEHw9vaGTCbD+fPnERsbC0EQ8N///heBgYFNmIm6yeVyLFmyBHK53NihtBjMqWEwr/rHnBoG86p/zCkR3Yu/EwyDedU/5tQwmFf9Y04Ng3klonvxd4L+MaeGwbzqH3NqGMyr/jGnhiWIoigaO4iaHDlyBEuWLMGBAwegVqsRFBSEefPmYfLkyTrtIiMjayymr1ixArt378aFCxeQmZkJiUQCHx8fDB06FK+99ho6deqk08/PP/+M6OhonDlzBhkZGSgrK4O7uzsGDRqE11577aH2aSciIiIiIiIiIiIiIiIiItPSbIvpRERERERERERERERERERExtLs9kwnIiIiIiIiIiIiIiIiIiIyNhbTiYiIiIiIiIiIiIiIiIiI7sNiOhERERERERERERERERER0X1YTDdBR48exahRo2Bvbw9ra2v0798fmzZtMnZYzZ6fnx8EQajxMXTo0GrtVSoV/u///g/t2rWDhYUFPD09MXPmTGRkZDR98Ea2bt06zJo1C3369IFcLocgCIiKiqq1vVKpxLx58+Dr6wu5XA4/Pz+8/vrrKCwsrLG9RqPB6tWrERQUBEtLS7i4uGDq1Km4fv26ga6oeWhIXpcuXVrr51cQBCQmJtb4upiYGISGhsLW1hYKhQLDhg3Dzp07DXdRRpaSkoKPPvoIYWFh8PHxgbm5Odzd3TF+/HgcPny4xtfw8/pgDc0pP6tEVBuOYRuHY9jG4xhW/zh+1T+OXw2DY1gi0geOXxuPY9jG4xhW/ziG1T+OYfWP49fmTWrsAKhhdu/ejfDwcFhYWGDKlCmwtbXF5s2bMXnyZCQnJ2P+/PnGDrFZs7Ozw2uvvVbtuJ+fn87PGo0GY8eORUxMDPr374/x48cjISEBa9aswc6dO3Ho0CG4uLg0TdDNwKJFi5CUlARnZ2d4eHggKSmp1rZFRUUIDQ3FqVOnEBYWhqlTp+LkyZNYtWoV4uPjsWfPHlhYWOi8ZtasWVizZg26dOmCuXPnIjU1FZs2bUJsbCwOHTqEdu3aGfoSjaIhea0yffr0ap9XALC3t692bN26dZg2bRpcXFwQGRkJANi4cSNGjhyJTZs2YcKECQ95Bc3P6tWrsXLlSgQGBiIsLAwuLi5ISEjAL7/8gl9++QXr16/H5MmTte35ea1bQ3NahZ9VIroXx7APh2PYxuEYVv84ftU/jl8Ng2NYInpYHL8+PI5hG4djWP3jGFb/OIbVP45fmzmRTIZarRYDAwNFuVwunjx5Uns8Ly9PbN++vWhubi4mJiYaL8BmztfXV/T19a1X22+++UYEIE6dOlXUaDTa45999pkIQJw5c6aBomyetm/frv1srVixQgQgrl27tsa2ixcvFgGIb7zxhs7xN954QwQgLl++XOf4rl27RADikCFDRJVKpT2+detWEYAYFham34tpRhqS1yVLlogAxN27d9er75ycHNHe3l50dnYWk5OTtceTk5NFZ2dn0dnZWVQqlQ97Cc3O5s2bxbi4uGrH9+zZI8pkMtHBwUEsLS3VHufntW4NzSk/q0R0P45hHw7HsI3HMaz+cfyqfxy/GgbHsET0MDh+fXgcwzYex7D6xzGs/nEMq38cvzZvLKabkJiYGBGA+Nxzz1V7LioqSgQgLlu2zAiRmYaGDOIGDBggAqg2MNZoNGJAQIBobW0tFhcXGyDK5u9BAw6NRiN6enqKNjY2YmFhoc5zhYWFoo2NjRgQEKBzfOrUqSIAMT4+vlp/Q4cOFQGISUlJer2G5kjfA7kvvvii1t8JS5cuFQGI0dHRDxGx6QkLCxMBiEePHhVFkZ9Xfbg/p6LIzyoRVccx7MPhGFY/OIbVP45fDY/jV8PgGJaI6sLx68PjGFY/OIbVP45hDY9jWP3j+NX4uGe6CYmLiwMAhIWFVXsuPDwcABAfH9+UIZkclUqFqKgoLF++HJ9++mmNe02Ulpbi8OHD6NChA3x9fXWeEwQBI0eORFFREY4dO9ZUYZuMhIQEpKamIiQkBNbW1jrPWVtbIyQkBNevX0dycrL2eFxcnPa5+/FzXd2ePXuwcuVKvPfee/jll19q3VOGvy+qk8lkAACptHKHE35eH979Ob0XP6tEVIV/zx8ex7CGxTGBYXFM0HgcvxoGx7BEVBf+HdcPjmENi+MCw+KYoPE4htU/jl+Nj3umm5CEhAQAqHEvCHd3d9jY2GjbUM3S09Px3HPP6Rzr27cvfvjhBwQGBgIArl27Bo1GU+ueG1XHExISMHjwYMMGbGIe9BmtOh4TE4OEhAR4e3ujqKgIaWlp6Nq1K8zMzGpsf2+/BCxZskTnZ3t7e3z88cd49tlndY4/6L1ojXm9efMmduzYAQ8PDwQFBQHg5/Vh1ZTTe/GzSkRVOIZ9eBzDGhbHBIbFMUHjcPxqGBzDElF9cPyqHxzDGhbHBYbFMUHjcAyrfxy/Ng+cmW5C8vPzAQB2dnY1Pq9QKLRtqLrnnnsOO3fuxO3bt1FUVISTJ09i2rRpOHr0KIYPH46CggIA9cvzve3orobmjrmuv+7du+Obb77B9evXUVJSghs3bmD16tUQBAGRkZH47bffdNo/KLetLa9qtRrTpk2DSqXCypUrtYMwfl4br7acAvysElF1HMM+HI5hDY9jAsPgmKDxOH41DI5hiai+OH59eBzDGh7HBYbBMUHjcQyrfxy/Nh+cmU6txv136PTo0QPffvstAOC7777DV199hXnz5hkjNKI6jRs3TudnPz8/zJkzB506dcLIkSOxaNEiPP7440aKrvnSaDSIjIzEnj17MGPGDEybNs3YIZm8unLKzyoRkX5xDEumimOCxuH41TA4hiUialocw5Kp4pigcTiG1T+OX5sXzkw3IVV3jNR2d4hSqaz1bh2q3axZswAA+/fvB1C/PN/bju5qaO6Y64c3fPhwBAYG4uzZs9p8AQ/ObWvJq0ajwfPPP4/169fjmWeeweeff67zPD+vDVdXTh+En1Wi1otjWMPgGFZ/OCZoWhwT1I7jV8PgGJaIGorjV8PhGFZ/OC5oWhwT1I5jWP3j+LX5YTHdhDxo34L09HQUFhbWuu8E1c7Z2RkAUFRUBAAICAiARCKpdX+Iuvb4aM3q2lvj/txZW1vDw8MDN27cQEVFRZ3tqWZVn+Hi4mLtsQe9F60hrxqNBs899xyio6MxdepUREVFQSLR/V8eP68NU5+c1oWfVaLWiWNYw+AYVn84Jmh6HBNUx/GrYXAMS0SNwfGr4XAMqz8cFzQ9jgmq4xhW/zh+bZ5YTDchoaGhAIDY2Nhqz8XExOi0ofo7fPgwgMplMADA0tISwcHBuHz5MpKSknTaiqKI7du3w9raGn369GnqUJu9du3awdPTE/v379cOiqsUFRVh//798Pf3h7e3t/Z4aGio9rn7VX2uhwwZYtjATVhRURHOnz8Pa2tr7f8kgdb9+6JqwPHtt99i8uTJ+O6773T2k6nCz2v91TenD8LPKlHrxb/nhsExrP5wTNC0OCaojuNXw+AYlogai3/HDYdjWP3huKBpcUxQHcew+sfxazMmkslQq9ViQECAKJfLxZMnT2qP5+Xlie3btxfNzc3FGzduGC2+5uzixYtiUVFRjcfd3d1FAGJ8fLz2+DfffCMCEKdOnSpqNBrt8c8++0wEIM6cObNJ4m6OVqxYIQIQ165dW+PzixcvFgGIb7zxhs7xN954QwQgLl++XOf4rl27RADikCFDRJVKpT2+detWEYAYFham92tojh6UV6VSKV6+fLna8eLiYnHq1KkiAPG5557TeS4nJ0e0s7MTnZ2dxeTkZO3x5ORk0dnZWXR2dhaVSqXer8PYKioqxOnTp4sAxIkTJ4pqtfqB7fl5rVtDcsrPKhHVhGPYxuMYVn84htU/jl/1g+NXw+AYlogeBsevD4djWP3hGFb/OIbVD45h9Y/j1+ZNEEVR1HN9ngxo9+7dCA8Ph4WFBaZMmQJbW1ts3rwZSUlJWLVqFebPn2/sEJulpUuX4oMPPsCQIUPg6+sLa2trXLlyBVu3boVarcaCBQuwfPlybXuNRoNRo0YhJiYG/fv3R2hoKK5evYotW7bAz88Phw8fhouLixGvqGmtWbMG+/btAwCcPXsWJ06cQEhICNq2bQsAGDRoEF588UUAlXc+hYSE4PTp0wgLC0OvXr1w4sQJxMbGom/fvoiPj4elpaVO/zNmzMCaNWvQpUsXjB49Gmlpadi4cSNsbGxw8OBBtG/fvmkvuInUN6+JiYkICAhA37590alTJ7i7u+P27dvYsWMHbt26haCgIOzevRtOTk46/a9btw7Tpk2Di4sLJk+eDADYuHEjsrKysHHjRkycOLFpL7gJLF26FMuWLYONjQ3+9re/QSqVVmvzxBNPoEePHgD4ea2PhuSUn1Uiqg3HsI3DMezD4RhW/zh+1T+OXw2DY1gielgcvzYex7APh2NY/eMYVv84htU/jl+bOWNX86nhDh8+LEZERIgKhUK0tLQUg4ODxQ0bNhg7rGYtLi5OnDRpktiuXTtRoVCIUqlUdHd3F8eOHSvGxMTU+JrS0lJx6dKlYmBgoGhubi66u7uLL774opient7E0Rtf1R1RtT2mT5+u0z4vL0987bXXRG9vb1Emk4k+Pj7i/Pnza72zqaKiQvz444/FLl26iHK5XHRychInT54sXr16tQmuznjqm9f8/HzxlVdeEfv27Su6uLiIUqlUtLW1FYODg8X//Oc/YnFxca3n2LZtmzh48GDR2tpatLGxEUNDQ8Xt27c30RU2vbpyihruPOXn9cEaklN+VonoQTiGbTiOYR8Ox7D6x/Gr/nH8ahgcwxKRPnD82jgcwz4cjmH1j2NY/eMYVv84fm3eODOdiIiIiIiIiIiIiIiIiIjoPhJjB0BERERERERERERERERERNTcsJhORERERERERERERERERER0HxbTiYiIiIiIiIiIiIiIiIiI7sNiOhERERERERERERERERER0X1YTCciIiIiIiIiIiIiIiIiIroPi+lERERERERERERERERERET3YTGdiIiIiIiIiIiIiIiIiIjoPiymExERERERERERERERERER3YfFdCIiIiIiIiJqMomJiRAEAZGRkcYOhYiIiIioXjiGJWq9WEwnIiIiIiIiIiIiIiIiIiK6D4vpRERERERERERERERERERE92ExnYiIiIiIiIiIiIiIiIiI6D4sphMRERERERGZsD179uCxxx6Ds7Mz5HI52rVrh0WLFqG4uFjbJi4uDoIgYOnSpdi3bx+GDh0KW1tb2NvbY/z48bh69WqNfZ87dw6TJk2Cq6sr5HI5/P398dprryE7O7vG9hkZGZg/fz46dOgAS0tLODo6ol+/fli1alWN7a9evYpx48bBwcEB1tbWGDFiBE6fPv3wSSEiIiKiZo1jWCIyFYIoiqKxgyAiIiIiIiKihvvss8/wyiuvwN7eHo899hhcXV1x7NgxxMXFYeDAgdi9ezfMzc0RFxeHYcOGITw8HLt370ZERAS6dOmC8+fP4/fff4ezszMOHTqEgIAAbd/79u1DeHg4ysrKMGHCBPj5+eHgwYOIj49HYGAgDh06BGdnZ237y5cvY9iwYUhLS8OgQYMwcOBAFBUV4fz58zh9+jRycnIAAImJifD390doaCjOnTuHLl26oE+fPrh27Rp+/fVXODg44OLFi3Bzc2vyfBIRERGR4XEMS0QmRSQiIiIiIiIik3P+/HlRKpWK3bt3F7OysnSeW7FihQhAXLVqlSiKorh7924RgAhA/Pzzz3Xafv755yIAccyYMdpjFRUVYmBgoAhA/Ouvv3Tav/766yIA8fnnn9c53qdPHxGA+OWXX1aLNTk5WfvnGzduaGN59913ddotWrRIBCCuWLGiAZkgIiIiIlPBMSwRmRrOTCciIiIiIiIyQX/729/wySefYM+ePRg8eLDOcxqNBu7u7vDx8dHO8hk2bBjat2+PixcvQiKR6LTt2LEjrl69itu3b8PFxQV79+7FkCFD8Oijj2Lr1q06fRcWFsLX1xfFxcXIz8+Hubk5jhw5gn79+mHIkCGIj49/YNxVs3r8/f1x9epVnViqnnvyySexefNmPWSJiIiIiJoTjmGJyNRIjR0AERERERERETXcoUOHAAAxMTHYuXNntedlMhkuXbqkcywkJETniz8AkEgkCAkJQUJCAk6fPo0RI0bg5MmTAIChQ4dW69fGxgZ9+vRBbGwsLl++jKCgIBw5cgQAEBYWVu/4e/ToUS0WLy8vAEBeXl69+yEiIiIi08ExLBGZGhbTiYiIiIiIiExQ1f6N77zzTr1fU9sejlXH8/PzAQBKpfKB7T08PHTaVb2uTZs29Y5FoVBUOyaVVn5NUVFRUe9+iIiIiMh0cAxLRKZGUncTIiIiIiIiImpuqr7IUyqVEEWx1se9bt++XWNfVcft7Ox0+q6tfXp6uk47e3t7AEBKSspDXBERERERtXQcwxKRqWExnYiIiIiIiMgE9evXD8DdpTLrY//+/dBoNDrHNBoNDhw4AEEQ0L17dwBAz549AQBxcXHV+igqKsKxY8dgaWmJDh06AACCg4MBALGxsQ2+DiIiIiJqPTiGJSJTw2I6ERERERERkQl6+eWXIZVK8eqrr+LmzZvVns/Ly9PuG1nlypUr+Oqrr3SOffXVV7hy5QpGjx4NFxcXAJX7UgYGBmLbtm3YsWOHTvu3334b2dnZmDp1KszNzQEAffv2Rd++fbFnz55q/QOc7UNERERElTiGJSJTwz3TiYiIiIiIiExQ165d8b///Q8vvfQSOnTogFGjRiEwMBAFBQW4fv064uPjERkZic8//1z7mvDwcMydOxdbt25Fly5dcP78efz+++9wdnbGxx9/rG0nkUgQFRWF8PBwjBo1ChMnToSvry8OHjyIuLg4BAYG4t1339WJ5/vvv8fQoUMxc+ZMfPfddxgwYABKS0tx/vx5nDx5EtnZ2U2WGyIiIiJqnjiGJSJTw5npRERERERERCZqxowZ/9/eHaMmEIRhGP5yFcE7WNh4Avcmq72gB7BYPIOlJxCE7XYqr2BlZyPYmyoBp0klSeB56r8Yphp4+ZkMw5CmaVJKSdd1ORwOud1uWS6XWSwWL/OTySSn0yn3+z273S5936dpmgzDkNFo9DI7nU5TSsl8Ps/xeMx2u83lcknbtimlfG8AfRmPxzmfz2nbNtfrNV3XZb/f5/F4ZLVavfsqAAD4J7xhgf/k4/l8Pn/7EAAAAMD79H2f2WyW9XqdzWbz28cBAIAfecMCf4HNdAAAAAAAAACoiOkAAAAAAAAAUBHTAQAAAAAAAKDiz3QAAAAAAAAAqNhMBwAAAAAAAICKmA4AAAAAAAAAFTEdAAAAAAAAACpiOgAAAAAAAABUxHQAAAAAAAAAqIjpAAAAAAAAAFAR0wEAAAAAAACgIqYDAAAAAAAAQEVMBwAAAAAAAIDKJyGowR68tJYzAAAAAElFTkSuQmCC", "text/plain": [ - "\n", - " | Open | \n", - "High | \n", - "Low | \n", - "Close | \n", - "Adj Close | \n", - "Volume | \n", - "
---|---|---|---|---|---|---|
Date | \n", - "\n", - " | \n", - " | \n", - " | \n", - " | \n", - " | \n", - " |
2023-02-01 | \n", - "NaN | \n", - "NaN | \n", - "NaN | \n", - "NaN | \n", - "17616.300781 | \n", - "512900 | \n", - "
2023-02-02 | \n", - "-1.653417 | \n", - "-1.771062 | \n", - "0.533318 | \n", - "-0.033494 | \n", - "17610.400391 | \n", - "490100 | \n", - "
2023-02-03 | \n", - "1.168289 | \n", - "1.225794 | \n", - "0.792448 | \n", - "1.383560 | \n", - "17854.050781 | \n", - "424100 | \n", - "
2023-02-06 | \n", - "0.546226 | \n", - "-0.260777 | \n", - "0.649165 | \n", - "-0.501013 | \n", - "17764.599609 | \n", - "282500 | \n", - "
2023-02-07 | \n", - "-0.159672 | \n", - "-0.070405 | \n", - "-0.258775 | \n", - "-0.242615 | \n", - "17721.500000 | \n", - "0 | \n", - "