-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseurat3_lg-circ_alignment.R
328 lines (280 loc) · 22 KB
/
seurat3_lg-circ_alignment.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#!/home/upasna/miniconda3/envs/seurat3/bin/R
library(Seurat)
library(ggplot2)
library(Matrix)
library(cowplot)
library(plyr)
library(dplyr)
### Circulation inDrop-seq ###
circulation_expr <- read.delim('sudhir.merged.uninjured.expr.symbol.txt', header = T, sep = '\t', check.names = F, row.names = 1)
circulation_label <- read.delim('sudhir.merged.indropseq.mtcut.label.txt', header = T, sep = '\t', check.names = F, row.names = 1)
circulation_label <- circulation_label[, c(4, 1)]
colnames(circulation_label) <- c('Library', 'timepoint')
# uninjured_1
uninjured_1_label <- subset(circulation_label, Library == 'uninjured_1')
uninjured_1_label$timepoint <- 'Circ_indrop_120'
uninjured_1_label$anno_simple <- 'Circ_indrop_120'
uninjured_1_label$Subclustering <- 'Circ_indrop_120'
uninjured_1_expr <- circulation_expr[, rownames(uninjured_1_label)]
uninjured_1_expr <- as(as.matrix(uninjured_1_expr), "dgCMatrix")
# uninjured_2
uninjured_2_label <- subset(circulation_label, Library == 'uninjured_2')
uninjured_2_label$timepoint <- 'Circ_indrop_120'
uninjured_2_label$anno_simple <- 'Circ_indrop_120'
uninjured_2_label$Subclustering <- 'Circ_indrop_120'
uninjured_2_expr <- circulation_expr[, rownames(uninjured_2_label)]
uninjured_2_expr <- as(as.matrix(uninjured_2_expr), "dgCMatrix")
### Circulation 96 Drop-seq ###
circdrop96_expr <- read.delim('merged.exprs.circ.96AEL.IDs.symbol.txt', header = T, sep = '\t', check.names = F, row.names = 1)
circdrop96_label <- read.delim('dropseq.mtcut.label.96AEL.txt', header = T, sep = '\t', check.names = F, row.names = 1)
circdrop96_label <- circdrop96_label[, c(4, 1)]
colnames(circdrop96_label) <- c('Library', 'timepoint')
circdrop96_label$timepoint <- 'Circ_drop_96'
circdrop96_label$anno_simple <- 'Circ_drop_96'
circdrop96_label$Subclustering <- 'Circ_drop_96'
circdrop96_expr <- circdrop96_expr[, rownames(circdrop96_label)]
circdrop96_expr <- as(as.matrix(circdrop96_expr), "dgCMatrix")
### Circulation 120 Drop-seq ###
circdrop120_expr <- read.delim('merged.exprs.circ.120AEL.IDs.symbol.txt', header = T, sep = '\t', check.names = F, row.names = 1)
circdrop120_label <- read.delim('dropseq.mtcut.label.120AEL.txt', header = T, sep = '\t', check.names = F, row.names = 1)
circdrop120_label <- circdrop120_label[, c(4, 1)]
colnames(circdrop120_label) <- c('Library', 'timepoint')
circdrop120_label$timepoint <- 'Circ_drop_120'
circdrop120_label$anno_simple <- 'Circ_drop_120'
circdrop120_label$Subclustering <- 'Circ_drop_120'
circdrop120_expr <- circdrop120_expr[, rownames(circdrop120_label)]
circdrop120_expr <- as(as.matrix(circdrop120_expr), "dgCMatrix")
### lymph gland ###
lymphgland_expr <- read.delim('merged.3tps.expr.allGenes.IDs.symbol.txt', header = T, sep = '\t', check.names = F, row.names = 1)
lymphgland_label <- read.delim('labels.txt', header = T, sep = '\t', check.names = F, row.names = 1)
lymphgland_label <- subset(lymphgland_label, Subclustering != 'DV' & Subclustering != 'RG' & Subclustering != 'Neurons'); lymphgland_label <- droplevels(lymphgland_label)
lymphgland_label <- lymphgland_label[, c(4, 6, 7, 8)] # Library, timepoint, anno_simple, Subclustering
# LG 96
lymphgland96_label <- subset(lymphgland_label, timepoint == 'AEL96hr')
lymphgland96_label$timepoint <- 'LG_drop_96'
lymphgland96_expr <- lymphgland_expr[, rownames(lymphgland96_label)]
lymphgland96_expr <- as(as.matrix(lymphgland96_expr), "dgCMatrix")
# LG 120
lymphgland120_label <- subset(lymphgland_label, timepoint == 'AEL120hr')
lymphgland120_label$timepoint <- 'LG_drop_120'
lymphgland120_expr <- lymphgland_expr[, rownames(lymphgland120_label)]
lymphgland120_expr <- as(as.matrix(lymphgland120_expr), "dgCMatrix")
### Seurat objects for each dataset ###
uninjured_1 <- CreateSeuratObject(counts = uninjured_1_expr, project = "lg2circ")
uninjured_1 <- AddMetaData(object = uninjured_1, metadata = uninjured_1_label)
uninjured_1 <- NormalizeData(uninjured_1, normalization.method = "LogNormalize", scale.factor = 10000)
uninjured_1 <- FindVariableFeatures(object = uninjured_1, selection.method = "vst", nfeatures = 2000)
head(uninjured_1@meta.data)
uninjured_2 <- CreateSeuratObject(counts = uninjured_2_expr, project = "lg2circ")
uninjured_2 <- AddMetaData(object = uninjured_2, metadata = uninjured_2_label)
uninjured_2 <- NormalizeData(uninjured_2, normalization.method = "LogNormalize", scale.factor = 10000)
uninjured_2 <- FindVariableFeatures(object = uninjured_2, selection.method = "vst", nfeatures = 2000)
head(uninjured_2@meta.data)
circdrop96 <- CreateSeuratObject(counts = circdrop96_expr, project = "lg2circ")
circdrop96 <- AddMetaData(object = circdrop96, metadata = circdrop96_label)
circdrop96 <- NormalizeData(circdrop96, normalization.method = "LogNormalize", scale.factor = 10000)
circdrop96 <- FindVariableFeatures(object = circdrop96, selection.method = "vst", nfeatures = 2000)
head(circdrop96@meta.data)
circdrop120 <- CreateSeuratObject(counts = circdrop120_expr, project = "lg2circ")
circdrop120 <- AddMetaData(object = circdrop120, metadata = circdrop120_label)
circdrop120 <- NormalizeData(circdrop120, normalization.method = "LogNormalize", scale.factor = 10000)
circdrop120 <- FindVariableFeatures(object = circdrop120, selection.method = "vst", nfeatures = 2000)
head(circdrop120@meta.data)
lymphgland96 <- CreateSeuratObject(counts = lymphgland96_expr, project = "lg2circ")
lymphgland96 <- AddMetaData(object = lymphgland96, metadata = lymphgland96_label)
lymphgland96 <- NormalizeData(lymphgland96, normalization.method = "LogNormalize", scale.factor = 10000)
lymphgland96 <- FindVariableFeatures(object = lymphgland96, selection.method = "vst", nfeatures = 2000)
head(lymphgland96@meta.data)
lymphgland120 <- CreateSeuratObject(counts = lymphgland120_expr, project = "lg2circ")
lymphgland120 <- AddMetaData(object = lymphgland120, metadata = lymphgland120_label)
lymphgland120 <- NormalizeData(lymphgland120, normalization.method = "LogNormalize", scale.factor = 10000)
lymphgland120 <- FindVariableFeatures(object = lymphgland120, selection.method = "vst", nfeatures = 2000)
head(lymphgland120@meta.data)
save.image('tmp1.Rdata')
### Transfer labels ###
# LG_drop_120 -> Circ_indrop_120-1
transfer.anchors <- FindTransferAnchors(reference = lymphgland120, query = uninjured_1, dims = 1:30)
predictions <- TransferData(anchorset = transfer.anchors, refdata = lymphgland120$Subclustering, dims = 1:30)
uninjured_1@meta.data$Subclustering <- predictions$predicted.id
# LG_drop_120 -> Circ_indrop_120-2
transfer.anchors <- FindTransferAnchors(reference = lymphgland120, query = uninjured_2, dims = 1:30)
predictions <- TransferData(anchorset = transfer.anchors, refdata = lymphgland120$Subclustering, dims = 1:30)
uninjured_2@meta.data$Subclustering <- predictions$predicted.id
# LG_drop_120 -> Circ_drop_120
transfer.anchors <- FindTransferAnchors(reference = lymphgland120, query = circdrop120, dims = 1:30)
predictions <- TransferData(anchorset = transfer.anchors, refdata = lymphgland120$Subclustering, dims = 1:30)
circdrop120@meta.data$Subclustering <- predictions$predicted.id
# LG_drop_96 -> Circ_drop_96
transfer.anchors <- FindTransferAnchors(reference = lymphgland96, query = circdrop96, dims = 1:30)
predictions <- TransferData(anchorset = transfer.anchors, refdata = lymphgland96$Subclustering, dims = 1:30)
circdrop96@meta.data$Subclustering <- predictions$predicted.id
save.image('tmp2.Rdata')
### Anchor datasets ###
blood.anchors <- FindIntegrationAnchors(object.list = list(lymphgland96, lymphgland120, circdrop96, circdrop120, uninjured_1, uninjured_2), dims = 1:30)
blood.combined <- IntegrateData(anchorset = blood.anchors, dims = 1:30)
DefaultAssay(blood.combined) <- 'RNA'
blood.combined[["percent.mt"]] <- PercentageFeatureSet(object = blood.combined, pattern = "^mt:")
plot1 <- FeatureScatter(object = blood.combined, feature1 = "nCount_RNA", feature2 = "percent.mt", group.by = 'Library') + geom_abline(intercept = 10, col = 'red2', slope = 0)
plot2 <- FeatureScatter(object = blood.combined, feature1 = "nCount_RNA", feature2 = "nFeature_RNA", group.by = 'Library')
CombinePlots(plots = list(plot1, plot2))
ggsave('stats/2-2.stats.percent.mt_nFeature_bynCount_RNA.byLibrary.pdf', units = 'cm', width = 26, height = 10)
blood.combined@meta.data$timepoint <- factor(blood.combined@meta.data$timepoint, c('LG_drop_96', 'LG_drop_120', 'Circ_drop_96', 'Circ_drop_120', 'Circ_indrop_120'))
DefaultAssay(object = blood.combined) <- "integrated"
head(blood.combined@meta.data)
### The standard workflow ###
blood.combined <- ScaleData(object = blood.combined, vars.to.regress = c('Library', 'nCount_RNA', 'percent.mt'))
blood.combined <- RunPCA(object = blood.combined, npcs = 80)
blood.combined <- JackStraw(object = blood.combined, num.replicate = 100, dims = 80)
blood.combined <- ScoreJackStraw(object = blood.combined, dims = 1:80)
JackStrawPlot(blood.combined, dims = 1:80) # PCs
ggsave('stats/2-4.pca.JackStrawPlot.pdf', units = 'cm', width = 35, height = 14)
ElbowPlot(blood.combined, ndims = 80) # PCs
ggsave('stats/2-4.pca.ElbowPlot.pdf', units = 'cm', width = 15, height = 10)
save.image('tmp3.Rdata')
### UMAP ###
for (tmpseed in c(1021351:1021399)){
blood.combined <- RunUMAP(blood.combined, reduction = "pca", dims = 1:54, min.dist = 0.4, n.components = 3, seed.use = tmpseed, umap.method = 'umap-learn', metric = 'correlation')
DimPlot(object = blood.combined, reduction = "umap", group.by = "Subclustering", pt.size = .5, label = T, label.size = 2)
ggsave(paste(c('umap/compare/umap.1_2.bySubclustering.seed', tmpseed, '.mindist_0.4_.pdf'), collapse = ''), units = 'cm', width = 18, height = 12)
DimPlot(object = blood.combined, reduction = "umap", dims = c(1,3), group.by = "Subclustering", pt.size = .5, label = T, label.size = 2)
ggsave(paste(c('umap/compare/umap.1_3.bySubclustering.seed', tmpseed, '.mindist_0.4_.pdf'), collapse = ''), units = 'cm', width = 18, height = 12)
DimPlot(object = blood.combined, reduction = "umap", dims = c(2,3), group.by = "Subclustering", pt.size = .5, label = T, label.size = 2)
ggsave(paste(c('umap/compare/umap.2_3.bySubclustering.seed', tmpseed, '.mindist_0.4_.pdf'), collapse = ''), units = 'cm', width = 18, height = 12)
}
DefaultAssay(blood.combined) <- 'RNA'
# 1021290 0.3; 1021367 0.4
blood.combined <- RunUMAP(blood.combined, reduction = "pca", dims = 1:54, min.dist = 0.4, n.components = 3, seed.use = 1021367, umap.method = 'umap-learn', metric = 'correlation')
FeaturePlot(blood.combined, features = c('Antp', 'Dl', 'Ance', 'IM18', 'Hml', 'Ama', 'atilla', 'PPO1', 'dysf'), cols = c("grey","red"))
ggsave('umap/umap.1_2.markers.seed1021367.mindist_0.4.pdf', units = 'cm', width = 27, height = 22)
FeaturePlot(blood.combined, features = c('Antp', 'Dl', 'Ance', 'IM18', 'Hml', 'Ama', 'atilla', 'PPO1', 'dysf'), cols = c("grey","red"), dims = c(1,3))
ggsave('umap/umap.1_3.markers.seed1021367.mindist_0.4.pdf', units = 'cm', width = 27, height = 22)
FeaturePlot(blood.combined, features = c('Antp', 'Dl', 'Ance', 'IM18', 'Hml', 'Ama', 'atilla', 'PPO1', 'dysf'), cols = c("grey","red"), dims = c(2,3))
ggsave('umap/umap.2_3.markers.seed1021367.mindist_0.4.pdf', units = 'cm', width = 27, height = 22)
DimPlot(object = blood.combined, reduction = "umap", group.by = "timepoint", pt.size = .5)
ggsave('umap/umap.1_2.bytimepoint.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
DimPlot(object = blood.combined, reduction = "umap", group.by = "timepoint", pt.size = .5) + facet_wrap(~timepoint)
ggsave('umap/umap.1_2.bytimepointSep.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 20, height = 12)
DimPlot(object = blood.combined, reduction = "umap", group.by = "Library", pt.size = .5)
ggsave('umap/umap.1_2.byLibrary.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
DimPlot(object = blood.combined, reduction = "umap", group.by = "Library", pt.size = .5) + facet_wrap(~Library)
ggsave('umap/umap.1_2.byLibrarySep.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 28, height = 22)
DimPlot(object = blood.combined, reduction = "umap", dims = c(1,3), group.by = "Library", pt.size = .5) + facet_wrap(~Library)
ggsave('umap/umap.1_3.byLibrarySep.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 28, height = 22)
DimPlot(object = blood.combined, reduction = "umap", dims = c(2,3), group.by = "Library", pt.size = .5) + facet_wrap(~Library)
ggsave('umap/umap.2_3.byLibrarySep.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 28, height = 22)
DimPlot(object = blood.combined, reduction = "umap", group.by = "anno_simple", pt.size = .5, label = T, label.size = 2)
ggsave('umap/umap.1_2.byanno_simple.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
DimPlot(object = blood.combined, reduction = "umap", dims = c(1,3), group.by = "anno_simple", pt.size = .5, label = T, label.size = 2)
ggsave('umap/umap.1_3.byanno_simple.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
DimPlot(object = blood.combined, reduction = "umap", dims = c(2,3), group.by = "anno_simple", pt.size = .5, label = T, label.size = 2)
ggsave('umap/umap.2_3.byanno_simple.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
DimPlot(object = blood.combined, reduction = "umap", group.by = "Subclustering", pt.size = .5, label = T, label.size = 2)
ggsave('umap/umap.1_2.bySubclustering.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 18, height = 12)
DimPlot(object = blood.combined, reduction = "umap", dims = c(1,3), group.by = "Subclustering", pt.size = .5, label = T, label.size = 2)
ggsave('umap/umap.1_3.bySubclustering.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 18, height = 12)
DimPlot(object = blood.combined, reduction = "umap", dims = c(2,3), group.by = "Subclustering", pt.size = .5, label = T, label.size = 2)
ggsave('umap/umap.2_3.bySubclustering.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 18, height = 12)
save.image('tmp4.Rdata')
saveRDS(blood.combined, 'blood.combined.Rds')
#####################
head(blood.combined@meta.data)
DimPlot(blood.combined, group.by = 'origin', cols = c('#ffa500', '#7ac5cd'))
#ggsave('umap/umap.1_2.byOrigin.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 14, height = 12)
plt <- DimPlot(blood.combined, group.by = 'origin', cells = rownames(subset(blood.combined@meta.data, origin == 'LG')), cols = c('#ffa500')) +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
#ggsave('umap/umap.1_2.byOrigin-LG.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 4, height = 4)
plt <- DimPlot(blood.combined, group.by = 'origin', cells = rownames(subset(blood.combined@meta.data, origin == 'Circ')), cols = c('#7ac5cd')) +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
#ggsave('umap/umap.1_2.byOrigin-Circ.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 4, height = 4)
DimPlot(blood.combined, group.by = 'origin', cols = c('#ffa500', '#7ac5cd'), dims = c(1, 3))
#ggsave('umap/umap.1_3.byOrigin.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 14, height = 12)
DimPlot(blood.combined, group.by = 'origin', cols = c('#ffa500', '#7ac5cd'), dims = c(2, 3))
#ggsave('umap/umap.2_3.byOrigin.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 14, height = 12)
DimPlot(blood.combined, group.by = 'timepoint', cols = c('#ffda92', '#ffa500', '#a8e2d3', '#7ac5cd', '#4f9bab'))
#ggsave('umap/umap.1_2.bytimepoint.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
DimPlot(object = blood.combined, reduction = "umap", group.by = "timepoint", cols = c('#ffda92', '#ffa500', '#a8e2d3', '#7ac5cd', '#4f9bab')) + facet_wrap(~timepoint, ncol = 2)
#ggsave('umap/umap.1_2.bytimepointSep.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 18)
DimPlot(blood.combined, group.by = 'timepoint', cols = c('#ffda92', '#ffa500', '#a8e2d3', '#7ac5cd', '#4f9bab'), dims = c(1, 3))
#ggsave('umap/umap.1_3.bytimepoint.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
DimPlot(blood.combined, group.by = 'timepoint', cols = c('#ffda92', '#ffa500', '#a8e2d3', '#7ac5cd', '#4f9bab'), dims = c(2, 3))
#ggsave('umap/umap.2_3.bytimepoint.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
DimPlot(blood.combined, group.by = 'anno_simple', cols = c('#f15fa6', '#207eb3', '#a80d0c', '#f0a142', '#25a9b0', '#a4a4a4', '#1a1a1a'))
#ggsave('umap/umap.1_2.byanno_simple.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
plt <- DimPlot(blood.combined, group.by = 'anno_simple', cols = c('#f15fa6', '#207eb3', '#a80d0c', '#f0a142', '#25a9b0', '#a4a4a4', '#1a1a1a')) +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
#ggsave('umap/umap.1_2.byanno_simple.seed1021367.mindist_0.4_.augment.pdf', units = 'cm', width = 4, height = 4)
DimPlot(blood.combined, group.by = 'anno_simple', cols = c('#f15fa6', '#207eb3', '#a80d0c', '#f0a142', '#25a9b0', '#a4a4a4', '#1a1a1a'), dims = c(1, 3))
#ggsave('umap/umap.1_3.byanno_simple.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
DimPlot(blood.combined, group.by = 'anno_simple', cols = c('#f15fa6', '#207eb3', '#a80d0c', '#f0a142', '#25a9b0', '#a4a4a4', '#1a1a1a'), dims = c(2, 3))
#ggsave('umap/umap.2_3.byanno_simple.seed1021367.mindist_0.4_.pdf', units = 'cm', width = 16, height = 12)
### cell types
head(blood.combined@meta.data)
# PH
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'LG')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'PH')), cols.highlight = '#207eb3') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.PH-LG.pdf', units = 'cm', width = 4, height = 4)
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'Circ')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'PH')), cols.highlight = '#207eb3') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.PH-Circ.pdf', units = 'cm', width = 4, height = 4)
# PM
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'LG')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'PM')), cols.highlight = '#a80d0c') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.PM-LG.pdf', units = 'cm', width = 4, height = 4)
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'Circ')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'PM')), cols.highlight = '#a80d0c') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.PM-Circ.pdf', units = 'cm', width = 4, height = 4)
# LM
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'LG')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'LM')), cols.highlight = '#f0a142') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.LM-LG.pdf', units = 'cm', width = 4, height = 4)
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'Circ')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'LM')), cols.highlight = '#f0a142') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.LM-Circ.pdf', units = 'cm', width = 4, height = 4)
# CC
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'LG')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'CC')), cols.highlight = '#25a9b0') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.CC-LG.pdf', units = 'cm', width = 4, height = 4)
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'Circ')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'CC')), cols.highlight = '#25a9b0') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.CC-Circ.pdf', units = 'cm', width = 4, height = 4)
# GST-rich
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'LG')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'GST-rich')), cols.highlight = '#787878') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.GST-LG.pdf', units = 'cm', width = 4, height = 4)
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'Circ')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'GST-rich')), cols.highlight = '#787878') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.GST-Circ.pdf', units = 'cm', width = 4, height = 4)
# Adipohemocyte
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'LG')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'Adipohemocyte')), cols.highlight = '#1a1a1a') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.Adipohemocyte-LG.pdf', units = 'cm', width = 4, height = 4)
plt <- DimPlot(blood.combined, cells = rownames(subset(blood.combined@meta.data, origin == 'Circ')),
cells.highlight = rownames(subset(blood.combined@meta.data, anno_simple == 'Adipohemocyte')), cols.highlight = '#1a1a1a') +
theme_void() + theme(legend.position = 'None')
AugmentPlot(plt, dpi = 300, width = 4, height = 4)
ggsave('umap/highlight/umap.1_2.Adipohemocyte-Circ.pdf', units = 'cm', width = 4, height = 4)