-
Notifications
You must be signed in to change notification settings - Fork 0
/
trajectories analysis with Monocle3
533 lines (218 loc) · 9.03 KB
/
trajectories analysis with Monocle3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
title: "trajectories analysis with Monocle3"
date: 'Compiled: `r format(Sys.Date(), "%B %d, %Y")`'
output: html_document
---
In this vignette we will demonstrate how to construct cell trajectories with
Monocle 3 using single-cell ATAC-seq data. Please see the
Monocle 3 [website](https://cole-trapnell-lab.github.io/monocle3/) for
information about installing Monocle 3.
To facilitate conversion between the Seurat (used by Signac) and CellDataSet
(used by Monocle 3) formats, we will use a conversion function in the
[SeuratWrappers](https://github.com/satijalab/seurat-wrappers) package available
on GitHub.
## Data loading
We will use a single-cell ATAC-seq dataset containing human CD34+ hematopoietic
stem and progenitor cells published by
[Satpathy and Granja et al. (2019, Nature Biotechnology)](https://doi.org/10.1038/s41587-019-0206-z).
The processed dataset is available on NCBI GEO here:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129785
Note that the fragment file is present inside the `GSE129785_RAW.tar` archive,
and the index for the fragment file is not supplied. You can index the file
yourself using [tabix](https://www.htslib.org/doc/tabix.html), for example:
`tabix -p bed <fragment_file>`.
First we will load the dataset and perform some standard preprocessing using
Signac.
```{r message=FALSE, warning=FALSE}
library(Signac)
library(Seurat)
library(SeuratWrappers)
library(monocle3)
library(Matrix)
library(ggplot2)
library(patchwork)
set.seed(1234)
```
```{r}
filepath <- "~/data/satpathy19/GSE129785/GSE129785_scATAC-Hematopoiesis-CD34"
peaks <- read.table(paste0(filepath, ".peaks.txt.gz"), header = TRUE)
cells <- read.table(paste0(filepath, ".cell_barcodes.txt.gz"), header = TRUE, stringsAsFactors = FALSE)
rownames(cells) <- make.unique(cells$Barcodes)
mtx <- readMM(file = paste0(filepath, ".mtx"))
mtx <- as(object = mtx, Class = "dgCMatrix")
colnames(mtx) <- rownames(cells)
rownames(mtx) <- peaks$Feature
```
```{r message=FALSE, warning=FALSE}
bone_assay <- CreateChromatinAssay(
counts = mtx,
min.cells = 5,
fragments = "~/data/satpathy19/GSE129785/GSM3722029_CD34_Progenitors_Rep1_fragments.tsv.gz",
sep = c("_", "_"),
genome = "hg19"
)
bone <- CreateSeuratObject(
counts = bone_assay,
meta.data = cells,
assay = "ATAC"
)
# The dataset contains multiple cell types
# We can subset to include just one replicate of CD34+ progenitor cells
bone <- bone[, bone$Group_Barcode == "CD34_Progenitors_Rep1"]
# add cell type annotations from the original paper
cluster_names <- c("HSC", "MEP", "CMP-BMP", "LMPP", "CLP", "Pro-B", "Pre-B", "GMP",
"MDP", "pDC", "cDC", "Monocyte-1", "Monocyte-2", "Naive-B", "Memory-B",
"Plasma-cell", "Basophil", "Immature-NK", "Mature-NK1", "Mature-NK2", "Naive-CD4-T1",
"Naive-CD4-T2", "Naive-Treg", "Memory-CD4-T", "Treg", "Naive-CD8-T1", "Naive-CD8-T2",
"Naive-CD8-T3", "Central-memory-CD8-T", "Effector-memory-CD8-T", "Gamma delta T")
num.labels <- length(cluster_names)
names(cluster_names) <- paste0( rep("Cluster", num.labels), seq(num.labels) )
bone$celltype <- cluster_names[as.character(bone$Clusters)]
bone[["ATAC"]]
```
Next we can add gene annotations for the hg19 genome to the object. This will
be useful for computing quality control metrics (TSS enrichment score) and
plotting.
```{r message=FALSE, warning=FALSE}
library(EnsDb.Hsapiens.v75)
# extract gene annotations from EnsDb
annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v75)
# change to UCSC style since the data was mapped to hg19
seqlevelsStyle(annotations) <- 'UCSC'
genome(annotations) <- "hg19"
# add the gene information to the object
Annotation(bone) <- annotations
```
## Quality control
We'll compute TSS enrichment, nucleosome signal score, and the percentage of
counts in genomic blacklist regions for each cell, and use these metrics to
help remove low quality cells from the datasets.
```{r message=FALSE, warning=FALSE}
bone <- TSSEnrichment(bone)
bone <- NucleosomeSignal(bone)
bone$blacklist_fraction <- FractionCountsInRegion(bone, regions = blacklist_hg19)
```
```{r fig.height=6, fig.width=10, message=FALSE, warning=FALSE}
VlnPlot(
object = bone,
features = c("nCount_ATAC", "TSS.enrichment", "nucleosome_signal", "blacklist_fraction"),
pt.size = 0.1,
ncol = 4
)
```
```{r}
bone <- bone[, (bone$nCount_ATAC < 50000) &
(bone$TSS.enrichment > 2) &
(bone$nucleosome_signal < 5)]
```
## Dataset preprocessing
Next we can run a standard scATAC-seq analysis pipeline using Signac to perform
dimension reduction, clustering, and cell type annotation.
```{r message=FALSE, warning=FALSE}
bone <- FindTopFeatures(bone, min.cells = 10)
bone <- RunTFIDF(bone)
bone <- RunSVD(bone, n = 100)
DepthCor(bone)
```
```{r message=FALSE, warning=FALSE}
bone <- RunUMAP(
bone,
reduction = "lsi",
dims = 2:100,
reduction.name = "UMAP"
)
```
```{r message=FALSE, warning=FALSE}
bone <- FindNeighbors(bone, dims = 2:100, reduction = "lsi")
bone <- FindClusters(bone, resolution = 0.8, algorithm = 3)
```
```{r}
DimPlot(bone, label = TRUE) + NoLegend()
```
Assign each cluster to the most common cell type based on the original
annotations from the paper.
```{r}
for(i in levels(bone)) {
cells_to_reid <- WhichCells(bone, idents = i)
newid <- names(sort(table(bone$celltype[cells_to_reid]),decreasing=TRUE))[1]
Idents(bone, cells = cells_to_reid) <- newid
}
bone$assigned_celltype <- Idents(bone)
```
```{r}
DimPlot(bone, label = TRUE)
```
Next we can subset the different lineages and create a trajectory for each
lineage. Another way to build the trajectories is to use the whole dataset and
build separate pseudotime trajectories for the different cell partitions found
by Monocle 3.
```{r}
DefaultAssay(bone) <- "ATAC"
erythroid <- bone[, bone$assigned_celltype %in% c("HSC", "MEP", "CMP-BMP")]
lymphoid <- bone[, bone$assigned_celltype %in% c("HSC", "LMPP", "GMP", "CLP", "Pro-B", "pDC", "MDP", "GMP")]
```
## Building trajectories with Monocle 3
We can convert the Seurat object to a CellDataSet object using the
`as.cell_data_set()` function from [SeuratWrappers](https://github.com/satijalab/seurat-wrappers)
and build the trajectories using Monocle 3. We'll do this separately for
erythroid and lymphoid lineages, but you could explore other strategies building
a trajectory for all lineages together.
```{r message=FALSE, warning=FALSE}
erythroid.cds <- as.cell_data_set(erythroid)
erythroid.cds <- cluster_cells(cds = erythroid.cds, reduction_method = "UMAP")
erythroid.cds <- learn_graph(erythroid.cds, use_partition = TRUE)
lymphoid.cds <- as.cell_data_set(lymphoid)
lymphoid.cds <- cluster_cells(cds = lymphoid.cds, reduction_method = "UMAP")
lymphoid.cds <- learn_graph(lymphoid.cds, use_partition = TRUE)
```
To compute pseudotime estimates for each trajectory we need to decide what the
start of each trajectory is. In our case, we know that the hematopoietic stem
cells are the progenitors of other cell types in the trajectory, so we can set
these cells as the root of the trajectory. Monocle 3 includes an interactive
function to select cells as the root nodes in the graph. This function will be
launched if calling `order_cells()` without specifying the `root_cells` parameter.
Here we've pre-selected some cells as the root, and saved these to a file for
reproducibility. This file can be downloaded [here](https://www.dropbox.com/s/w5jbokcj9u6iq04/hsc_cells.txt).
```{r}
# load the pre-selected HSCs
hsc <- readLines("../vignette_data/hsc_cells.txt")
```
```{r message=FALSE, warning=FALSE}
# order cells
erythroid.cds <- order_cells(erythroid.cds, reduction_method = "UMAP", root_cells = hsc)
lymphoid.cds <- order_cells(lymphoid.cds, reduction_method = "UMAP", root_cells = hsc)
# plot trajectories colored by pseudotime
plot_cells(
cds = erythroid.cds,
color_cells_by = "pseudotime",
show_trajectory_graph = TRUE
)
plot_cells(
cds = lymphoid.cds,
color_cells_by = "pseudotime",
show_trajectory_graph = TRUE
)
```
Extract the pseudotime values and add to the Seurat object
```{r}
bone <- AddMetaData(
object = bone,
metadata = erythroid.cds@principal_graph_aux@listData$UMAP$pseudotime,
col.name = "Erythroid"
)
bone <- AddMetaData(
object = bone,
metadata = lymphoid.cds@principal_graph_aux@listData$UMAP$pseudotime,
col.name = "Lymphoid"
)
``
```{r fig.height=4, fig.width=8, message=FALSE, warning=FALSE}
FeaturePlot(bone, c("Erythroid", "Lymphoid"), pt.size = 0.1) & scale_color_viridis_c()
``
```{r, include=FALSE}
saveRDS(object = bone, file = "../vignette_data/cd34.rds")
```
## Acknowledgements
Thanks to the developers of Monocle 3, especially Cole Trapnell, Hannah Pliner,
and members of the [Trapnell lab](https://cole-trapnell-lab.github.io/). If you
use Monocle please cite the
[Monocle papers](https://cole-trapnell-lab.github.io/monocle3/docs/citations/).