-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
107 lines (63 loc) · 2.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
## seeds classification
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torch.optim as optim
import torchvision
from torch.utils.data import DataLoader
from data_loader import seeds_dataset # load the data Set
# from ResNet_models import _resnet50 ## load resnet model
#set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
# hyper parameters
in_channels = 3
num_classes = 4
learning_rate = 1e-3
batch_size = 256
num_epochs = 3
# datalaoder load data
dataset = seeds_dataset(csv_file = 'seeds_dataset_labels_file.csv', root_dir = 'seeds_dataset/images',
transform = transforms.ToTensor())
train_set, test_set = torch.utils.data.random_split(dataset, [14000, 3802])
train_loader = DataLoader(dataset=train_set, batch_size = batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_set, batch_size = batch_size, shuffle=True)
model = torchvision.models.googlenet(pretrained=False)
model.to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
data = data.to(device=device)
targets = targets.to(device=device)
# Forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# Backward
optimizer.zero_grad()
loss.backward()
# Gradient Descent or adam step
optimizer.step()
print(f'cost at each epoch {epoch} is {sum(losses)/len(losses)} ')
# checking accurscy on training set
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y ).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accurscy {float(num_correct)/float(num_samples)*100}')
model.train()
print('Checking accuracy on Traning set')
check_accuracy(train_loader, model)
print('Checking accuracy on Test Set')
check_accuracy(test_loader, model )