-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathextract_by_string.py
190 lines (164 loc) · 8.29 KB
/
extract_by_string.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""'extract_by_string.py' Written by Phil Wilmarth, OHSU.
The MIT License (MIT)
Copyright (c) 2017 Phillip A. Wilmarth and OHSU
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Direct questions to:
Technology & Research Collaborations, Oregon Health & Science University,
Ph: 503-494-8200, FAX: 503-494-4729, Email: techmgmt@ohsu.edu.
"""
# updated for Python 3 -PW 7/6/2017
import os
import sys
import fasta_lib
# flag for case-sensitive matching (True) or not (False)
CASE_SENSITIVE = True
# clean accessions/descriptions or not (and DB-specific cleaning options)
# NOTE: information can be lost if accessions/descriptions are cleaned
CLEAN_ACCESSIONS = False
REF_SEQ_ONLY = True
KEEP_UNIPROT_ID = False
# list strings to search for in header lines and name to use in filenames (do not include leading underscores)
# left string is the search string, right string is the output file tag (underscore added sutomatically)
##string_dict = { '|ref|':'ref_seq' }
##string_dict = { '_MYCLB':'_MYCLB', '_MYCLE':'_MYCLE' }
##string_dict = { '[Bacillus sp.':'Bacillus_sp' }
string_dict = { 'Homo sapiens':'human_string'}
string_dict = { 'Uncharacterized protein':'uncharacterized_proteins'}
def main(string_dict):
"""Main program to extract entries containing strings from databases.
Simple string search of pattern in combined accession/description lines.
Logical OR if more than one pattern is mapped to the same outfile.
Each matching protein is written once per output file with possible
compound header (nr) of all headers containing matching patterns.
If "cleaning" of accessions/descriptions is turned on for NCBI nr
databases, only the first header element will be retained and
any accession number cross-references will be lost.
Written by Phil Wilmarth, OHSU, 2009.
"""
print('=====================================================================')
print(' extract_by_string.py, v.1.1.0, written by Phil Wilmarth, OHSU, 2017 ')
print('=====================================================================')
# set some file paths and names
default = r'C:\Xcalibur\database'
if not os.path.exists(default):
default = os.getcwd()
db_file = fasta_lib.get_file(default, [('Zipped files', '*.gz'), ('Fasta files', '*.fasta')],
title_string='Select a FASTSA database')
if db_file == '' : sys.exit() # cancel button repsonse
db_folder, db_name = os.path.split(db_file)
base_name = db_name.replace('.gz', '')
if not base_name.endswith('.fasta'):
base_name = base_name + '.fasta'
# create a log file to mirror screen output
log_obj = open(os.path.join(db_folder, 'fasta_utilities.log'), 'a')
write = [None, log_obj]
fasta_lib.time_stamp_logfile('\n>>> starting: extract_by_string.py', log_obj)
# print the list of patterns that will be extracted
string_list = list(string_dict.items())
string_list.sort()
for obj in write:
print('...extracting entries containing these strings:', file=obj)
for i, t in enumerate(string_list):
print('......(%s) string "%s" to file ending in "%s"' % (i+1, t[0], t[1]), file=obj)
# open the output databases, initialize counters
string_files = {}
string_count = {}
name_count = {}
for string, name in string_dict.items():
fname = base_name.replace('.fasta', '_'+name+'.fasta')
fname = os.path.join(db_folder, fname)
string_files[name] = fname
string_count[string] = 0
name_count[name] = 0
for name in string_files.keys():
string_files[name] = open(string_files[name], 'w')
# create a FastaReader object, initialize counters, and start reading
x = fasta_lib.FastaReader(db_file)
prot = fasta_lib.Protein()
prot_read = 0
for obj in write:
print('...reading %s and extracting entries...' % (db_name,), file=obj)
while x.readNextProtein(prot, check_for_errs=False):
prot_read += 1
if (prot_read % 500000) == 0:
print('......(%s proteins read...)' % ("{0:,d}".format(prot_read),))
written = {} # make sure protein is written only ONCE per OUTFILE
header = prot.accession + ' ' + prot.description # recreate the '>' line
if not CASE_SENSITIVE: # convert to uppercase
header = header.upper()
for pattern in string_dict.keys():
new_pattern = pattern
if not CASE_SENSITIVE: # case insensitive matching
new_pattern = new_pattern.upper()
for head in header.split(chr(1)): # check each header for matches
if new_pattern in head:
name = string_dict[pattern]
name_header = written.get(name, '')
if name_header:
name_header = name_header + chr(1) + head
written[name] = name_header
else:
written[name] = head
string_count[pattern] += 1
# write any matching proteins to appropriate out file
for name in written.keys():
name_count[name] += 1 # output file write counters
f = string_files[name] # output file pointers
header = written[name] # composite header of name's matches
# set the accession and description fields before writing
prot.accession = header.split()[0]
prot.new_acc = prot.accession
prot.description = header[(len(prot.accession)+1):]
prot.new_desc = prot.description
if CLEAN_ACCESSIONS:
if prot.accession.startswith('gi|'):
prot.parseNCBI(REF_SEQ_ONLY)
elif prot.accession.startswith('sp|') or prot.accession.startswith('tr|'):
prot.parseUniProt(KEEP_UNIPROT_ID)
prot.printProtein(f) # write any matching proteins
# close files
for f in string_files.values():
f.close()
# print out the summary stuff
for obj in write:
print('...%s protein entries in %s' % ("{0:,d}".format(prot_read), db_name), file=obj)
strings = list(string_count.keys())
strings.sort()
for i, string in enumerate(strings):
print('......(%s) pattern "%s" was found in %s proteins' %
(i+1, string, "{0:,d}".format(string_count[string])), file=obj)
print('...output file summaries...', file=obj)
names = list(string_files.keys())
names.sort()
for i, name in enumerate(names):
temp = base_name.replace('.fasta', '_'+name+'.fasta')
print('......(%s) %s proteins extracted and written to %s' %
(i+1, "{0:,d}".format(name_count[name]), temp), file=obj)
fasta_lib.time_stamp_logfile('>>> ending: extract_by_string.py', log_obj)
log_obj.close()
return
# check for command line launch and see if any arguments passed
if __name__ == '__main__':
if len(sys.argv) > 1:
arg_dict = fasta_lib.string_cmd_line_checker(sys.argv)
if arg_dict:
main(arg_dict)
else:
sys.exit()
else:
main(string_dict)
# end