-
Notifications
You must be signed in to change notification settings - Fork 22
/
prep.py
189 lines (146 loc) · 4.58 KB
/
prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import pickle
import os
import numpy as np
import nibabel as nib
from utils import Parser
import time
args = Parser()
patch_shapes = [
(22, 22, 22),
(25, 25, 25),
(28, 28, 28)
]
modalities = ('flair', 't1ce', 't1', 't2')
def nib_load(file_name):
if not os.path.exists(file_name):
return np.array([1])
proxy = nib.load(file_name)
data = proxy.get_data()
proxy.uncache()
return data
def get_dist2center(patch_shape):
ndim = len(patch_shape)
dist2center = np.zeros((ndim, 2) , dtype='int32') # from patch boundaries
for dim, shape in enumerate(patch_shape) :
dist2center[dim] = [shape/2 - 1, shape/2] if shape % 2 == 0 \
else [shape//2, shape//2]
return dist2center
def process(path, has_label=True):
label = np.array(
nib_load(path + 'seg.nii.gz'), dtype='uint8', order='C')
images = np.stack([
np.array(nib_load(path + modal + '.nii.gz'), dtype='float32', order='C')
for modal in modalities], -1)
mask = images.sum(-1) > 0
for k in range(4):
x = images[..., k]
y = x[mask]
lower = np.percentile(y, 0.2)
upper = np.percentile(y, 99.8)
x[mask & (x < lower)] = lower
x[mask & (x > upper)] = upper
y = x[mask]
# 0.8885
#x[mask] -= y.mean()
#x[mask] /= y.std()
# 0.909
x -= y.mean()
x /= y.std()
#0.8704
#x /= y.mean()
images[..., k] = x
#return images, label
#output = path + 'data_f32_divm.pkl'
output = path + 'data_f32.pkl'
with open(output, 'wb') as f:
pickle.dump((images, label), f)
#mean, std = [], []
#for k in range(4):
# x = images[..., k]
# y = x[mask]
# lower = np.percentile(y, 0.2)
# upper = np.percentile(y, 99.8)
# x[mask & (x < lower)] = lower
# x[mask & (x > upper)] = upper
# y = x[mask]
# mean.append(y.mean())
# std.append(y.std())
# images[..., k] = x
#path = '/home/thuyen/FastData/'
#output = path + 'data_i16.pkl'
#with open(output, 'wb') as f:
# pickle.dump((images, mask, mean, std, label), f)
if not has_label:
return
for patch_shape in patch_shapes:
dist2center = get_dist2center(patch_shape)
sx, sy, sz = dist2center[:, 0] # left-most boundary
ex, ey, ez = mask.shape - dist2center[:, 1] # right-most boundary
shape = mask.shape
maps = np.zeros(shape, dtype="int16")
maps[sx:ex, sy:ey, sz:ez] = 1
fg = (label > 0).astype('int16')
bg = ((mask > 0) * (fg == 0)).astype('int16')
fg = fg * maps
bg = bg * maps
fg = np.stack(fg.nonzero()).T.astype('uint8')
bg = np.stack(bg.nonzero()).T.astype('uint8')
suffix = '{}x{}x{}_'.format(*patch_shape)
output = path + suffix + 'coords.pkl'
with open(output, 'wb') as f:
pickle.dump((fg, bg), f)
def doit(dset):
root, has_label = dset['root'], dset['has_label']
file_list = os.path.join(root, dset['flist'])
subjects = open(file_list).read().splitlines()
names = [sub.split('/')[-1] for sub in subjects]
paths = [os.path.join(root, sub, name + '_') for sub, name in zip(subjects, names)]
for path in paths:
process(path, has_label)
# train
train_set = {
'root': args.data_dir,
'flist': 'all.txt',
'has_label': True
}
####
# test/validation data
test_set = {
'root': args.test_data_dir, #'/home/thuyen/Data/brats17/Brats17ValidationData',
'flist': 'test.txt',
'has_label': False
}
# docker
doit(train_set)
doit(test_set)
# benchmarking the data reading
# load f32 is faster (0.2s) than load i16 (0.7s)
#def pkload_i16(fname):
# with open(fname, 'rb') as f:
# images, mask, mean, std, label = pickle.load(f)
#
# images = images.astype('float32')
# for c in range(4):
# x = images[..., c]
# x[mask] -= mean[c]
# x[mask] /= std[c]
# images[..., c] = x
#
# return images, label
#
#def pkload(fname):
# with open(fname, 'rb') as f:
# return pickle.load(f)
#
#fname = '/home/thuyen/FastData/data_f32.pkl'
#fname = '/home/thuyen/FastData/data_i16.pkl'
#
#start = time.time()
##x = pkload_i16(fname)
#x = pkload(fname)
#print(time.time() - start)
#path = '/media/ssd1/thuyen/Brats17TrainingData/LGG/Brats17_2013_0_1/Brats17_2013_0_1_'
#a2, b2 = process(path, True)
#a1, b1 = pickle.load(open('/home/thuyen/Brats17_2013_0_1_data_f32.pkl', 'rb'))
#x = np.abs(a2-a1)
#print(x.max())