Skip to content

Latest commit

 

History

History
230 lines (186 loc) · 9.26 KB

README.md

File metadata and controls

230 lines (186 loc) · 9.26 KB

optics_functions

Cron Testing Code Climate coverage Code Climate maintainability (percentage) GitHub last commit

PyPI Version GitHub release Conda-forge Version DOI

This package provides functions to calculate various optics parameters from MAD-X TWISS outputs, such as RDTs and coupling. The functionality mainly manipulates and returns TFS files or TfsDataFrame objects from our tfs-pandas package.

See the API documentation for details.

Installing

Installation is easily done via pip:

python -m pip install optics_functions

One can also install in a conda environment via the conda-forge channel with:

conda install -c conda-forge optics_functions

Example Usage

Warning: In certain scenarios, e.g. in case of non-zero closed orbit, the RDT calculations can be unreliable for thick lattices. Convert to a thin lattice by slicing the lattice to reduce the error of the analytical approximation.

Coupling Example:

import logging
import sys

import tfs  # tfs-pandas

from optics_functions.coupling import coupling_via_cmatrix, closest_tune_approach
from optics_functions.utils import split_complex_columns

logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")

# read MAD-X twiss output
df_twiss = tfs.read("twiss.tfs", index="NAME")

# calculate coupling from the cmatrix
df_coupling = coupling_via_cmatrix(df_twiss)

# Example:
# print(df_coupling) 
#
#                            F1001               F1010  ...       C22     GAMMA
# NAME                                                  ...
# IP3          -0.000000+0.000004j -0.004026+0.003574j  ... -0.007140  1.000058
# MCBWV.4R3.B1  0.000001+0.000004j -0.002429+0.004805j  ... -0.009601  1.000058
# BPMW.4R3.B1   0.000001+0.000004j -0.002351+0.004843j  ... -0.009678  1.000058
# MQWA.A4R3.B1  0.000001+0.000004j -0.001852+0.005055j  ... -0.010102  1.000058
# MQWA.B4R3.B1  0.000001+0.000004j -0.001231+0.005241j  ... -0.010474  1.000058
# ...                          ...                 ...  ...       ...       ...
# MQWB.4L3.B1  -0.000000+0.000004j -0.005059+0.001842j  ... -0.003675  1.000058
# MQWA.B4L3.B1 -0.000000+0.000004j -0.004958+0.002098j  ... -0.004187  1.000058
# MQWA.A4L3.B1 -0.000000+0.000004j -0.004850+0.002337j  ... -0.004666  1.000058
# BPMW.4L3.B1  -0.000000+0.000004j -0.004831+0.002376j  ... -0.004743  1.000058
# MCBWH.4L3.B1 -0.000000+0.000004j -0.004691+0.002641j  ... -0.005274  1.000058


# calculate the closest tune approach from the complex rdts
df_dqmin = closest_tune_approach(
    df_coupling, qx=df_twiss.Q1, qy=df_twiss.Q2, method='calaga'
)

# Example:
# print(df_dqmin) 
#
#                  DELTAQMIN
# NAME
# IP3           1.760865e-07
# MCBWV.4R3.B1  1.760865e-07
# BPMW.4R3.B1   1.760866e-07
# MQWA.A4R3.B1  1.760865e-07
# MQWA.B4R3.B1  1.760865e-07
# ...                    ...
# MQWB.4L3.B1   1.760865e-07
# MQWA.B4L3.B1  1.760865e-07
# MQWA.A4L3.B1  1.760866e-07
# BPMW.4L3.B1   1.760865e-07
# MCBWH.4L3.B1  1.760865e-07

# do something with the data.
# (...)

# write out
# as the writer can only handle real data, 
# you need to split the rdts into real and imaginary parts before writing
tfs.write(
    "coupling.tfs",
    split_complex_columns(df_coupling, columns=["F1001", "F1010"]),
    save_index="NAME",
)

RDT Example:

import logging
import sys

import tfs  # tfs-pandas

from optics_functions.rdt import calculate_rdts, generator, jklm2str
from optics_functions.utils import prepare_twiss_dataframe, split_complex_columns

logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")

# read MAD-X twiss output
df_twiss = tfs.read("twiss.tfs", index="NAME")

# generate all valid RDT names, here for RDTs of order 2
rdts = [jklm2str(*jklm) for jklm in generator(orders=[2])[2]]

# check correct signs (i.e if beam==4), merge twiss and errors, 
# add empty K(S)L columns if needed
df_twiss = prepare_twiss_dataframe(df_twiss=df_twiss, df_errors=None, max_order=5)

# do the actual rdt calculation
df_rdts = calculate_rdts(
    df_twiss,
    rdts=rdts,
    loop_phases=True,  # loop over phase-advance calculation, slower but saves memory
    feeddown=2,  # include feed-down up to this order
    complex_columns=True,  # complex output
)

# Example: 
# print(df_rdts) 
#                            F0002  ...               F2000
# NAME                              ...
# IP3           2.673376-1.045712j  ... -2.863617-0.789910j
# MCBWV.4R3.B1  2.475684-1.453081j  ... -1.927365-2.260426j
# BPMW.4R3.B1   2.470411-1.462027j  ... -1.862287-2.314336j
# MQWA.A4R3.B1  2.440763-1.511004j  ... -1.413706-2.612603j
# MQWA.B4R3.B1  2.228282-1.555324j  ... -0.788608-2.855177j
# ...                          ...  ...                 ...
# MQWB.4L3.B1   2.733194+0.167312j  ... -2.632290+0.135418j
# MQWA.B4L3.B1  2.763986-0.041253j  ... -2.713212+0.063256j
# MQWA.A4L3.B1  2.804960-0.235493j  ... -2.847616-0.017922j
# BPMW.4L3.B1   2.858218-0.266543j  ... -2.970384-0.032890j
# MCBWH.4L3.B1  2.831426-0.472735j  ... -2.966818-0.149180j

# do something with the rdts.
# (...)

# write out
# as the writer can only handle real data, either set real = True above 
# or split the rdts into real and imaginary parts before writing
tfs.write(
    "rdts.tfs",
    split_complex_columns(df_rdts, columns=rdts),
    save_index="NAME"
)

Appending Example:

import logging
import sys

import tfs  # tfs-pandas

from optics_functions.coupling import coupling_via_cmatrix, closest_tune_approach
from optics_functions.utils import split_complex_columns

logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")

# read MAD-X twiss output
df_twiss = tfs.read("twiss.tfs", index="NAME")

# calculate coupling from the cmatrix and append to original dataframe
# output=['rdts'] is used to avoid the output of the gamma and C## columns.
df_twiss[["F1001", "F1010"]] = coupling_via_cmatrix(df_twiss, output=['rdts'])

# Example:
# print(df_twiss)
# 
# Headers:
# NAME: TWISS
# TYPE: TWISS
# SEQUENCE: LHCB1
# ...
# ORIGIN: 5.05.02 Linux 64
# DATE: 01/02/21
# TIME: 19.58.08
# 
#                  KEYWORD           S  ...               F1001               F1010
# NAME                                  ...
# IP3               MARKER      0.0000  ... -0.000000+0.000004j -0.004026+0.003574j
# MCBWV.4R3.B1     VKICKER     21.8800  ...  0.000001+0.000004j -0.002429+0.004805j
# BPMW.4R3.B1      MONITOR     22.5205  ...  0.000001+0.000004j -0.002351+0.004843j
# MQWA.A4R3.B1  QUADRUPOLE     26.1890  ...  0.000001+0.000004j -0.001852+0.005055j
# MQWA.B4R3.B1  QUADRUPOLE     29.9890  ...  0.000001+0.000004j -0.001231+0.005241j
# ...                  ...         ...  ...                 ...                 ...
# MQWB.4L3.B1   QUADRUPOLE  26628.2022  ... -0.000000+0.000004j -0.005059+0.001842j
# MQWA.B4L3.B1  QUADRUPOLE  26632.0022  ... -0.000000+0.000004j -0.004958+0.002098j
# MQWA.A4L3.B1  QUADRUPOLE  26635.8022  ... -0.000000+0.000004j -0.004850+0.002337j
# BPMW.4L3.B1      MONITOR  26636.4387  ... -0.000000+0.000004j -0.004831+0.002376j
# MCBWH.4L3.B1     HKICKER  26641.0332  ... -0.000000+0.000004j -0.004691+0.002641j

Modules

  • coupling - Functions to estimate coupling from twiss dataframes and different methods to calculate the closest tune approach from the calculated coupling RDTs. (coupling.py, doc)
  • rdt - Functions for the calculations of Resonance Driving Terms, as well as getting lists of valid driving term indices for certain orders. (rdt.py, doc)
  • utils - Helper functions to prepare the twiss dataframes for use with the optics functions as well as reusable utilities, that are needed within multiple optics calculations. (utils.py, doc)

License

This project is licensed under the MIT License - see the LICENSE file for details.