diff --git a/src/qseek/magnitudes/moment_magnitude.py b/src/qseek/magnitudes/moment_magnitude.py index 9d56739b..c937b8ad 100644 --- a/src/qseek/magnitudes/moment_magnitude.py +++ b/src/qseek/magnitudes/moment_magnitude.py @@ -13,7 +13,7 @@ PeakAmplitudesBase, PeakAmplitudesStore, ) -from qseek.utils import CACHE_DIR, MeasurementUnit +from qseek.utils import CACHE_DIR if TYPE_CHECKING: from pyrocko.squirrel import Squirrel @@ -52,23 +52,19 @@ def from_store( raise NotImplementedError -""" -Problems: -* Set the measurement unit for the traces in the selector. -* Set the distance range for the selector. -""" - - class MomentMagnitudeExtractor(EventMagnitudeCalculator): magnitude: Literal["MomentMagnitude"] = "MomentMagnitude" seconds_before: PositiveFloat = 10.0 seconds_after: PositiveFloat = 10.0 padding_seconds: PositiveFloat = 10.0 - quantity: MeasurementUnit = "displacement" gf_store_dirs: list[DirectoryPath] = [Path(".")] - models: list[PeakAmplitudesBase] = [PeakAmplitudesBase()] + + models: list[PeakAmplitudesBase] = Field( + default_factory=list, + description="The peak amplitude models to use.", + ) _stores: list[PeakAmplitudesStore] = PrivateAttr(default_factory=list) diff --git a/src/qseek/magnitudes/moment_magnitude_store.py b/src/qseek/magnitudes/moment_magnitude_store.py index 7c3ba011..3d6d485e 100644 --- a/src/qseek/magnitudes/moment_magnitude_store.py +++ b/src/qseek/magnitudes/moment_magnitude_store.py @@ -2,18 +2,21 @@ import asyncio import hashlib +import itertools import logging import struct from functools import cached_property from pathlib import Path -from typing import TYPE_CHECKING, Callable, ClassVar, Literal, NamedTuple +from typing import TYPE_CHECKING, Callable, ClassVar, Literal, NamedTuple, get_args from uuid import UUID, uuid4 import numpy as np import pyrocko.moment_tensor as pmt from pydantic import ( BaseModel, + ConfigDict, Field, + PositiveFloat, PrivateAttr, ValidationError, ) @@ -29,14 +32,39 @@ ) if TYPE_CHECKING: + from matplotlib.axes import Axes + from pyrocko.cake import LayeredModel from pyrocko.trace import Trace KM = 1e3 +NM = 1e-9 logger = logging.getLogger(__name__) PeakAmplitude = Literal["horizontal", "vertical", "absolute"] -Interpolation = Literal["nearest_neighbour", "multilinear"] +Interpolation = Literal["nearest_neighbor", "multilinear"] + +Components = Literal["Z", "R", "T"] +_DIPS: dict[Components, float] = {"Z": -90.0, "R": 0.0, "T": 0.0} +_AZIMUTHS: dict[Components, float] = {"Z": 0.0, "R": 0.0, "T": 0.0} + + +def _get_dip(component: Components) -> float: + return _DIPS[component] + + +def _get_azimuth(component: Components) -> float: + azi = _AZIMUTHS[component] + if component == "T": + azi += 90.0 + return azi + + +def _get_target(targets: list[gf.Target], nsl: tuple[str, str, str]) -> gf.Target: + for target in targets: + if nsl == target.codes[:3]: + return target + raise KeyError(f"No target for {nsl}.") def trace_amplitude(traces: list[Trace], channel_selector: ChannelSelector) -> float: @@ -79,7 +107,10 @@ class PeakAmplitudesBase(BaseModel): default=None, description="Frequency range for the peak amplitude.", ) - + max_distance: PositiveFloat = Field( + default=100.0 * KM, + description="Maximum surface distances to the source for the receivers.", + ) reference_magnitude: float = Field( default=1.0, ge=-1.0, @@ -95,7 +126,7 @@ class PeakAmplitudesBase(BaseModel): description="Stress drop range in MPa.", ) gf_interpolation: Interpolation = Field( - default="nearest_neighbour", + default="nearest_neighbor", description="Interpolation method for the Pyrocko GF Store", ) @@ -136,6 +167,13 @@ class ModelledAmplitude(NamedTuple): class SiteAmplitudesCollection(BaseModel): source_depth: float + quantity: MeasurementUnit + reference_magnitude: float + rupture_velocities: Range + stress_drop: Range + gf_store_id: str + frequency_range: Range + site_amplitudes: list[SiteAmplitude] = Field(default_factory=list) @staticmethod @@ -145,16 +183,16 @@ def wrapped(self) -> np.ndarray: return wrapped - _distances = cached_property(_get_numpy_attribute("distance")) - _vertical = cached_property(_get_numpy_attribute("peak_vertical")) - _absolute = cached_property(_get_numpy_attribute("peak_absolute")) - _horizontal = cached_property(_get_numpy_attribute("peak_horizontal")) + _distances = cached_property[np.ndarray](_get_numpy_attribute("distance")) + _vertical = cached_property[np.ndarray](_get_numpy_attribute("peak_vertical")) + _absolute = cached_property[np.ndarray](_get_numpy_attribute("peak_absolute")) + _horizontal = cached_property[np.ndarray](_get_numpy_attribute("peak_horizontal")) def get_amplitude( self, distance: float, n_amplitudes: int, - max_distance: float, + max_distance: float = 0.0, peak_amplitude: PeakAmplitude = "absolute", ) -> ModelledAmplitude: """ @@ -164,7 +202,8 @@ def get_amplitude( distance (float): The distance at which to retrieve the amplitudes. n_amplitudes (int): The number of amplitudes to retrieve. max_distance (float): The maximum distance allowed for - the retrieved amplitudes. + the retrieved amplitudes. If 0.0, no maximum distance is applied and the + number of amplitudes will be exactly n_amplitudes. Defaults to 0.0. peak_amplitude (PeakAmplitude, optional): The type of peak amplitude to retrieve. Defaults to "absolute". @@ -175,10 +214,11 @@ def get_amplitude( ValueError: If there are not enough amplitudes in the specified range. ValueError: If the peak amplitude type is unknown. """ - distance_idx = np.argsort(np.abs(self._distances - distance)) + site_distances = np.abs(self._distances - distance) + distance_idx = np.argsort(site_distances) idx = distance_idx[:n_amplitudes] - distances = self._distances[idx] - if distances.max() > max_distance: + distances = site_distances[idx] + if max_distance and distances.max() > max_distance: raise ValueError(f"Not enough amplitudes in range {max_distance}.") match peak_amplitude: @@ -202,13 +242,126 @@ def get_amplitude( def fill(self, receivers: list[gf.Receiver], traces: list[list[Trace]]) -> None: for receiver, rcv_traces in zip(receivers, traces, strict=True): self.site_amplitudes.append(SiteAmplitude.from_traces(receiver, rcv_traces)) - self.clear() + self._clear_cache() - def clear(self) -> None: - del self._distances - del self._horizontal - del self._vertical - del self._absolute + def distance_range(self) -> Range: + """ + Get the distance range of the site amplitudes. + + Returns: + Range: The distance range. + """ + return Range(self._distances.min(), self._distances.max()) + + @property + def n_amplitudes(self) -> int: + """ + Get the number of amplitudes in the collection. + + Returns: + int: The number of amplitudes. + """ + return len(self.site_amplitudes) + + def plot( + self, + axes: Axes | None = None, + peak_amplitude: PeakAmplitude = "absolute", + ) -> None: + from matplotlib.ticker import FuncFormatter + + if axes is None: + import matplotlib.pyplot as plt + + _, ax = plt.subplots() + else: + ax = axes + + labels: dict[MeasurementUnit, str] = { + "displacement": "u [nm]", + "velocity": "v [nm/s]", + "acceleration": "a [nm/s²]", + } + interp_amplitudes: list[ModelledAmplitude] = [] + for distance in np.arange(*self.distance_range(), 1 * KM): + interp_amplitudes.append( + self.get_amplitude( + distance=distance, + n_amplitudes=25, + peak_amplitude=peak_amplitude, + ) + ) + + interp_dists = np.array([amp.distance for amp in interp_amplitudes]) + interp_amps = np.array([amp.amplitude_median for amp in interp_amplitudes]) + interp_std = np.array([amp.std for amp in interp_amplitudes]) + + site_amplitudes = getattr(self, f"_{peak_amplitude.replace('peak_', '')}") + dynamic = Range.from_array(site_amplitudes) + + ax.scatter( + self._distances, + site_amplitudes / NM, + marker="o", + c="k", + s=2.0, + alpha=0.05, + ) + ax.scatter( + interp_dists, + interp_amps / NM, + marker="o", + c="forestgreen", + s=6.0, + alpha=1.0, + ) + ax.fill_between( + interp_dists, + (interp_amps - interp_std) / NM, + (interp_amps + interp_std) / NM, + alpha=0.1, + color="forestgreen", + ) + + ax.set_xlabel("Distance [km]") + ax.set_ylabel(labels[self.quantity]) + ax.set_yscale("log") + ax.text( + 0.025, + 0.025, + rf"n={self.n_amplitudes}\n" + rf"$M_w^r$={self.reference_magnitude}\n" + rf"$z$={self.source_depth / KM} km\n" + rf"$v_r$=[{self.rupture_velocities.min}, {self.rupture_velocities.max}]" + r" $\cdot v_s$\n" + rf"$\Delta\sigma$=[{self.stress_drop.min / 1e6}," + rf" {self.stress_drop.max / 1e6}] MPa\n" + rf"$f$=[{self.frequency_range.min}, {self.frequency_range.max}] Hz", + alpha=0.5, + transform=ax.transAxes, + va="bottom", + fontsize="small", + ) + ax.text( + 0.95, + 0.95, + f"Measure: {peak_amplitude}\n" + f"Dynamic: {(dynamic.max - dynamic.min) / NM:g}", + alpha=0.5, + transform=ax.transAxes, + ha="right", + va="top", + ) + ax.grid(alpha=0.1) + ax.xaxis.set_major_formatter(FuncFormatter(lambda x, _: x / KM)) + if axes is None: + plt.show() + + def _clear_cache(self) -> None: + self.__dict__.pop("_distances", None) + self.__dict__.pop("_horizontal", None) + self.__dict__.pop("_vertical", None) + self.__dict__.pop("_absolute", None) class PeakAmplitudesStore(PeakAmplitudesBase): @@ -229,6 +382,8 @@ class PeakAmplitudesStore(PeakAmplitudesBase): _engine: ClassVar[gf.LocalEngine | None] = None _cache_dir: ClassVar[Path | None] = None + model_config: ConfigDict = {"extra": "ignore"} + @classmethod def set_engine(cls, engine: gf.LocalEngine) -> None: """ @@ -269,14 +424,9 @@ def from_selector(cls, selector: PeakAmplitudesBase) -> Self: f"exceeds store frequency range {store_frequency_range}." ) - return cls( - gf_store_id=selector.gf_store_id, - quantity=selector.quantity, - reference_magnitude=selector.reference_magnitude, - rupture_velocities=selector.rupture_velocities, - stress_drop=selector.stress_drop, - frequency_range=selector.frequency_range or store_frequency_range, - ) + kwargs = selector.model_dump() + kwargs["frequency_range"] = selector.frequency_range or store_frequency_range + return cls(**kwargs) def get_store(self) -> gf.Store: """ @@ -292,12 +442,14 @@ def get_store(self) -> gf.Store: f"Failed to load GF store {self.gf_store_id}." ) from exc - meta = store.meta - if not isinstance(meta, gf.ConfigTypeA): + config = store.config + if not isinstance(config, gf.ConfigTypeA): raise EnvironmentError("GF store is not of type ConfigTypeA.") - if 1.0 / meta.deltat < self.frequency_range.max: - raise ValueError(f"GF store maximum frequency {1.0 / meta.deltat} too low.") + if 1.0 / config.deltat < self.frequency_range.max: + raise ValueError( + f"Pyrocko GF store frequency {1.0 / config.deltat} too low." + ) return store @@ -313,6 +465,7 @@ def is_suited(self, selector: PeakAmplitudesBase) -> bool: """ result = ( self.gf_store_id == selector.gf_store_id + and self.max_distance >= selector.max_distance and self.gf_interpolation == selector.gf_interpolation and self.quantity == selector.quantity and self.reference_magnitude == selector.reference_magnitude @@ -336,8 +489,12 @@ def _get_random_source(self, depth: float) -> gf.MTSource: gf.MTSource: A random moment tensor source. """ rng = self._rng + store = self.get_store() + velocity_model: LayeredModel = store.config.earthmodel_1d + vs = np.interp(depth, velocity_model.profile("z"), velocity_model.profile("vs")) + stress_drop = rng.uniform(*self.stress_drop) - rupture_velocity = rng.uniform(*self.rupture_velocities) + rupture_velocity = rng.uniform(*self.rupture_velocities) * vs radius = ( pmt.magnitude_to_moment(self.reference_magnitude) * 7.0 / 16.0 / stress_drop @@ -347,10 +504,10 @@ def _get_random_source(self, depth: float) -> gf.MTSource: return gf.MTSource( m6=moment_tensor.m6(), depth=depth, - std=gf.HalfSinusoidSTF(effective_duration=duration), + stf=gf.HalfSinusoidSTF(effective_duration=duration), ) - def _get_targets( + def _get_random_targets( self, distance_range: Range, n_receivers: int, @@ -372,37 +529,53 @@ def _get_targets( for i_receiver, (angle, distance) in enumerate( zip(angles, distances, strict=True) ): - for component in "ZRT": + for component in get_args(Components): target = gf.Target( quantity=self.quantity, store_id=self.gf_store_id, - interpolation="nearest", + interpolation=self.gf_interpolation, depth=0.0, + dip=_get_dip(component), + azimuth=_get_azimuth(component), north_shift=distance * np.cos(np.radians(angle)), east_shift=distance * np.sin(np.radians(angle)), - codes=("", f"{i_receiver:04d}", component), + codes=("PA", f"{i_receiver:05d}", "", component), ) targets.append(target) return targets # type: ignore - async def _calculate_amplitudes( + async def fill_source_depth( self, source_depth: float, n_targets: int = 20, n_sources: int = 100, - ) -> None: + ) -> SiteAmplitudesCollection: + """ + Fills the moment magnitude store with amplitudes calculated + for a specific source depth. + + Args: + source_depth (float): The depth of the seismic source. + n_targets (int, optional): The number of target locations to calculate + amplitudes for. Defaults to 20. + n_sources (int, optional): The number of source locations to generate + random sources from. Defaults to 100. + """ if self._engine is None: raise EnvironmentError("No GF engine available.") store = self.get_store() engine = self._engine - depths = Range(store.config.distance_min, store.config.distance_max) + target_distances = Range( + min=store.config.distance_min, + max=min(store.config.distance_max, self.max_distance), + ) - async def get_modelled_waveforms() -> gf.Response: - targets = self._get_targets(depths, n_targets) + async def get_modelled_waveforms() -> tuple[gf.Response, list[gf.Target]]: + targets = self._get_random_targets(target_distances, n_targets) source = self._get_random_source(source_depth) - return await asyncio.to_thread(engine.process(source, targets)) + return await asyncio.to_thread(engine.process, source, targets), targets receivers = [] receiver_traces = [] @@ -421,18 +594,25 @@ async def get_modelled_waveforms() -> gf.Response: total=n_sources, description="Calculating amplitudes", ): - response = await get_modelled_waveforms() - for _, target, traces in response.iter_results(): - for tr in traces: - if self.frequency_range: + response, targets = await get_modelled_waveforms() + + traces: list[Trace] = response.pyrocko_traces() + for tr in traces: + if self.frequency_range: + if self.frequency_range.min > 0.0: tr.highpass(4, self.frequency_range.min, demean=False) + if self.frequency_range.max < 1.0 / tr.deltat: tr.lowpass(4, self.frequency_range.max, demean=False) - receivers.append(target) - receiver_traces.append(traces) + for nsl, grp_traces in itertools.groupby( + traces, key=lambda tr: tr.nslc_id[:3] + ): + receivers.append(_get_target(targets, nsl)) + receiver_traces.append(list(grp_traces)) collection.fill(receivers, receiver_traces) self.save() + return collection def get_collection(self, depth: float) -> SiteAmplitudesCollection: """ @@ -455,20 +635,24 @@ def new_collection(self, depth: float) -> SiteAmplitudesCollection: adds it to the list of site amplitudes. Args: - depth (float): The depth for which the site amplitudes collection is created. + depth (float): The depth for which the site amplitudes collection is + created. Returns: SiteAmplitudesCollection: The newly created SiteAmplitudesCollection object. """ - if (collection := self.get_collection(depth)) is not None: + try: + collection = self.get_collection(depth) self.site_amplitudes.remove(collection) - collection = SiteAmplitudesCollection(source_depth=depth) + except KeyError: + pass + collection = SiteAmplitudesCollection(source_depth=depth, **self.model_dump()) self.site_amplitudes.append(collection) return collection - def get_amplitude( + async def get_amplitude( self, - depth: float, + source_depth: float, distance: float, n_amplitudes: int = 10, max_distance: float = 1.0 * KM, @@ -493,7 +677,7 @@ def get_amplitude( Returns: ModelledAmplitude: The modelled amplitude for the given depth and distance. """ - collection = self.get_collection(depth) + collection = self.get_collection(source_depth) try: return collection.get_amplitude( distance=distance, @@ -503,10 +687,10 @@ def get_amplitude( ) except ValueError: if auto_fill: - asyncio.run(self._calculate_amplitudes(depth)) - logger.info("auto-filling site amplitudes for depth %f", depth) - return self.get_amplitude( - depth=depth, + await self.fill_source_depth(source_depth) + logger.info("auto-filling site amplitudes for depth %f", source_depth) + return await self.get_amplitude( + source_depth=source_depth, distance=distance, n_amplitudes=n_amplitudes, max_distance=max_distance, @@ -523,10 +707,11 @@ def hash(self) -> str: str: The hash of the store. """ data = struct.pack( - "dddddddss", + "ddddddddss", self.frequency_range.min, self.frequency_range.max, self.reference_magnitude, + self.max_distance, self.rupture_velocities.min, self.rupture_velocities.max, self.stress_drop.min, diff --git a/src/qseek/utils.py b/src/qseek/utils.py index 04f64b03..3fcd9217 100644 --- a/src/qseek/utils.py +++ b/src/qseek/utils.py @@ -92,6 +92,10 @@ class _Range(NamedTuple): def inside(self, value: float) -> bool: return self.min <= value <= self.max + @classmethod + def from_array(cls, array: np.ndarray) -> _Range: + return cls(array.min(), array.max()) + def _range_validator(v: _Range) -> _Range: if v.min > v.max: @@ -351,7 +355,7 @@ def get_traces(self, traces: list[Trace]) -> list[Trace]: class ChannelSelectors: - All = ChannelSelector("ENZ0123", 3) + All = ChannelSelector("ENZ0123RT", 3) HorizontalAbs = ChannelSelector("EN123RT", 2, normalize=True) Horizontal = ChannelSelector("EN123RT", 2) Vertical = ChannelSelector("Z0", 1) diff --git a/test/conftest.py b/test/conftest.py index 009f7945..adefb569 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -8,15 +8,14 @@ import aiohttp import numpy as np import pytest +from qseek.models.detection import EventDetection, EventDetections +from qseek.models.location import Location +from qseek.models.station import Station, Stations +from qseek.octree import Octree +from qseek.tracers.cake import EarthModel, Timing, TravelTimeTree +from qseek.utils import datetime_now from rich.progress import Progress -from lassie.models.detection import EventDetection, EventDetections -from lassie.models.location import Location -from lassie.models.station import Station, Stations -from lassie.octree import Octree -from lassie.tracers.cake import EarthModel, Timing, TravelTimeTree -from lassie.utils import datetime_now - DATA_DIR = Path(__file__).parent / "data" DATA_URL = "https://data.pyrocko.org/testing/lassie-v2/" diff --git a/test/test_moment_magnitude_store.py b/test/test_moment_magnitude_store.py index 2402c41e..ab03983b 100644 --- a/test/test_moment_magnitude_store.py +++ b/test/test_moment_magnitude_store.py @@ -1,34 +1,89 @@ +from __future__ import annotations + import pytest from pyrocko import gf from qseek.magnitudes.moment_magnitude_store import ( + PeakAmplitude, PeakAmplitudesBase, PeakAmplitudesStore, ) +KM = 1e3 +NM = 1e-9 + @pytest.fixture def cache_dir(tmp_path): return tmp_path / "cache" -@pytest.fixture -def engine(): +def get_engine() -> gf.LocalEngine: return gf.LocalEngine(use_config=True) +@pytest.fixture(scope="module") +def engine() -> gf.LocalEngine: + return get_engine() + + def has_store(store_id) -> bool: try: - engine().get_store(store_id) + get_engine().get_store(store_id) return True except Exception: return False @pytest.mark.skipif(not has_store("crust2_de"), reason="crust2_de not available") -def test_peak_amplitudes() -> None: +@pytest.mark.asyncio +async def test_peak_amplitudes(engine: gf.LocalEngine) -> None: + peak_amplitudes = PeakAmplitudesBase( + gf_store_id="crust2_de", + quantity="displacement", + ) + PeakAmplitudesStore.set_engine(engine) + store = PeakAmplitudesStore.from_selector(peak_amplitudes) + await store.fill_source_depth(source_depth=2 * KM) + await store.get_amplitude( + source_depth=2 * KM, + distance=10 * KM, + n_amplitudes=10, + max_distance=1 * KM, + auto_fill=False, + ) + + +@pytest.mark.plot +@pytest.mark.asyncio +async def test_peak_amplitude_plot(engine: gf.LocalEngine) -> None: peak_amplitudes = PeakAmplitudesBase( gf_store_id="crust2_de", quantity="displacement", ) + plot_amplitude: PeakAmplitude = "horizontal" + + PeakAmplitudesStore.set_engine(engine) + store = PeakAmplitudesStore.from_selector(peak_amplitudes) + + collection = await store.fill_source_depth(source_depth=2 * KM) + collection.plot(peak_amplitude=plot_amplitude) + + peak_amplitudes = PeakAmplitudesBase( + gf_store_id="crust2_de", + quantity="velocity", + ) + PeakAmplitudesStore.set_engine(engine) + store = PeakAmplitudesStore.from_selector(peak_amplitudes) + + collection = await store.fill_source_depth(source_depth=2 * KM) + collection.plot(peak_amplitude=plot_amplitude) + + peak_amplitudes = PeakAmplitudesBase( + gf_store_id="crust2_de", + quantity="acceleration", + ) + PeakAmplitudesStore.set_engine(engine) + store = PeakAmplitudesStore.from_selector(peak_amplitudes) - PeakAmplitudesStore.from_selector(peak_amplitudes) + collection = await store.fill_source_depth(source_depth=2 * KM) + collection.plot(peak_amplitude=plot_amplitude)