-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmtcnn.h
129 lines (90 loc) · 2.85 KB
/
mtcnn.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#ifndef _FACE_DETECT_H_
#define _FACE_DETECT_H_
#include <opencv2/opencv.hpp>
#include <cmath>
#include <string>
#include <vector>
#include <time.h>
#include <algorithm> // std::min, std::max, std::sort
#include <map>
#include <memory>
using namespace std;
#include <MNN/Interpreter.hpp>
#include <MNN/MNNDefine.h>
#include <MNN/Tensor.hpp>
#include <MNN/ImageProcess.hpp>
using namespace MNN;
using namespace MNN::CV;
typedef struct FaceBox {
float xmin;
float ymin;
float xmax;
float ymax;
float score;
} FaceBox;
typedef struct FaceInfo {
float bbox_reg[4];
float landmark_reg[10];
float landmark[10];
FaceBox bbox;
} FaceInfo;
class MTCNN {
public:
//MTCNN(const string& proto_model_dir);
//MTCNN();
MTCNN();
void init(const string& proto_model_dir);
void Detect_T(const cv::Mat& img, std::vector<FaceInfo>& result);
float rnet(cv::Mat& image, cv::Rect& face_);
FaceInfo onet(cv::Mat& image, cv::Rect& face_);
~MTCNN();
void SetSmooth(bool smooth);
bool GetSmooth();
void setThrehold(float threhold[3]);
void setFactor(float factor);
void setThreadNum(int threads_num);
void setIsMaxFace(bool isMaxFace);
void setMinFace(int min_face);
private:
vector<FaceInfo> ProposalNet(const cv::Mat& img, int minSize, float threshold, float factor);
void GenerateBBox(float * confidence_data, float *reg_box, int feature_map_w_, int feature_map_h_, float scale, float thresh);
std::vector<FaceInfo> NextStage(const cv::Mat& image, vector<FaceInfo> &pre_stage_res, int input_w, int input_h, int stage_num, const float threshold);
std::vector<FaceInfo> Detect(const cv::Mat& img, const int stage = 3);
std::vector<FaceInfo> Detect_MaxFace(const cv::Mat& img, const int stage = 3);
std::shared_ptr<MNN::Interpreter> PNet_ = NULL;
std::shared_ptr<MNN::Interpreter> RNet_ = NULL;
std::shared_ptr<MNN::Interpreter> ONet_ = NULL;
MNN::Session * sess_p = NULL;
MNN::Session * sess_r = NULL;
MNN::Session * sess_o = NULL;
MNN::Tensor * p_input = nullptr;
MNN::Tensor * p_out_pro = nullptr;
MNN::Tensor * p_out_reg = nullptr;
MNN::Tensor * r_input = nullptr;
MNN::Tensor * r_out_pro = nullptr;
MNN::Tensor * r_out_reg = nullptr;
MNN::Tensor * o_input = nullptr;
MNN::Tensor * o_out_pro = nullptr;
MNN::Tensor * o_out_reg = nullptr;
MNN::Tensor * o_out_lank = nullptr;
std::shared_ptr<ImageProcess> pretreat_data;
std::vector<FaceInfo> candidate_boxes_;
std::vector<FaceInfo> total_boxes_;
float threhold_p = 0.6f;
float threhold_r = 0.7f;
float threhold_o = 0.7f;
float iou_threhold = 0.7f;
float factor = 0.709f;
int min_face = 80;
//pnet config
const float pnet_stride = 2;
const float pnet_cell_size = 12;
const int pnet_max_detect_num = 5000;
//mean & std
const float mean_val = 127.5f;
const float std_val = 0.0078125f;
int threads_num = 2;
bool smooth = true;//Îȶ¨ÐÔ
bool isMaxFace = true;
};
#endif // _FaceDetect_H_