-
Notifications
You must be signed in to change notification settings - Fork 20
/
attack_method.py
54 lines (40 loc) · 1.96 KB
/
attack_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
import tensorflow as tf
import scipy.stats as st
from utils import *
slim = tf.contrib.slim
def project_kern(kern_size):
kern = np.ones((kern_size, kern_size), dtype=np.float32) / (kern_size ** 2 - 1)
kern[kern_size // 2, kern_size // 2] = 0.0
kern = kern.astype(np.float32)
stack_kern = np.stack([kern, kern, kern]).swapaxes(0, 2)
stack_kern = np.expand_dims(stack_kern, 3)
return stack_kern, kern_size // 2
def project_noise(x, stack_kern, kern_size):
x = tf.pad(x, [[0,0],[kern_size,kern_size],[kern_size,kern_size],[0,0]], "CONSTANT")
x = tf.nn.depthwise_conv2d(x, stack_kern, strides=[1, 1, 1, 1], padding='VALID')
return x
def gkern(kernlen=21, nsig=3):
"""Returns a 2D Gaussian kernel array."""
import scipy.stats as st
x = np.linspace(-nsig, nsig, kernlen)
kern1d = st.norm.pdf(x)
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
kernel = kernel.astype(np.float32)
stack_kernel = np.stack([kernel, kernel, kernel]).swapaxes(2, 0)
stack_kernel = np.expand_dims(stack_kernel, 3)
return stack_kernel
def input_diversity(FLAGS, input_tensor):
"""Input diversity: https://arxiv.org/abs/1803.06978"""
rnd = tf.random_uniform((), FLAGS.image_width, FLAGS.image_resize, dtype=tf.int32)
rescaled = tf.image.resize_images(input_tensor, [rnd, rnd], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
h_rem = FLAGS.image_resize - rnd
w_rem = FLAGS.image_resize - rnd
pad_top = tf.random_uniform((), 0, h_rem, dtype=tf.int32)
pad_bottom = h_rem - pad_top
pad_left = tf.random_uniform((), 0, w_rem, dtype=tf.int32)
pad_right = w_rem - pad_left
padded = tf.pad(rescaled, [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]], constant_values=0.)
padded.set_shape((input_tensor.shape[0], FLAGS.image_resize, FLAGS.image_resize, 3))
return tf.cond(tf.random_uniform(shape=[1])[0] < tf.constant(FLAGS.prob), lambda: padded, lambda: input_tensor)