forked from maxhodak/keras-molecules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
85 lines (68 loc) · 3.41 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import argparse
import pandas
import h5py
import numpy as np
from molecules.utils import one_hot_array, one_hot_index
from sklearn.model_selection import train_test_split
MAX_NUM_ROWS = 500000
SMILES_COL_NAME = 'structure'
def get_arguments():
parser = argparse.ArgumentParser(description='Prepare data for training')
parser.add_argument('infile', type=str, help='Input file name')
parser.add_argument('outfile', type=str, help='Output file name')
parser.add_argument('--length', type=int, metavar='N', default = MAX_NUM_ROWS,
help='Maximum number of rows to include (randomly sampled).')
parser.add_argument('--smiles_column', type=str, default = SMILES_COL_NAME,
help="Name of the column that contains the SMILES strings. Default: %s" % SMILES_COL_NAME)
parser.add_argument('--property_column', type=str,
help="Name of the column that contains the property values to predict. Default: None")
return parser.parse_args()
def chunk_iterator(dataset, chunk_size=1000):
chunk_indices = np.array_split(np.arange(len(dataset)),
len(dataset)/chunk_size)
for chunk_ixs in chunk_indices:
chunk = dataset[chunk_ixs]
yield (chunk_ixs, chunk)
raise StopIteration
def main():
args = get_arguments()
data = pandas.read_hdf(args.infile, 'table')
keys = data[args.smiles_column].map(len) < 121
if args.length <= len(keys):
data = data[keys].sample(n = args.length)
else:
data = data[keys]
structures = data[args.smiles_column].map(lambda x: list(x.ljust(120)))
if args.property_column:
properties = data[args.property_column][keys]
del data
train_idx, test_idx = map(np.array,
train_test_split(structures.index, test_size = 0.20))
charset = list(reduce(lambda x, y: set(y) | x, structures, set()))
one_hot_encoded_fn = lambda row: map(lambda x: one_hot_array(x, len(charset)),
one_hot_index(row, charset))
h5f = h5py.File(args.outfile, 'w')
h5f.create_dataset('charset', data = charset)
def create_chunk_dataset(h5file, dataset_name, dataset, dataset_shape,
chunk_size=1000, apply_fn=None):
new_data = h5file.create_dataset(dataset_name, dataset_shape,
chunks=tuple([chunk_size]+list(dataset_shape[1:])))
for (chunk_ixs, chunk) in chunk_iterator(dataset):
if not apply_fn:
new_data[chunk_ixs, ...] = chunk
else:
new_data[chunk_ixs, ...] = apply_fn(chunk)
create_chunk_dataset(h5f, 'data_train', train_idx,
(len(train_idx), 120, len(charset)),
apply_fn=lambda ch: np.array(map(one_hot_encoded_fn,
structures[ch])))
create_chunk_dataset(h5f, 'data_test', test_idx,
(len(test_idx), 120, len(charset)),
apply_fn=lambda ch: np.array(map(one_hot_encoded_fn,
structures[ch])))
if args.property_column:
h5f.create_dataset('property_train', data = properties[train_idx])
h5f.create_dataset('property_test', data = properties[test_idx])
h5f.close()
if __name__ == '__main__':
main()