-
Notifications
You must be signed in to change notification settings - Fork 131
/
dqn_multistep.py
309 lines (261 loc) · 11.9 KB
/
dqn_multistep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
import torch.nn as nn
import torch.nn.functional as f
import torch.optim as optim
import time
import random, numpy, argparse, logging, os
from collections import namedtuple
import numpy as np
import datetime, math
import gym
# Hyper Parameters
MAX_EPI=10000
MAX_STEP = 10000
SAVE_INTERVAL = 20
TARGET_UPDATE_INTERVAL = 20
BATCH_SIZE = 128
REPLAY_BUFFER_SIZE = 100000
REPLAY_START_SIZE = 2000
GAMMA = 0.95
EPSILON = 0.05 # if not using epsilon scheduler, use a constant
EPSILON_START = 1.
EPSILON_END = 0.05
EPSILON_DECAY = 10000
LR = 1e-4 # learning rate
N_MULTI_STEP = 3 # n-step return
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EpsilonScheduler():
def __init__(self, eps_start, eps_final, eps_decay):
"""A scheduler for epsilon-greedy strategy.
:param eps_start: starting value of epsilon, default 1. as purely random policy
:type eps_start: float
:param eps_final: final value of epsilon
:type eps_final: float
:param eps_decay: number of timesteps from eps_start to eps_final
:type eps_decay: int
"""
self.eps_start = eps_start
self.eps_final = eps_final
self.eps_decay = eps_decay
self.epsilon = self.eps_start
self.ini_frame_idx = 0
self.current_frame_idx = 0
def reset(self, ):
""" Reset the scheduler """
self.ini_frame_idx = self.current_frame_idx
def step(self, frame_idx):
self.current_frame_idx = frame_idx
delta_frame_idx = self.current_frame_idx - self.ini_frame_idx
self.epsilon = self.eps_final + (self.eps_start - self.eps_final) * math.exp(-1. * delta_frame_idx / self.eps_decay)
def get_epsilon(self):
return self.epsilon
class QNetwork(nn.Module):
def __init__(self, act_shape, obs_shape, hidden_units=64):
super(QNetwork, self).__init__()
in_dim = obs_shape[0]
out_dim = act_shape
self.linear = nn.Sequential(
nn.Linear(in_dim, hidden_units),
nn.ReLU(),
nn.Linear(hidden_units, hidden_units),
nn.ReLU(),
nn.Linear(hidden_units, hidden_units),
nn.ReLU(),
nn.Linear(hidden_units, out_dim)
)
def forward(self, x):
o = self.linear(x)
return o
class QNetworkCNN(nn.Module):
def __init__(self, num_actions, in_shape, out_channels=8, kernel_size=5, stride=1, hidden_units=256):
super(QNetworkCNN, self).__init__()
self.in_shape = in_shape
in_channels = in_shape[0]
self.conv = nn.Sequential(
nn.Conv2d(in_channels, int(out_channels/2), kernel_size, stride),
nn.ReLU(),
nn.MaxPool2d(kernel_size, stride=2),
nn.Conv2d(int(out_channels/2), int(out_channels), kernel_size, stride),
nn.ReLU(),
nn.MaxPool2d(kernel_size, stride=2)
)
self.conv.apply(self.init_weights)
self.linear = nn.Sequential(
nn.Linear(self.size_after_conv(), hidden_units),
nn.ReLU(),
nn.Linear(hidden_units, num_actions)
)
self.linear.apply(self.init_weights)
def init_weights(self, m):
if type(m) == nn.Conv2d or type(m) == nn.Linear:
torch.nn.init.xavier_uniform(m.weight)
m.bias.data.fill_(0.01)
def size_after_conv(self,):
x = torch.rand(1, *self.in_shape)
o = self.conv(x)
size=1
for i in o.shape[1:]:
size*=i
return int(size)
def forward(self, x):
x = self.conv(x)
o = self.linear(x.view(x.size(0), -1))
return o
transition = namedtuple('transition', 'state, next_state, action, reward, is_terminal')
class ReplayBuffer:
'''
Replay Buffer class to keep the agent memories memorized in a deque structure.
Ref: https://github.com/andri27-ts/Reinforcement-Learning/blob/c57064f747f51d1c495639c7413f5a2be01acd5f/Week3/buffers.py
'''
def __init__(self, buffer_size, n_multi_step, gamma):
self.buffer = []
self.buffer_size = buffer_size
self.n_multi_step = n_multi_step
self.gamma = gamma
self.location = 0
def __len__(self):
return len(self.buffer)
def add(self, samples):
# Append when the buffer is not full but overwrite when the buffer is full
wrap_tensor = lambda x: torch.tensor([x])
if len(self.buffer) < self.buffer_size:
self.buffer.append(transition(*map(wrap_tensor, samples)))
else:
self.buffer[self.location] = transition(*map(wrap_tensor, samples))
# Increment the buffer location
self.location = (self.location + 1) % self.buffer_size
def sample(self, batch_size):
'''
Sample batch_size memories from the buffer.
NB: It deals the N-step DQN
'''
# randomly pick batch_size elements from the buffer
indices = np.random.choice(len(self.buffer), batch_size, replace=False)
samples = []
# for each indices
for i in indices:
sum_reward = 0
states_look_ahead = self.buffer[i].next_state
done_look_ahead = self.buffer[i].is_terminal
# N-step look ahead loop to compute the reward and pick the new 'next_state' (of the n-th state)
for n in range(self.n_multi_step):
if len(self.buffer) > i+n:
# compute the n-th reward
sum_reward += (self.gamma**n) * self.buffer[i+n].reward
if self.buffer[i+n].is_terminal:
states_look_ahead = self.buffer[i+n].next_state
done_look_ahead = self.buffer[i+n].is_terminal
break
else:
states_look_ahead = self.buffer[i+n].next_state
done_look_ahead = self.buffer[i+n].is_terminal
sample = transition(self.buffer[i].state, states_look_ahead, self.buffer[i].action, sum_reward, done_look_ahead)
samples.append(sample)
return samples
class DQN(object):
def __init__(self, env):
self.action_shape = env.action_space.n
self.obs_shape = env.observation_space.shape
self.eval_net, self.target_net = QNetwork(self.action_shape, self.obs_shape).to(device), QNetwork(self.action_shape, self.obs_shape).to(device)
self.learn_step_counter = 0 # for target updating
self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR)
self.loss_func = nn.MSELoss()
self.epsilon_scheduler = EpsilonScheduler(EPSILON_START, EPSILON_END, EPSILON_DECAY)
self.updates = 0
def choose_action(self, x):
# x = Variable(torch.unsqueeze(torch.FloatTensor(x), 0)).to(device)
x = torch.unsqueeze(torch.FloatTensor(x), 0).to(device)
# input only one sample
# if np.random.uniform() > EPSILON: # greedy
epsilon = self.epsilon_scheduler.get_epsilon()
if np.random.uniform() > epsilon: # greedy
actions_value = self.eval_net.forward(x)
action = torch.max(actions_value, 1)[1].data.cpu().numpy()[0] # return the argmax
else: # random
action = np.random.randint(0, self.action_shape)
return action
def learn(self, sample,):
# Batch is a list of namedtuple's, the following operation returns samples grouped by keys
batch_samples = transition(*zip(*sample))
# states, next_states are of tensor (BATCH_SIZE, in_channel, 10, 10) - inline with pytorch NCHW format
# actions, rewards, is_terminal are of tensor (BATCH_SIZE, 1)
states = torch.cat(batch_samples.state).float().to(device)
next_states = torch.cat(batch_samples.next_state).float().to(device)
actions = torch.cat(batch_samples.action).to(device)
rewards = torch.cat(batch_samples.reward).float().to(device)
is_terminal = torch.cat(batch_samples.is_terminal).to(device)
# Obtain a batch of Q(S_t, A_t) and compute the forward pass.
# Note: policy_network output Q-values for all the actions of a state, but all we need is the A_t taken at time t
# in state S_t. Thus we gather along the columns and get the Q-values corresponds to S_t, A_t.
# Q_s_a is of size (BATCH_SIZE, 1).
Q = self.eval_net(states)
Q_s_a=Q.gather(1, actions)
# Obtain max_{a} Q(S_{t+1}, a) of any non-terminal state S_{t+1}. If S_{t+1} is terminal, Q(S_{t+1}, A_{t+1}) = 0.
# Note: each row of the network's output corresponds to the actions of S_{t+1}. max(1)[0] gives the max action
# values in each row (since this a batch). The detach() detaches the target net's tensor from computation graph so
# to prevent the computation of its gradient automatically. Q_s_prime_a_prime is of size (BATCH_SIZE, 1).
# Get the indices of next_states that are not terminal
none_terminal_next_state_index = torch.tensor([i for i, is_term in enumerate(is_terminal) if is_term == 0], dtype=torch.int64, device=device)
# Select the indices of each row
none_terminal_next_states = next_states.index_select(0, none_terminal_next_state_index)
Q_s_prime_a_prime = torch.zeros(len(sample), 1, device=device)
if len(none_terminal_next_states) != 0:
Q_s_prime_a_prime[none_terminal_next_state_index] = self.target_net(none_terminal_next_states).detach().max(1)[0].unsqueeze(1)
# Q_s_prime_a_prime = self.target_net(next_states).detach().max(1, keepdim=True)[0] # this one is simpler regardless of terminal state
Q_s_prime_a_prime = (Q_s_prime_a_prime-Q_s_prime_a_prime.mean())/ (Q_s_prime_a_prime.std() + 1e-5) # normalization
# Compute the target
target = rewards + (GAMMA ** N_MULTI_STEP) * Q_s_prime_a_prime
# Update with loss
# loss = self.loss_func(target.detach(), Q_s_a)
loss = f.smooth_l1_loss(target.detach(), Q_s_a)
# Zero gradients, backprop, update the weights of policy_net
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.updates += 1
if self.updates % TARGET_UPDATE_INTERVAL == 0:
self.update_target()
return loss.item()
def save_model(self, model_path=None):
torch.save(self.eval_net.state_dict(), 'model/dqn')
def update_target(self, ):
"""
Update the target model when necessary.
"""
self.target_net.load_state_dict(self.eval_net.state_dict())
def rollout(env, model):
r_buffer = ReplayBuffer(REPLAY_BUFFER_SIZE, N_MULTI_STEP, GAMMA)
log = []
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M")
print('\nCollecting experience...')
total_step = 0
for epi in range(MAX_EPI):
s=env.reset()
epi_r = 0
epi_loss = 0
for step in range(MAX_STEP):
# env.render()
total_step += 1
a = model.choose_action(s)
s_, r, done, info = env.step(a)
# r_buffer.add(torch.tensor([s]), torch.tensor([s_]), torch.tensor([[a]]), torch.tensor([[r]], dtype=torch.float), torch.tensor([[done]]))
r_buffer.add([s,s_,[a],[r],[done]])
model.epsilon_scheduler.step(total_step)
epi_r += r
if total_step > REPLAY_START_SIZE and len(r_buffer.buffer) >= BATCH_SIZE:
sample = r_buffer.sample(BATCH_SIZE)
loss = model.learn(sample)
epi_loss += loss
if done:
break
s = s_
print('Ep: ', epi, '| Ep_r: ', epi_r, '| Steps: ', step, f'| Ep_Loss: {epi_loss:.4f}', )
log.append([epi, epi_r, step])
if epi % SAVE_INTERVAL == 0:
model.save_model()
np.save('log/'+timestamp, log)
if __name__ == '__main__':
env = gym.make('CartPole-v1')
print(env.observation_space, env.action_space)
model = DQN(env)
rollout(env, model)