-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy pathsac_pendulum.py
327 lines (236 loc) · 10 KB
/
sac_pendulum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import math
import random
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from IPython.display import clear_output
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import display
from reacher import Reacher
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch))
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class NormalizedActions(gym.ActionWrapper):
def _action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def _reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action
def plot(frame_idx, rewards, predict_qs):
clear_output(True)
plt.figure(figsize=(20,5))
plt.subplot(131)
plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1]))
plt.plot(rewards)
plt.plot(predict_qs)
plt.savefig('pendulum.png')
# plt.show()
class ValueNetwork(nn.Module):
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class SoftQNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):
super(SoftQNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3, log_std_min=-20, log_std_max=2):
super(PolicyNetwork, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.mean_linear = nn.Linear(hidden_size, num_actions)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
mean = self.mean_linear(x)
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
return mean, log_std
def evaluate(self, state, epsilon=1e-6):
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action = torch.tanh(mean+ std*z.to(device))
log_prob = Normal(mean, std).log_prob(mean+ std*z.to(device)) - torch.log(1 - action.pow(2) + epsilon)
log_prob = log_prob.sum(dim=-1, keepdim=True)
return action, log_prob, z, mean, log_std
def get_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(device)
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample(mean.shape).to(device)
action = torch.tanh(mean + std*z)
action = action.cpu()#.detach().cpu().numpy()
return action[0]
def update(batch_size,gamma=0.99,soft_tau=1e-2,):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
# print('sample:', state, action, reward, done)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
predicted_q_value1 = soft_q_net1(state, action)
predicted_q_value2 = soft_q_net2(state, action)
predicted_value = value_net(state)
new_action, log_prob, epsilon, mean, log_std = policy_net.evaluate(state)
# Training Q Function
target_value = target_value_net(next_state)
target_q_value = reward + (1 - done) * gamma * target_value
q_value_loss1 = soft_q_criterion1(predicted_q_value1, target_q_value.detach())
q_value_loss2 = soft_q_criterion2(predicted_q_value2, target_q_value.detach())
soft_q_optimizer1.zero_grad()
q_value_loss1.backward()
soft_q_optimizer1.step()
soft_q_optimizer2.zero_grad()
q_value_loss2.backward()
soft_q_optimizer2.step()
# Training Value Function
predicted_new_q_value = torch.min(soft_q_net1(state, new_action),soft_q_net2(state, new_action))
target_value_func = predicted_new_q_value - log_prob
value_loss = value_criterion(predicted_value, target_value_func.detach())
value_optimizer.zero_grad()
value_loss.backward()
value_optimizer.step()
# Training Policy Function
policy_loss = (log_prob - predicted_new_q_value).mean()
policy_optimizer.zero_grad()
policy_loss.backward()
policy_optimizer.step()
for target_param, param in zip(target_value_net.parameters(), value_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return predicted_new_q_value.mean()
env = NormalizedActions(gym.make("Pendulum-v0"))
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
hidden_dim = 512
value_net = ValueNetwork(state_dim, hidden_dim).to(device)
target_value_net = ValueNetwork(state_dim, hidden_dim).to(device)
soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim).to(device)
for target_param, param in zip(target_value_net.parameters(), value_net.parameters()):
target_param.data.copy_(param.data)
value_criterion = nn.MSELoss()
soft_q_criterion1 = nn.MSELoss()
soft_q_criterion2 = nn.MSELoss()
value_lr = 3e-4
soft_q_lr = 3e-4
policy_lr = 3e-4
value_optimizer = optim.Adam(value_net.parameters(), lr=value_lr)
soft_q_optimizer1 = optim.Adam(soft_q_net1.parameters(), lr=soft_q_lr)
soft_q_optimizer2 = optim.Adam(soft_q_net2.parameters(), lr=soft_q_lr)
policy_optimizer = optim.Adam(policy_net.parameters(), lr=policy_lr)
replay_buffer_size = 1000000
replay_buffer = ReplayBuffer(replay_buffer_size)
max_frames = 150000
max_steps = 150
frame_idx = 0
rewards = []
predict_qs = []
batch_size = 128
while frame_idx < max_frames:
state = env.reset()
episode_reward = 0
print(frame_idx)
for step in range(max_steps):
if frame_idx >-1:
action = policy_net.get_action(state).detach()
next_state, reward, done, _ = env.step(action.numpy())
else:
action = env.action_space.sample()
next_state, reward, done, _ = env.step(action)
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
frame_idx += 1
if len(replay_buffer) > batch_size:
predict_q=update(batch_size)
if frame_idx % 200 == 0:
plot(frame_idx, rewards, predict_qs)
if done:
break
rewards.append(episode_reward)
predict_qs.append(predict_q)
def display_frames_as_gif(frames):
"""
Displays a list of frames as a gif, with controls
"""
#plt.figure(figsize=(frames[0].shape[1] / 72.0, frames[0].shape[0] / 72.0), dpi = 72)
patch = plt.imshow(frames[0])
plt.axis('off')
def animate(i):
patch.set_data(frames[i])
anim = animation.FuncAnimation(plt.gcf(), animate, frames = len(frames), interval=50)
display(anim)
env = gym.make("Pendulum-v0")
# Run a demo of the environment
state = env.reset()
cum_reward = 0
frames = []
for t in range(50000):
# Render into buffer.
frames.append(env.render(mode = 'rgb_array'))
action = policy_net.get_action(state)
state, reward, done, info = env.step(action.detach())
if done:
break
env.close()
display_frames_as_gif(frames)