-
Notifications
You must be signed in to change notification settings - Fork 131
/
td3_lstm.py
309 lines (256 loc) · 13 KB
/
td3_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
'''
Twin Delayed DDPG (TD3), if no twin no delayed then it's DDPG.
using target Q instead of V net: 2 Q net, 2 target Q net, 1 policy net, 1 target policy net
original paper: https://arxiv.org/pdf/1802.09477.pdf
'''
import math
import random
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from common.buffers import *
from common.value_networks import *
from common.policy_networks import *
from IPython.display import clear_output
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import display
from reacher import Reacher
import gym.spaces as spaces
import argparse
import time
torch.manual_seed(1234) #Reproducibility
GPU = True
device_idx = 0
if GPU:
device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print(device)
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
class NormalizedActions(gym.ActionWrapper):
def _action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def _reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action
class TD3_Trainer():
def __init__(self, replay_buffer, state_space, action_space, hidden_dim, action_range, policy_target_update_interval=1):
self.replay_buffer = replay_buffer
self.hidden_dim = hidden_dim
self.q_net1 = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
self.q_net2 = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
self.target_q_net1 = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
self.target_q_net2 = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
self.policy_net = DPG_PolicyNetworkLSTM(state_space, action_space, hidden_dim).to(device)
self.target_policy_net = DPG_PolicyNetworkLSTM(state_space, action_space, hidden_dim).to(device)
print('Q Network (1,2): ', self.q_net1)
print('Policy Network: ', self.policy_net)
self.target_q_net1 = self.target_ini(self.q_net1, self.target_q_net1)
self.target_q_net2 = self.target_ini(self.q_net2, self.target_q_net2)
self.target_policy_net = self.target_ini(self.policy_net, self.target_policy_net)
q_lr = 3e-4
policy_lr = 3e-4
self.update_cnt = 0
self.policy_target_update_interval = policy_target_update_interval
self.q_optimizer1 = optim.Adam(self.q_net1.parameters(), lr=q_lr)
self.q_optimizer2 = optim.Adam(self.q_net2.parameters(), lr=q_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
def target_ini(self, net, target_net):
for target_param, param in zip(target_net.parameters(), net.parameters()):
target_param.data.copy_(param.data)
return target_net
def target_soft_update(self, net, target_net, soft_tau):
# Soft update the target net
for target_param, param in zip(target_net.parameters(), net.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return target_net
def update(self, batch_size, deterministic, eval_noise_scale, reward_scale=10., gamma=0.9, soft_tau=1e-2):
hidden_in, hidden_out, state, action, last_action, reward, next_state, done = self.replay_buffer.sample(batch_size)
# print('sample:', state, action, reward, done)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
last_action = torch.FloatTensor(last_action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(-1).to(device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(-1).to(device)
predicted_q_value1, _ = self.q_net1(state, action, last_action, hidden_in)
predicted_q_value2, _ = self.q_net2(state, action, last_action, hidden_in)
new_action, _= self.policy_net.evaluate(state, last_action, hidden_in, noise_scale=0.0) # no noise, deterministic policy gradients
new_next_action, _ = self.target_policy_net.evaluate(next_state, action, hidden_out, noise_scale=eval_noise_scale) # clipped normal noise
# reward = reward_scale * (reward - reward.mean(dim=0)) / (reward.std(dim=0) + 1e-6) # normalize with batch mean and std; plus a small number to prevent numerical problem
# Training Q Function
predicted_target_q1, _ = self.target_q_net1(next_state, new_next_action, action, hidden_out)
predicted_target_q2, _ = self.target_q_net2(next_state, new_next_action, action, hidden_out)
target_q_min = torch.min(predicted_target_q1, predicted_target_q2)
target_q_value = reward + (1 - done) * gamma * target_q_min # if done==1, only reward
q_value_loss1 = ((predicted_q_value1 - target_q_value.detach())**2).mean() # detach: no gradients for the variable
q_value_loss2 = ((predicted_q_value2 - target_q_value.detach())**2).mean()
self.q_optimizer1.zero_grad()
q_value_loss1.backward()
self.q_optimizer1.step()
self.q_optimizer2.zero_grad()
q_value_loss2.backward()
self.q_optimizer2.step()
if self.update_cnt%self.policy_target_update_interval==0:
# Training Policy Function
''' implementation 1 '''
# predicted_new_q_value = torch.min(self.q_net1(state, new_action),self.q_net2(state, new_action))
''' implementation 2 '''
predicted_new_q_value, _ = self.q_net1(state, new_action, last_action, hidden_in)
policy_loss = - predicted_new_q_value.mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
# Soft update the target nets
self.target_q_net1=self.target_soft_update(self.q_net1, self.target_q_net1, soft_tau)
self.target_q_net2=self.target_soft_update(self.q_net2, self.target_q_net2, soft_tau)
self.target_policy_net=self.target_soft_update(self.policy_net, self.target_policy_net, soft_tau)
self.update_cnt+=1
return predicted_q_value1.mean() # for debug
def save_model(self, path):
torch.save(self.q_net1.state_dict(), path+'_q1')
torch.save(self.q_net2.state_dict(), path+'_q2')
torch.save(self.policy_net.state_dict(), path+'_policy')
def load_model(self, path):
self.q_net1.load_state_dict(torch.load(path+'_q1'))
self.q_net2.load_state_dict(torch.load(path+'_q2'))
self.policy_net.load_state_dict(torch.load(path+'_policy'))
self.q_net1.eval()
self.q_net2.eval()
self.policy_net.eval()
def plot(rewards):
clear_output(True)
plt.figure(figsize=(20,5))
plt.plot(rewards)
plt.savefig('td3_lstm.png')
# plt.show()
# choose env
ENV = ['Reacher', 'Pendulum-v0', 'HalfCheetah-v2'][1]
if ENV == 'Reacher':
NUM_JOINTS=2
LINK_LENGTH=[200, 140]
INI_JOING_ANGLES=[0.1, 0.1]
SCREEN_SIZE=1000
SPARSE_REWARD=False
SCREEN_SHOT=False
action_range = 10.0
env=Reacher(screen_size=SCREEN_SIZE, num_joints=NUM_JOINTS, link_lengths = LINK_LENGTH, \
ini_joint_angles=INI_JOING_ANGLES, target_pos = [369,430], render=True, change_goal=False)
action_space = spaces.Box(low=-1.0, high=1.0, shape=(env.num_actions,), dtype=np.float32)
state_space = spaces.Box(low=-np.inf, high=np.inf, shape=(env.num_observations, ))
else:
env = NormalizedActions(gym.make(ENV))
action_space = env.action_space
state_space = env.observation_space
action_range=1.
replay_buffer_size = 5e5
replay_buffer = ReplayBufferLSTM2(replay_buffer_size)
# hyper-parameters for RL training
max_episodes = 1000
max_steps = 20 if ENV == 'Reacher' else 150 # Pendulum needs 150 steps per episode to learn well, cannot handle 20
frame_idx = 0
batch_size = 2 # each sample contains an episode for lstm policy
explore_steps = 0 # for random action sampling in the beginning of training
update_itr = 1
hidden_dim = 512
policy_target_update_interval = 10 # delayed update for the policy network and target networks
DETERMINISTIC=True # DDPG: deterministic policy gradient
explore_noise_scale = 0.5
eval_noise_scale = 0.5
reward_scale = 1.
rewards = []
model_path = './model/td3_lstm'
td3_trainer=TD3_Trainer(replay_buffer, state_space, action_space, hidden_dim=hidden_dim, \
policy_target_update_interval=policy_target_update_interval, action_range=action_range )
if __name__ == '__main__':
if args.train:
# training loop
for eps in range(max_episodes):
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
else:
state = env.reset()
last_action = env.action_space.sample()
episode_state = []
episode_action = []
episode_last_action = []
episode_reward = []
episode_next_state = []
episode_done = []
hidden_out = (torch.zeros([1, 1, hidden_dim], dtype=torch.float).cuda(), \
torch.zeros([1, 1, hidden_dim], dtype=torch.float).cuda()) # initialize hidden state for lstm, (hidden, cell), each is (layer, batch, dim)
for step in range(max_steps):
hidden_in = hidden_out
action, hidden_out = td3_trainer.policy_net.get_action(state, last_action, hidden_in, noise_scale=explore_noise_scale)
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
else:
next_state, reward, done, _ = env.step(action)
# env.render()
if step == 0:
ini_hidden_in = hidden_in
ini_hidden_out = hidden_out
episode_state.append(state)
episode_action.append(action)
episode_last_action.append(last_action)
episode_reward.append(reward)
episode_next_state.append(next_state)
episode_done.append(done)
state = next_state
last_action = action
frame_idx += 1
if len(replay_buffer) > batch_size:
for i in range(update_itr):
_=td3_trainer.update(batch_size, deterministic=DETERMINISTIC, eval_noise_scale=eval_noise_scale, reward_scale=reward_scale)
if done:
break
replay_buffer.push(ini_hidden_in, ini_hidden_out, episode_state, episode_action, episode_last_action, \
episode_reward, episode_next_state, episode_done)
if eps % 20 == 0 and eps>0:
plot(rewards)
np.save('rewards_td3_lstm', rewards)
td3_trainer.save_model(model_path)
print('Episode: ', eps, '| Episode Reward: ', np.sum(episode_reward))
rewards.append(np.sum(episode_reward))
td3_trainer.save_model(model_path)
if args.test:
td3_trainer.load_model(model_path)
for eps in range(10):
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
else:
state = env.reset()
env.render()
last_action = env.action_space.sample()
episode_reward = 0
hidden_out = (torch.zeros([1, 1, hidden_dim], dtype=torch.float).cuda(), \
torch.zeros([1, 1, hidden_dim], dtype=torch.float).cuda()) # initialize hidden state for lstm, (hidden, cell), each is (layer, batch, dim)
for step in range(max_steps):
hidden_in = hidden_out
action, hidden_out = td3_trainer.policy_net.get_action(state, last_action, hidden_in, noise_scale=0.)
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
else:
next_state, reward, done, _ = env.step(action)
env.render()
last_action = action
episode_reward += reward
state=next_state
print('Episode: ', eps, '| Episode Reward: ', episode_reward)