-
Notifications
You must be signed in to change notification settings - Fork 298
/
libbf.c
8473 lines (7771 loc) · 235 KB
/
libbf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Tiny arbitrary precision floating point library
*
* Copyright (c) 2017-2021 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <math.h>
#include <string.h>
#include <assert.h>
#ifdef __AVX2__
#include <immintrin.h>
#endif
#include "cutils.h"
#include "libbf.h"
/* enable it to check the multiplication result */
//#define USE_MUL_CHECK
#ifdef CONFIG_BIGNUM
/* enable it to use FFT/NTT multiplication */
#define USE_FFT_MUL
/* enable decimal floating point support */
#define USE_BF_DEC
#endif
//#define inline __attribute__((always_inline))
#ifdef __AVX2__
#define FFT_MUL_THRESHOLD 100 /* in limbs of the smallest factor */
#else
#define FFT_MUL_THRESHOLD 100 /* in limbs of the smallest factor */
#endif
/* XXX: adjust */
#define DIVNORM_LARGE_THRESHOLD 50
#define UDIV1NORM_THRESHOLD 3
#if LIMB_BITS == 64
#define FMT_LIMB1 "%" PRIx64
#define FMT_LIMB "%016" PRIx64
#define PRId_LIMB PRId64
#define PRIu_LIMB PRIu64
#else
#define FMT_LIMB1 "%x"
#define FMT_LIMB "%08x"
#define PRId_LIMB "d"
#define PRIu_LIMB "u"
#endif
typedef intptr_t mp_size_t;
typedef int bf_op2_func_t(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
bf_flags_t flags);
#ifdef USE_FFT_MUL
#define FFT_MUL_R_OVERLAP_A (1 << 0)
#define FFT_MUL_R_OVERLAP_B (1 << 1)
#define FFT_MUL_R_NORESIZE (1 << 2)
static no_inline int fft_mul(bf_context_t *s,
bf_t *res, limb_t *a_tab, limb_t a_len,
limb_t *b_tab, limb_t b_len, int mul_flags);
static void fft_clear_cache(bf_context_t *s);
#endif
#ifdef USE_BF_DEC
static limb_t get_digit(const limb_t *tab, limb_t len, slimb_t pos);
#endif
/* could leading zeros */
static inline int clz(limb_t a)
{
if (a == 0) {
return LIMB_BITS;
} else {
#if LIMB_BITS == 64
return clz64(a);
#else
return clz32(a);
#endif
}
}
static inline int ctz(limb_t a)
{
if (a == 0) {
return LIMB_BITS;
} else {
#if LIMB_BITS == 64
return ctz64(a);
#else
return ctz32(a);
#endif
}
}
static inline int ceil_log2(limb_t a)
{
if (a <= 1)
return 0;
else
return LIMB_BITS - clz(a - 1);
}
/* b must be >= 1 */
static inline slimb_t ceil_div(slimb_t a, slimb_t b)
{
if (a >= 0)
return (a + b - 1) / b;
else
return a / b;
}
/* b must be >= 1 */
static inline slimb_t floor_div(slimb_t a, slimb_t b)
{
if (a >= 0) {
return a / b;
} else {
return (a - b + 1) / b;
}
}
/* return r = a modulo b (0 <= r <= b - 1. b must be >= 1 */
static inline limb_t smod(slimb_t a, slimb_t b)
{
a = a % (slimb_t)b;
if (a < 0)
a += b;
return a;
}
/* signed addition with saturation */
static inline slimb_t sat_add(slimb_t a, slimb_t b)
{
slimb_t r;
r = a + b;
/* overflow ? */
if (((a ^ r) & (b ^ r)) < 0)
r = (a >> (LIMB_BITS - 1)) ^ (((limb_t)1 << (LIMB_BITS - 1)) - 1);
return r;
}
static inline __maybe_unused limb_t shrd(limb_t low, limb_t high, long shift)
{
if (shift != 0)
low = (low >> shift) | (high << (LIMB_BITS - shift));
return low;
}
static inline __maybe_unused limb_t shld(limb_t a1, limb_t a0, long shift)
{
if (shift != 0)
return (a1 << shift) | (a0 >> (LIMB_BITS - shift));
else
return a1;
}
#define malloc(s) malloc_is_forbidden(s)
#define free(p) free_is_forbidden(p)
#define realloc(p, s) realloc_is_forbidden(p, s)
void bf_context_init(bf_context_t *s, bf_realloc_func_t *realloc_func,
void *realloc_opaque)
{
memset(s, 0, sizeof(*s));
s->realloc_func = realloc_func;
s->realloc_opaque = realloc_opaque;
}
void bf_context_end(bf_context_t *s)
{
bf_clear_cache(s);
}
void bf_init(bf_context_t *s, bf_t *r)
{
r->ctx = s;
r->sign = 0;
r->expn = BF_EXP_ZERO;
r->len = 0;
r->tab = NULL;
}
/* return 0 if OK, -1 if alloc error */
int bf_resize(bf_t *r, limb_t len)
{
limb_t *tab;
if (len != r->len) {
tab = bf_realloc(r->ctx, r->tab, len * sizeof(limb_t));
if (!tab && len != 0)
return -1;
r->tab = tab;
r->len = len;
}
return 0;
}
/* return 0 or BF_ST_MEM_ERROR */
int bf_set_ui(bf_t *r, uint64_t a)
{
r->sign = 0;
if (a == 0) {
r->expn = BF_EXP_ZERO;
bf_resize(r, 0); /* cannot fail */
}
#if LIMB_BITS == 32
else if (a <= 0xffffffff)
#else
else
#endif
{
int shift;
if (bf_resize(r, 1))
goto fail;
shift = clz(a);
r->tab[0] = a << shift;
r->expn = LIMB_BITS - shift;
}
#if LIMB_BITS == 32
else {
uint32_t a1, a0;
int shift;
if (bf_resize(r, 2))
goto fail;
a0 = a;
a1 = a >> 32;
shift = clz(a1);
r->tab[0] = a0 << shift;
r->tab[1] = shld(a1, a0, shift);
r->expn = 2 * LIMB_BITS - shift;
}
#endif
return 0;
fail:
bf_set_nan(r);
return BF_ST_MEM_ERROR;
}
/* return 0 or BF_ST_MEM_ERROR */
int bf_set_si(bf_t *r, int64_t a)
{
int ret;
if (a < 0) {
ret = bf_set_ui(r, -a);
r->sign = 1;
} else {
ret = bf_set_ui(r, a);
}
return ret;
}
void bf_set_nan(bf_t *r)
{
bf_resize(r, 0); /* cannot fail */
r->expn = BF_EXP_NAN;
r->sign = 0;
}
void bf_set_zero(bf_t *r, int is_neg)
{
bf_resize(r, 0); /* cannot fail */
r->expn = BF_EXP_ZERO;
r->sign = is_neg;
}
void bf_set_inf(bf_t *r, int is_neg)
{
bf_resize(r, 0); /* cannot fail */
r->expn = BF_EXP_INF;
r->sign = is_neg;
}
/* return 0 or BF_ST_MEM_ERROR */
int bf_set(bf_t *r, const bf_t *a)
{
if (r == a)
return 0;
if (bf_resize(r, a->len)) {
bf_set_nan(r);
return BF_ST_MEM_ERROR;
}
r->sign = a->sign;
r->expn = a->expn;
memcpy(r->tab, a->tab, a->len * sizeof(limb_t));
return 0;
}
/* equivalent to bf_set(r, a); bf_delete(a) */
void bf_move(bf_t *r, bf_t *a)
{
bf_context_t *s = r->ctx;
if (r == a)
return;
bf_free(s, r->tab);
*r = *a;
}
static limb_t get_limbz(const bf_t *a, limb_t idx)
{
if (idx >= a->len)
return 0;
else
return a->tab[idx];
}
/* get LIMB_BITS at bit position 'pos' in tab */
static inline limb_t get_bits(const limb_t *tab, limb_t len, slimb_t pos)
{
limb_t i, a0, a1;
int p;
i = pos >> LIMB_LOG2_BITS;
p = pos & (LIMB_BITS - 1);
if (i < len)
a0 = tab[i];
else
a0 = 0;
if (p == 0) {
return a0;
} else {
i++;
if (i < len)
a1 = tab[i];
else
a1 = 0;
return (a0 >> p) | (a1 << (LIMB_BITS - p));
}
}
static inline limb_t get_bit(const limb_t *tab, limb_t len, slimb_t pos)
{
slimb_t i;
i = pos >> LIMB_LOG2_BITS;
if (i < 0 || i >= len)
return 0;
return (tab[i] >> (pos & (LIMB_BITS - 1))) & 1;
}
static inline limb_t limb_mask(int start, int last)
{
limb_t v;
int n;
n = last - start + 1;
if (n == LIMB_BITS)
v = -1;
else
v = (((limb_t)1 << n) - 1) << start;
return v;
}
static limb_t mp_scan_nz(const limb_t *tab, mp_size_t n)
{
mp_size_t i;
for(i = 0; i < n; i++) {
if (tab[i] != 0)
return 1;
}
return 0;
}
/* return != 0 if one bit between 0 and bit_pos inclusive is not zero. */
static inline limb_t scan_bit_nz(const bf_t *r, slimb_t bit_pos)
{
slimb_t pos;
limb_t v;
pos = bit_pos >> LIMB_LOG2_BITS;
if (pos < 0)
return 0;
v = r->tab[pos] & limb_mask(0, bit_pos & (LIMB_BITS - 1));
if (v != 0)
return 1;
pos--;
while (pos >= 0) {
if (r->tab[pos] != 0)
return 1;
pos--;
}
return 0;
}
/* return the addend for rounding. Note that prec can be <= 0 (for
BF_FLAG_RADPNT_PREC) */
static int bf_get_rnd_add(int *pret, const bf_t *r, limb_t l,
slimb_t prec, int rnd_mode)
{
int add_one, inexact;
limb_t bit1, bit0;
if (rnd_mode == BF_RNDF) {
bit0 = 1; /* faithful rounding does not honor the INEXACT flag */
} else {
/* starting limb for bit 'prec + 1' */
bit0 = scan_bit_nz(r, l * LIMB_BITS - 1 - bf_max(0, prec + 1));
}
/* get the bit at 'prec' */
bit1 = get_bit(r->tab, l, l * LIMB_BITS - 1 - prec);
inexact = (bit1 | bit0) != 0;
add_one = 0;
switch(rnd_mode) {
case BF_RNDZ:
break;
case BF_RNDN:
if (bit1) {
if (bit0) {
add_one = 1;
} else {
/* round to even */
add_one =
get_bit(r->tab, l, l * LIMB_BITS - 1 - (prec - 1));
}
}
break;
case BF_RNDD:
case BF_RNDU:
if (r->sign == (rnd_mode == BF_RNDD))
add_one = inexact;
break;
case BF_RNDA:
add_one = inexact;
break;
case BF_RNDNA:
case BF_RNDF:
add_one = bit1;
break;
default:
abort();
}
if (inexact)
*pret |= BF_ST_INEXACT;
return add_one;
}
static int bf_set_overflow(bf_t *r, int sign, limb_t prec, bf_flags_t flags)
{
slimb_t i, l, e_max;
int rnd_mode;
rnd_mode = flags & BF_RND_MASK;
if (prec == BF_PREC_INF ||
rnd_mode == BF_RNDN ||
rnd_mode == BF_RNDNA ||
rnd_mode == BF_RNDA ||
(rnd_mode == BF_RNDD && sign == 1) ||
(rnd_mode == BF_RNDU && sign == 0)) {
bf_set_inf(r, sign);
} else {
/* set to maximum finite number */
l = (prec + LIMB_BITS - 1) / LIMB_BITS;
if (bf_resize(r, l)) {
bf_set_nan(r);
return BF_ST_MEM_ERROR;
}
r->tab[0] = limb_mask((-prec) & (LIMB_BITS - 1),
LIMB_BITS - 1);
for(i = 1; i < l; i++)
r->tab[i] = (limb_t)-1;
e_max = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
r->expn = e_max;
r->sign = sign;
}
return BF_ST_OVERFLOW | BF_ST_INEXACT;
}
/* round to prec1 bits assuming 'r' is non zero and finite. 'r' is
assumed to have length 'l' (1 <= l <= r->len). Note: 'prec1' can be
infinite (BF_PREC_INF). 'ret' is 0 or BF_ST_INEXACT if the result
is known to be inexact. Can fail with BF_ST_MEM_ERROR in case of
overflow not returning infinity. */
static int __bf_round(bf_t *r, limb_t prec1, bf_flags_t flags, limb_t l,
int ret)
{
limb_t v, a;
int shift, add_one, rnd_mode;
slimb_t i, bit_pos, pos, e_min, e_max, e_range, prec;
/* e_min and e_max are computed to match the IEEE 754 conventions */
e_range = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
e_min = -e_range + 3;
e_max = e_range;
if (flags & BF_FLAG_RADPNT_PREC) {
/* 'prec' is the precision after the radix point */
if (prec1 != BF_PREC_INF)
prec = r->expn + prec1;
else
prec = prec1;
} else if (unlikely(r->expn < e_min) && (flags & BF_FLAG_SUBNORMAL)) {
/* restrict the precision in case of potentially subnormal
result */
assert(prec1 != BF_PREC_INF);
prec = prec1 - (e_min - r->expn);
} else {
prec = prec1;
}
/* round to prec bits */
rnd_mode = flags & BF_RND_MASK;
add_one = bf_get_rnd_add(&ret, r, l, prec, rnd_mode);
if (prec <= 0) {
if (add_one) {
bf_resize(r, 1); /* cannot fail */
r->tab[0] = (limb_t)1 << (LIMB_BITS - 1);
r->expn += 1 - prec;
ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
return ret;
} else {
goto underflow;
}
} else if (add_one) {
limb_t carry;
/* add one starting at digit 'prec - 1' */
bit_pos = l * LIMB_BITS - 1 - (prec - 1);
pos = bit_pos >> LIMB_LOG2_BITS;
carry = (limb_t)1 << (bit_pos & (LIMB_BITS - 1));
for(i = pos; i < l; i++) {
v = r->tab[i] + carry;
carry = (v < carry);
r->tab[i] = v;
if (carry == 0)
break;
}
if (carry) {
/* shift right by one digit */
v = 1;
for(i = l - 1; i >= pos; i--) {
a = r->tab[i];
r->tab[i] = (a >> 1) | (v << (LIMB_BITS - 1));
v = a;
}
r->expn++;
}
}
/* check underflow */
if (unlikely(r->expn < e_min)) {
if (flags & BF_FLAG_SUBNORMAL) {
/* if inexact, also set the underflow flag */
if (ret & BF_ST_INEXACT)
ret |= BF_ST_UNDERFLOW;
} else {
underflow:
ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
bf_set_zero(r, r->sign);
return ret;
}
}
/* check overflow */
if (unlikely(r->expn > e_max))
return bf_set_overflow(r, r->sign, prec1, flags);
/* keep the bits starting at 'prec - 1' */
bit_pos = l * LIMB_BITS - 1 - (prec - 1);
i = bit_pos >> LIMB_LOG2_BITS;
if (i >= 0) {
shift = bit_pos & (LIMB_BITS - 1);
if (shift != 0)
r->tab[i] &= limb_mask(shift, LIMB_BITS - 1);
} else {
i = 0;
}
/* remove trailing zeros */
while (r->tab[i] == 0)
i++;
if (i > 0) {
l -= i;
memmove(r->tab, r->tab + i, l * sizeof(limb_t));
}
bf_resize(r, l); /* cannot fail */
return ret;
}
/* 'r' must be a finite number. */
int bf_normalize_and_round(bf_t *r, limb_t prec1, bf_flags_t flags)
{
limb_t l, v, a;
int shift, ret;
slimb_t i;
// bf_print_str("bf_renorm", r);
l = r->len;
while (l > 0 && r->tab[l - 1] == 0)
l--;
if (l == 0) {
/* zero */
r->expn = BF_EXP_ZERO;
bf_resize(r, 0); /* cannot fail */
ret = 0;
} else {
r->expn -= (r->len - l) * LIMB_BITS;
/* shift to have the MSB set to '1' */
v = r->tab[l - 1];
shift = clz(v);
if (shift != 0) {
v = 0;
for(i = 0; i < l; i++) {
a = r->tab[i];
r->tab[i] = (a << shift) | (v >> (LIMB_BITS - shift));
v = a;
}
r->expn -= shift;
}
ret = __bf_round(r, prec1, flags, l, 0);
}
// bf_print_str("r_final", r);
return ret;
}
/* return true if rounding can be done at precision 'prec' assuming
the exact result r is such that |r-a| <= 2^(EXP(a)-k). */
/* XXX: check the case where the exponent would be incremented by the
rounding */
int bf_can_round(const bf_t *a, slimb_t prec, bf_rnd_t rnd_mode, slimb_t k)
{
BOOL is_rndn;
slimb_t bit_pos, n;
limb_t bit;
if (a->expn == BF_EXP_INF || a->expn == BF_EXP_NAN)
return FALSE;
if (rnd_mode == BF_RNDF) {
return (k >= (prec + 1));
}
if (a->expn == BF_EXP_ZERO)
return FALSE;
is_rndn = (rnd_mode == BF_RNDN || rnd_mode == BF_RNDNA);
if (k < (prec + 2))
return FALSE;
bit_pos = a->len * LIMB_BITS - 1 - prec;
n = k - prec;
/* bit pattern for RNDN or RNDNA: 0111.. or 1000...
for other rounding modes: 000... or 111...
*/
bit = get_bit(a->tab, a->len, bit_pos);
bit_pos--;
n--;
bit ^= is_rndn;
/* XXX: slow, but a few iterations on average */
while (n != 0) {
if (get_bit(a->tab, a->len, bit_pos) != bit)
return TRUE;
bit_pos--;
n--;
}
return FALSE;
}
/* Cannot fail with BF_ST_MEM_ERROR. */
int bf_round(bf_t *r, limb_t prec, bf_flags_t flags)
{
if (r->len == 0)
return 0;
return __bf_round(r, prec, flags, r->len, 0);
}
/* for debugging */
static __maybe_unused void dump_limbs(const char *str, const limb_t *tab, limb_t n)
{
limb_t i;
printf("%s: len=%" PRId_LIMB "\n", str, n);
for(i = 0; i < n; i++) {
printf("%" PRId_LIMB ": " FMT_LIMB "\n",
i, tab[i]);
}
}
void mp_print_str(const char *str, const limb_t *tab, limb_t n)
{
slimb_t i;
printf("%s= 0x", str);
for(i = n - 1; i >= 0; i--) {
if (i != (n - 1))
printf("_");
printf(FMT_LIMB, tab[i]);
}
printf("\n");
}
static __maybe_unused void mp_print_str_h(const char *str,
const limb_t *tab, limb_t n,
limb_t high)
{
slimb_t i;
printf("%s= 0x", str);
printf(FMT_LIMB, high);
for(i = n - 1; i >= 0; i--) {
printf("_");
printf(FMT_LIMB, tab[i]);
}
printf("\n");
}
/* for debugging */
void bf_print_str(const char *str, const bf_t *a)
{
slimb_t i;
printf("%s=", str);
if (a->expn == BF_EXP_NAN) {
printf("NaN");
} else {
if (a->sign)
putchar('-');
if (a->expn == BF_EXP_ZERO) {
putchar('0');
} else if (a->expn == BF_EXP_INF) {
printf("Inf");
} else {
printf("0x0.");
for(i = a->len - 1; i >= 0; i--)
printf(FMT_LIMB, a->tab[i]);
printf("p%" PRId_LIMB, a->expn);
}
}
printf("\n");
}
/* compare the absolute value of 'a' and 'b'. Return < 0 if a < b, 0
if a = b and > 0 otherwise. */
int bf_cmpu(const bf_t *a, const bf_t *b)
{
slimb_t i;
limb_t len, v1, v2;
if (a->expn != b->expn) {
if (a->expn < b->expn)
return -1;
else
return 1;
}
len = bf_max(a->len, b->len);
for(i = len - 1; i >= 0; i--) {
v1 = get_limbz(a, a->len - len + i);
v2 = get_limbz(b, b->len - len + i);
if (v1 != v2) {
if (v1 < v2)
return -1;
else
return 1;
}
}
return 0;
}
/* Full order: -0 < 0, NaN == NaN and NaN is larger than all other numbers */
int bf_cmp_full(const bf_t *a, const bf_t *b)
{
int res;
if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
if (a->expn == b->expn)
res = 0;
else if (a->expn == BF_EXP_NAN)
res = 1;
else
res = -1;
} else if (a->sign != b->sign) {
res = 1 - 2 * a->sign;
} else {
res = bf_cmpu(a, b);
if (a->sign)
res = -res;
}
return res;
}
/* Standard floating point comparison: return 2 if one of the operands
is NaN (unordered) or -1, 0, 1 depending on the ordering assuming
-0 == +0 */
int bf_cmp(const bf_t *a, const bf_t *b)
{
int res;
if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
res = 2;
} else if (a->sign != b->sign) {
if (a->expn == BF_EXP_ZERO && b->expn == BF_EXP_ZERO)
res = 0;
else
res = 1 - 2 * a->sign;
} else {
res = bf_cmpu(a, b);
if (a->sign)
res = -res;
}
return res;
}
/* Compute the number of bits 'n' matching the pattern:
a= X1000..0
b= X0111..1
When computing a-b, the result will have at least n leading zero
bits.
Precondition: a > b and a.expn - b.expn = 0 or 1
*/
static limb_t count_cancelled_bits(const bf_t *a, const bf_t *b)
{
slimb_t bit_offset, b_offset, n;
int p, p1;
limb_t v1, v2, mask;
bit_offset = a->len * LIMB_BITS - 1;
b_offset = (b->len - a->len) * LIMB_BITS - (LIMB_BITS - 1) +
a->expn - b->expn;
n = 0;
/* first search the equals bits */
for(;;) {
v1 = get_limbz(a, bit_offset >> LIMB_LOG2_BITS);
v2 = get_bits(b->tab, b->len, bit_offset + b_offset);
// printf("v1=" FMT_LIMB " v2=" FMT_LIMB "\n", v1, v2);
if (v1 != v2)
break;
n += LIMB_BITS;
bit_offset -= LIMB_BITS;
}
/* find the position of the first different bit */
p = clz(v1 ^ v2) + 1;
n += p;
/* then search for '0' in a and '1' in b */
p = LIMB_BITS - p;
if (p > 0) {
/* search in the trailing p bits of v1 and v2 */
mask = limb_mask(0, p - 1);
p1 = bf_min(clz(v1 & mask), clz((~v2) & mask)) - (LIMB_BITS - p);
n += p1;
if (p1 != p)
goto done;
}
bit_offset -= LIMB_BITS;
for(;;) {
v1 = get_limbz(a, bit_offset >> LIMB_LOG2_BITS);
v2 = get_bits(b->tab, b->len, bit_offset + b_offset);
// printf("v1=" FMT_LIMB " v2=" FMT_LIMB "\n", v1, v2);
if (v1 != 0 || v2 != -1) {
/* different: count the matching bits */
p1 = bf_min(clz(v1), clz(~v2));
n += p1;
break;
}
n += LIMB_BITS;
bit_offset -= LIMB_BITS;
}
done:
return n;
}
static int bf_add_internal(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
bf_flags_t flags, int b_neg)
{
const bf_t *tmp;
int is_sub, ret, cmp_res, a_sign, b_sign;
a_sign = a->sign;
b_sign = b->sign ^ b_neg;
is_sub = a_sign ^ b_sign;
cmp_res = bf_cmpu(a, b);
if (cmp_res < 0) {
tmp = a;
a = b;
b = tmp;
a_sign = b_sign; /* b_sign is never used later */
}
/* abs(a) >= abs(b) */
if (cmp_res == 0 && is_sub && a->expn < BF_EXP_INF) {
/* zero result */
bf_set_zero(r, (flags & BF_RND_MASK) == BF_RNDD);
ret = 0;
} else if (a->len == 0 || b->len == 0) {
ret = 0;
if (a->expn >= BF_EXP_INF) {
if (a->expn == BF_EXP_NAN) {
/* at least one operand is NaN */
bf_set_nan(r);
} else if (b->expn == BF_EXP_INF && is_sub) {
/* infinities with different signs */
bf_set_nan(r);
ret = BF_ST_INVALID_OP;
} else {
bf_set_inf(r, a_sign);
}
} else {
/* at least one zero and not subtract */
bf_set(r, a);
r->sign = a_sign;
goto renorm;
}
} else {
slimb_t d, a_offset, b_bit_offset, i, cancelled_bits;
limb_t carry, v1, v2, u, r_len, carry1, precl, tot_len, z, sub_mask;
r->sign = a_sign;
r->expn = a->expn;
d = a->expn - b->expn;
/* must add more precision for the leading cancelled bits in
subtraction */
if (is_sub) {
if (d <= 1)
cancelled_bits = count_cancelled_bits(a, b);
else
cancelled_bits = 1;
} else {
cancelled_bits = 0;
}
/* add two extra bits for rounding */
precl = (cancelled_bits + prec + 2 + LIMB_BITS - 1) / LIMB_BITS;
tot_len = bf_max(a->len, b->len + (d + LIMB_BITS - 1) / LIMB_BITS);
r_len = bf_min(precl, tot_len);
if (bf_resize(r, r_len))
goto fail;
a_offset = a->len - r_len;
b_bit_offset = (b->len - r_len) * LIMB_BITS + d;
/* compute the bits before for the rounding */
carry = is_sub;
z = 0;
sub_mask = -is_sub;
i = r_len - tot_len;
while (i < 0) {
slimb_t ap, bp;
BOOL inflag;
ap = a_offset + i;
bp = b_bit_offset + i * LIMB_BITS;
inflag = FALSE;
if (ap >= 0 && ap < a->len) {
v1 = a->tab[ap];
inflag = TRUE;
} else {
v1 = 0;
}
if (bp + LIMB_BITS > 0 && bp < (slimb_t)(b->len * LIMB_BITS)) {
v2 = get_bits(b->tab, b->len, bp);
inflag = TRUE;
} else {
v2 = 0;
}
if (!inflag) {
/* outside 'a' and 'b': go directly to the next value
inside a or b so that the running time does not
depend on the exponent difference */
i = 0;
if (ap < 0)
i = bf_min(i, -a_offset);
/* b_bit_offset + i * LIMB_BITS + LIMB_BITS >= 1
equivalent to
i >= ceil(-b_bit_offset + 1 - LIMB_BITS) / LIMB_BITS)
*/
if (bp + LIMB_BITS <= 0)
i = bf_min(i, (-b_bit_offset) >> LIMB_LOG2_BITS);
} else {
i++;
}
v2 ^= sub_mask;
u = v1 + v2;
carry1 = u < v1;
u += carry;
carry = (u < carry) | carry1;
z |= u;
}
/* and the result */
for(i = 0; i < r_len; i++) {