-
Notifications
You must be signed in to change notification settings - Fork 1
/
定义一个神经网络01
67 lines (54 loc) · 2.56 KB
/
定义一个神经网络01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# def 添加或定义一个神经层
def add_layer(inputs , in_size , out_size ,activation_function =None):
with tf.name_scope('layer'):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size , out_size]) ,name='w') ### in_size行 , out_size列
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1 , out_size]) + 0.1 ,name='b') ### 1行 , out_size列 初始值不为零
with tf.name_scope('Wx_plus'):
Wx_plus_b = tf.matmul(inputs , Weights) + biases ### WX + b
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# 建造神经网络
x_data = np.linspace(-1 , 1 , 300)[: , np.newaxis] ### (-1 ,1)范围,300个数,
noise = np.random.normal(0 , 0.05 , x_data.shape) ## 均值0 , 方差 0.05 形状和x_data一样
y_data = np.square(x_data) - 0.5 + noise
with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32,[None , 1] ,name = 'x_input') ### 传入的样本数量不定,一次传入值的维度是 一
ys = tf.placeholder(tf.float32,[None , 1], name = 'y_input') ### 传入的样本数量不定,一次传入值的维度是 一
l1 = add_layer(xs , 1 , 10 ,activation_function = tf.nn.relu) ### 第一个hiddened layer
prediction = add_layer(l1 , 10 , 1, activation_function = None)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction) , reduction_indices=[1])) #### 最小化均方误差
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer() #### tf.global_variables_initializer代替initialize_all_variables
sess = tf.Session()
writer = tf.summary.FileWriter("logs/", sess.graph) ###保存计算图
sess.run(init)
# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()#本次运行请注释,全局运行不要注释
plt.show()
for i in range(1000):
# training
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to visualize the result and improvement
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# plot the prediction
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.pause(0.1)