This repository has been archived by the owner on Jan 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
llncs.dem
1093 lines (1021 loc) · 34.5 KB
/
llncs.dem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% This is LLNCS.DEM the demonstration file of
% the LaTeX macro package from Springer-Verlag
% for Lecture Notes in Computer Science,
% version 2.4 for LaTeX2e as of 16. April 2010
%
\documentclass{llncs}
%
\usepackage{makeidx} % allows for indexgeneration
%
\begin{document}
%
\frontmatter % for the preliminaries
%
\pagestyle{headings} % switches on printing of running heads
\addtocmark{Hamiltonian Mechanics} % additional mark in the TOC
%
\chapter*{Preface}
%
This textbook is intended for use by students of physics, physical
chemistry, and theoretical chemistry. The reader is presumed to have a
basic knowledge of atomic and quantum physics at the level provided, for
example, by the first few chapters in our book {\it The Physics of Atoms
and Quanta}. The student of physics will find here material which should
be included in the basic education of every physicist. This book should
furthermore allow students to acquire an appreciation of the breadth and
variety within the field of molecular physics and its future as a
fascinating area of research.
For the student of chemistry, the concepts introduced in this book will
provide a theoretical framework for that entire field of study. With the
help of these concepts, it is at least in principle possible to reduce
the enormous body of empirical chemical knowledge to a few basic
principles: those of quantum mechanics. In addition, modern physical
methods whose fundamentals are introduced here are becoming increasingly
important in chemistry and now represent indispensable tools for the
chemist. As examples, we might mention the structural analysis of
complex organic compounds, spectroscopic investigation of very rapid
reaction processes or, as a practical application, the remote detection
of pollutants in the air.
\vspace{1cm}
\begin{flushright}\noindent
April 1995\hfill Walter Olthoff\\
Program Chair\\
ECOOP'95
\end{flushright}
%
\chapter*{Organization}
ECOOP'95 is organized by the department of Computer Science, Univeristy
of \AA rhus and AITO (association Internationa pour les Technologie
Object) in cooperation with ACM/SIGPLAN.
%
\section*{Executive Commitee}
\begin{tabular}{@{}p{5cm}@{}p{7.2cm}@{}}
Conference Chair:&Ole Lehrmann Madsen (\AA rhus University, DK)\\
Program Chair: &Walter Olthoff (DFKI GmbH, Germany)\\
Organizing Chair:&J\o rgen Lindskov Knudsen (\AA rhus University, DK)\\
Tutorials:&Birger M\o ller-Pedersen\hfil\break
(Norwegian Computing Center, Norway)\\
Workshops:&Eric Jul (University of Kopenhagen, Denmark)\\
Panels:&Boris Magnusson (Lund University, Sweden)\\
Exhibition:&Elmer Sandvad (\AA rhus University, DK)\\
Demonstrations:&Kurt N\o rdmark (\AA rhus University, DK)
\end{tabular}
%
\section*{Program Commitee}
\begin{tabular}{@{}p{5cm}@{}p{7.2cm}@{}}
Conference Chair:&Ole Lehrmann Madsen (\AA rhus University, DK)\\
Program Chair: &Walter Olthoff (DFKI GmbH, Germany)\\
Organizing Chair:&J\o rgen Lindskov Knudsen (\AA rhus University, DK)\\
Tutorials:&Birger M\o ller-Pedersen\hfil\break
(Norwegian Computing Center, Norway)\\
Workshops:&Eric Jul (University of Kopenhagen, Denmark)\\
Panels:&Boris Magnusson (Lund University, Sweden)\\
Exhibition:&Elmer Sandvad (\AA rhus University, DK)\\
Demonstrations:&Kurt N\o rdmark (\AA rhus University, DK)
\end{tabular}
%
\begin{multicols}{3}[\section*{Referees}]
V.~Andreev\\
B\"arwolff\\
E.~Barrelet\\
H.P.~Beck\\
G.~Bernardi\\
E.~Binder\\
P.C.~Bosetti\\
Braunschweig\\
F.W.~B\"usser\\
T.~Carli\\
A.B.~Clegg\\
G.~Cozzika\\
S.~Dagoret\\
Del~Buono\\
P.~Dingus\\
H.~Duhm\\
J.~Ebert\\
S.~Eichenberger\\
R.J.~Ellison\\
Feltesse\\
W.~Flauger\\
A.~Fomenko\\
G.~Franke\\
J.~Garvey\\
M.~Gennis\\
L.~Goerlich\\
P.~Goritchev\\
H.~Greif\\
E.M.~Hanlon\\
R.~Haydar\\
R.C.W.~Henderso\\
P.~Hill\\
H.~Hufnagel\\
A.~Jacholkowska\\
Johannsen\\
S.~Kasarian\\
I.R.~Kenyon\\
C.~Kleinwort\\
T.~K\"ohler\\
S.D.~Kolya\\
P.~Kostka\\
U.~Kr\"uger\\
J.~Kurzh\"ofer\\
M.P.J.~Landon\\
A.~Lebedev\\
Ch.~Ley\\
F.~Linsel\\
H.~Lohmand\\
Martin\\
S.~Masson\\
K.~Meier\\
C.A.~Meyer\\
S.~Mikocki\\
J.V.~Morris\\
B.~Naroska\\
Nguyen\\
U.~Obrock\\
G.D.~Patel\\
Ch.~Pichler\\
S.~Prell\\
F.~Raupach\\
V.~Riech\\
P.~Robmann\\
N.~Sahlmann\\
P.~Schleper\\
Sch\"oning\\
B.~Schwab\\
A.~Semenov\\
G.~Siegmon\\
J.R.~Smith\\
M.~Steenbock\\
U.~Straumann\\
C.~Thiebaux\\
P.~Van~Esch\\
from Yerevan Ph\\
L.R.~West\\
G.-G.~Winter\\
T.P.~Yiou\\
M.~Zimmer\end{multicols}
%
\section*{Sponsoring Institutions}
%
Bernauer-Budiman Inc., Reading, Mass.\\
The Hofmann-International Company, San Louis Obispo, Cal.\\
Kramer Industries, Heidelberg, Germany
%
\tableofcontents
%
\mainmatter % start of the contributions
%
\title{Hamiltonian Mechanics unter besonderer Ber\"ucksichtigung der
h\"ohreren Lehranstalten}
%
\titlerunning{Hamiltonian Mechanics} % abbreviated title (for running head)
% also used for the TOC unless
% \toctitle is used
%
\author{Ivar Ekeland\inst{1} \and Roger Temam\inst{2}
Jeffrey Dean \and David Grove \and Craig Chambers \and Kim~B.~Bruce \and
Elsa Bertino}
%
\authorrunning{Ivar Ekeland et al.} % abbreviated author list (for running head)
%
%%%% list of authors for the TOC (use if author list has to be modified)
\tocauthor{Ivar Ekeland, Roger Temam, Jeffrey Dean, David Grove,
Craig Chambers, Kim B. Bruce, and Elisa Bertino}
%
\institute{Princeton University, Princeton NJ 08544, USA,\\
\email{I.Ekeland@princeton.edu},\\ WWW home page:
\texttt{http://users/\homedir iekeland/web/welcome.html}
\and
Universit\'{e} de Paris-Sud,
Laboratoire d'Analyse Num\'{e}rique, B\^{a}timent 425,\\
F-91405 Orsay Cedex, France}
\maketitle % typeset the title of the contribution
\begin{abstract}
The abstract should summarize the contents of the paper
using at least 70 and at most 150 words. It will be set in 9-point
font size and be inset 1.0 cm from the right and left margins.
There will be two blank lines before and after the Abstract. \dots
\keywords{computational geometry, graph theory, Hamilton cycles}
\end{abstract}
%
\section{Fixed-Period Problems: The Sublinear Case}
%
With this chapter, the preliminaries are over, and we begin the search
for periodic solutions to Hamiltonian systems. All this will be done in
the convex case; that is, we shall study the boundary-value problem
\begin{eqnarray*}
\dot{x}&=&JH' (t,x)\\
x(0) &=& x(T)
\end{eqnarray*}
with $H(t,\cdot)$ a convex function of $x$, going to $+\infty$ when
$\left\|x\right\| \to \infty$.
%
\subsection{Autonomous Systems}
%
In this section, we will consider the case when the Hamiltonian $H(x)$
is autonomous. For the sake of simplicity, we shall also assume that it
is $C^{1}$.
We shall first consider the question of nontriviality, within the
general framework of
$\left(A_{\infty},B_{\infty}\right)$-subquadratic Hamiltonians. In
the second subsection, we shall look into the special case when $H$ is
$\left(0,b_{\infty}\right)$-subquadratic,
and we shall try to derive additional information.
%
\subsubsection{The General Case: Nontriviality.}
%
We assume that $H$ is
$\left(A_{\infty},B_{\infty}\right)$-sub\-qua\-dra\-tic at infinity,
for some constant symmetric matrices $A_{\infty}$ and $B_{\infty}$,
with $B_{\infty}-A_{\infty}$ positive definite. Set:
\begin{eqnarray}
\gamma :&=&{\rm smallest\ eigenvalue\ of}\ \ B_{\infty} - A_{\infty} \\
\lambda : &=& {\rm largest\ negative\ eigenvalue\ of}\ \
J \frac{d}{dt} +A_{\infty}\ .
\end{eqnarray}
Theorem~\ref{ghou:pre} tells us that if $\lambda +\gamma < 0$, the
boundary-value problem:
\begin{equation}
\begin{array}{rcl}
\dot{x}&=&JH' (x)\\
x(0)&=&x (T)
\end{array}
\end{equation}
has at least one solution
$\overline{x}$, which is found by minimizing the dual
action functional:
\begin{equation}
\psi (u) = \int_{o}^{T} \left[\frac{1}{2}
\left(\Lambda_{o}^{-1} u,u\right) + N^{\ast} (-u)\right] dt
\end{equation}
on the range of $\Lambda$, which is a subspace $R (\Lambda)_{L}^{2}$
with finite codimension. Here
\begin{equation}
N(x) := H(x) - \frac{1}{2} \left(A_{\infty} x,x\right)
\end{equation}
is a convex function, and
\begin{equation}
N(x) \le \frac{1}{2}
\left(\left(B_{\infty} - A_{\infty}\right) x,x\right)
+ c\ \ \ \forall x\ .
\end{equation}
%
\begin{proposition}
Assume $H'(0)=0$ and $ H(0)=0$. Set:
\begin{equation}
\delta := \liminf_{x\to 0} 2 N (x) \left\|x\right\|^{-2}\ .
\label{eq:one}
\end{equation}
If $\gamma < - \lambda < \delta$,
the solution $\overline{u}$ is non-zero:
\begin{equation}
\overline{x} (t) \ne 0\ \ \ \forall t\ .
\end{equation}
\end{proposition}
%
\begin{proof}
Condition (\ref{eq:one}) means that, for every
$\delta ' > \delta$, there is some $\varepsilon > 0$ such that
\begin{equation}
\left\|x\right\| \le \varepsilon \Rightarrow N (x) \le
\frac{\delta '}{2} \left\|x\right\|^{2}\ .
\end{equation}
It is an exercise in convex analysis, into which we shall not go, to
show that this implies that there is an $\eta > 0$ such that
\begin{equation}
f\left\|x\right\| \le \eta
\Rightarrow N^{\ast} (y) \le \frac{1}{2\delta '}
\left\|y\right\|^{2}\ .
\label{eq:two}
\end{equation}
\begin{figure}
\vspace{2.5cm}
\caption{This is the caption of the figure displaying a white eagle and
a white horse on a snow field}
\end{figure}
Since $u_{1}$ is a smooth function, we will have
$\left\|hu_{1}\right\|_\infty \le \eta$
for $h$ small enough, and inequality (\ref{eq:two}) will hold,
yielding thereby:
\begin{equation}
\psi (hu_{1}) \le \frac{h^{2}}{2}
\frac{1}{\lambda} \left\|u_{1} \right\|_{2}^{2} + \frac{h^{2}}{2}
\frac{1}{\delta '} \left\|u_{1}\right\|^{2}\ .
\end{equation}
If we choose $\delta '$ close enough to $\delta$, the quantity
$\left(\frac{1}{\lambda} + \frac{1}{\delta '}\right)$
will be negative, and we end up with
\begin{equation}
\psi (hu_{1}) < 0\ \ \ \ \ {\rm for}\ \ h\ne 0\ \ {\rm small}\ .
\end{equation}
On the other hand, we check directly that $\psi (0) = 0$. This shows
that 0 cannot be a minimizer of $\psi$, not even a local one.
So $\overline{u} \ne 0$ and
$\overline{u} \ne \Lambda_{o}^{-1} (0) = 0$. \qed
\end{proof}
%
\begin{corollary}
Assume $H$ is $C^{2}$ and
$\left(a_{\infty},b_{\infty}\right)$-subquadratic at infinity. Let
$\xi_{1},\allowbreak\dots,\allowbreak\xi_{N}$ be the
equilibria, that is, the solutions of $H' (\xi ) = 0$.
Denote by $\omega_{k}$
the smallest eigenvalue of $H'' \left(\xi_{k}\right)$, and set:
\begin{equation}
\omega : = {\rm Min\,} \left\{\omega_{1},\dots,\omega_{k}\right\}\ .
\end{equation}
If:
\begin{equation}
\frac{T}{2\pi} b_{\infty} <
- E \left[- \frac{T}{2\pi}a_{\infty}\right] <
\frac{T}{2\pi}\omega
\label{eq:three}
\end{equation}
then minimization of $\psi$ yields a non-constant $T$-periodic solution
$\overline{x}$.
\end{corollary}
%
We recall once more that by the integer part $E [\alpha ]$ of
$\alpha \in \bbbr$, we mean the $a\in \bbbz$
such that $a< \alpha \le a+1$. For instance,
if we take $a_{\infty} = 0$, Corollary 2 tells
us that $\overline{x}$ exists and is
non-constant provided that:
\begin{equation}
\frac{T}{2\pi} b_{\infty} < 1 < \frac{T}{2\pi}
\end{equation}
or
\begin{equation}
T\in \left(\frac{2\pi}{\omega},\frac{2\pi}{b_{\infty}}\right)\ .
\label{eq:four}
\end{equation}
%
\begin{proof}
The spectrum of $\Lambda$ is $\frac{2\pi}{T} \bbbz +a_{\infty}$. The
largest negative eigenvalue $\lambda$ is given by
$\frac{2\pi}{T}k_{o} +a_{\infty}$,
where
\begin{equation}
\frac{2\pi}{T}k_{o} + a_{\infty} < 0
\le \frac{2\pi}{T} (k_{o} +1) + a_{\infty}\ .
\end{equation}
Hence:
\begin{equation}
k_{o} = E \left[- \frac{T}{2\pi} a_{\infty}\right] \ .
\end{equation}
The condition $\gamma < -\lambda < \delta$ now becomes:
\begin{equation}
b_{\infty} - a_{\infty} <
- \frac{2\pi}{T} k_{o} -a_{\infty} < \omega -a_{\infty}
\end{equation}
which is precisely condition (\ref{eq:three}).\qed
\end{proof}
%
\begin{lemma}
Assume that $H$ is $C^{2}$ on $\bbbr^{2n} \setminus \{ 0\}$ and
that $H'' (x)$ is non-de\-gen\-er\-ate for any $x\ne 0$. Then any local
minimizer $\widetilde{x}$ of $\psi$ has minimal period $T$.
\end{lemma}
%
\begin{proof}
We know that $\widetilde{x}$, or
$\widetilde{x} + \xi$ for some constant $\xi
\in \bbbr^{2n}$, is a $T$-periodic solution of the Hamiltonian system:
\begin{equation}
\dot{x} = JH' (x)\ .
\end{equation}
There is no loss of generality in taking $\xi = 0$. So
$\psi (x) \ge \psi (\widetilde{x} )$
for all $\widetilde{x}$ in some neighbourhood of $x$ in
$W^{1,2} \left(\bbbr / T\bbbz ; \bbbr^{2n}\right)$.
But this index is precisely the index
$i_{T} (\widetilde{x} )$ of the $T$-periodic
solution $\widetilde{x}$ over the interval
$(0,T)$, as defined in Sect.~2.6. So
\begin{equation}
i_{T} (\widetilde{x} ) = 0\ .
\label{eq:five}
\end{equation}
Now if $\widetilde{x}$ has a lower period, $T/k$ say,
we would have, by Corollary 31:
\begin{equation}
i_{T} (\widetilde{x} ) =
i_{kT/k}(\widetilde{x} ) \ge
ki_{T/k} (\widetilde{x} ) + k-1 \ge k-1 \ge 1\ .
\end{equation}
This would contradict (\ref{eq:five}), and thus cannot happen.\qed
\end{proof}
%
\paragraph{Notes and Comments.}
The results in this section are a
refined version of \cite{clar:eke};
the minimality result of Proposition
14 was the first of its kind.
To understand the nontriviality conditions, such as the one in formula
(\ref{eq:four}), one may think of a one-parameter family
$x_{T}$, $T\in \left(2\pi\omega^{-1}, 2\pi b_{\infty}^{-1}\right)$
of periodic solutions, $x_{T} (0) = x_{T} (T)$,
with $x_{T}$ going away to infinity when $T\to 2\pi \omega^{-1}$,
which is the period of the linearized system at 0.
\begin{table}
\caption{This is the example table taken out of {\it The
\TeX{}book,} p.\,246}
\begin{center}
\begin{tabular}{r@{\quad}rl}
\hline
\multicolumn{1}{l}{\rule{0pt}{12pt}
Year}&\multicolumn{2}{l}{World population}\\[2pt]
\hline\rule{0pt}{12pt}
8000 B.C. & 5,000,000& \\
50 A.D. & 200,000,000& \\
1650 A.D. & 500,000,000& \\
1945 A.D. & 2,300,000,000& \\
1980 A.D. & 4,400,000,000& \\[2pt]
\hline
\end{tabular}
\end{center}
\end{table}
%
\begin{theorem} [Ghoussoub-Preiss]\label{ghou:pre}
Assume $H(t,x)$ is
$(0,\varepsilon )$-subquadratic at
infinity for all $\varepsilon > 0$, and $T$-periodic in $t$
\begin{equation}
H (t,\cdot )\ \ \ \ \ {\rm is\ convex}\ \ \forall t
\end{equation}
\begin{equation}
H (\cdot ,x)\ \ \ \ \ {\rm is}\ \ T{\rm -periodic}\ \ \forall x
\end{equation}
\begin{equation}
H (t,x)\ge n\left(\left\|x\right\|\right)\ \ \ \ \
{\rm with}\ \ n (s)s^{-1}\to \infty\ \ {\rm as}\ \ s\to \infty
\end{equation}
\begin{equation}
\forall \varepsilon > 0\ ,\ \ \ \exists c\ :\
H(t,x) \le \frac{\varepsilon}{2}\left\|x\right\|^{2} + c\ .
\end{equation}
Assume also that $H$ is $C^{2}$, and $H'' (t,x)$ is positive definite
everywhere. Then there is a sequence $x_{k}$, $k\in \bbbn$, of
$kT$-periodic solutions of the system
\begin{equation}
\dot{x} = JH' (t,x)
\end{equation}
such that, for every $k\in \bbbn$, there is some $p_{o}\in\bbbn$ with:
\begin{equation}
p\ge p_{o}\Rightarrow x_{pk} \ne x_{k}\ .
\end{equation}
\qed
\end{theorem}
%
\begin{example} [{{\rm External forcing}}]
Consider the system:
\begin{equation}
\dot{x} = JH' (x) + f(t)
\end{equation}
where the Hamiltonian $H$ is
$\left(0,b_{\infty}\right)$-subquadratic, and the
forcing term is a distribution on the circle:
\begin{equation}
f = \frac{d}{dt} F + f_{o}\ \ \ \ \
{\rm with}\ \ F\in L^{2} \left(\bbbr / T\bbbz; \bbbr^{2n}\right)\ ,
\end{equation}
where $f_{o} : = T^{-1}\int_{o}^{T} f (t) dt$. For instance,
\begin{equation}
f (t) = \sum_{k\in \bbbn} \delta_{k} \xi\ ,
\end{equation}
where $\delta_{k}$ is the Dirac mass at $t= k$ and
$\xi \in \bbbr^{2n}$ is a
constant, fits the prescription. This means that the system
$\dot{x} = JH' (x)$ is being excited by a
series of identical shocks at interval $T$.
\end{example}
%
\begin{definition}
Let $A_{\infty} (t)$ and $B_{\infty} (t)$ be symmetric
operators in $\bbbr^{2n}$, depending continuously on
$t\in [0,T]$, such that
$A_{\infty} (t) \le B_{\infty} (t)$ for all $t$.
A Borelian function
$H: [0,T]\times \bbbr^{2n} \to \bbbr$
is called
$\left(A_{\infty} ,B_{\infty}\right)$-{\it subquadratic at infinity}
if there exists a function $N(t,x)$ such that:
\begin{equation}
H (t,x) = \frac{1}{2} \left(A_{\infty} (t) x,x\right) + N(t,x)
\end{equation}
\begin{equation}
\forall t\ ,\ \ \ N(t,x)\ \ \ \ \
{\rm is\ convex\ with\ respect\ to}\ \ x
\end{equation}
\begin{equation}
N(t,x) \ge n\left(\left\|x\right\|\right)\ \ \ \ \
{\rm with}\ \ n(s)s^{-1}\to +\infty\ \ {\rm as}\ \ s\to +\infty
\end{equation}
\begin{equation}
\exists c\in \bbbr\ :\ \ \ H (t,x) \le
\frac{1}{2} \left(B_{\infty} (t) x,x\right) + c\ \ \ \forall x\ .
\end{equation}
If $A_{\infty} (t) = a_{\infty} I$ and
$B_{\infty} (t) = b_{\infty} I$, with
$a_{\infty} \le b_{\infty} \in \bbbr$,
we shall say that $H$ is
$\left(a_{\infty},b_{\infty}\right)$-subquadratic
at infinity. As an example, the function
$\left\|x\right\|^{\alpha}$, with
$1\le \alpha < 2$, is $(0,\varepsilon )$-subquadratic at infinity
for every $\varepsilon > 0$. Similarly, the Hamiltonian
\begin{equation}
H (t,x) = \frac{1}{2} k \left\|k\right\|^{2} +\left\|x\right\|^{\alpha}
\end{equation}
is $(k,k+\varepsilon )$-subquadratic for every $\varepsilon > 0$.
Note that, if $k<0$, it is not convex.
\end{definition}
%
\paragraph{Notes and Comments.}
The first results on subharmonics were
obtained by Rabinowitz in \cite{rab}, who showed the existence of
infinitely many subharmonics both in the subquadratic and superquadratic
case, with suitable growth conditions on $H'$. Again the duality
approach enabled Clarke and Ekeland in \cite{clar:eke:2} to treat the
same problem in the convex-subquadratic case, with growth conditions on
$H$ only.
Recently, Michalek and Tarantello (see \cite{mich:tar} and \cite{tar})
have obtained lower bound on the number of subharmonics of period $kT$,
based on symmetry considerations and on pinching estimates, as in
Sect.~5.2 of this article.
%
% ---- Bibliography ----
%
\begin{thebibliography}{5}
%
\bibitem {clar:eke}
Clarke, F., Ekeland, I.:
Nonlinear oscillations and
boundary-value problems for Hamiltonian systems.
Arch. Rat. Mech. Anal. 78, 315--333 (1982)
\bibitem {clar:eke:2}
Clarke, F., Ekeland, I.:
Solutions p\'{e}riodiques, du
p\'{e}riode donn\'{e}e, des \'{e}quations hamiltoniennes.
Note CRAS Paris 287, 1013--1015 (1978)
\bibitem {mich:tar}
Michalek, R., Tarantello, G.:
Subharmonic solutions with prescribed minimal
period for nonautonomous Hamiltonian systems.
J. Diff. Eq. 72, 28--55 (1988)
\bibitem {tar}
Tarantello, G.:
Subharmonic solutions for Hamiltonian
systems via a $\bbbz_{p}$ pseudoindex theory.
Annali di Matematica Pura (to appear)
\bibitem {rab}
Rabinowitz, P.:
On subharmonic solutions of a Hamiltonian system.
Comm. Pure Appl. Math. 33, 609--633 (1980)
\end{thebibliography}
%
% second contribution with nearly identical text,
% slightly changed contribution head (all entries
% appear as defaults), and modified bibliography
%
\title{Hamiltonian Mechanics2}
\author{Ivar Ekeland\inst{1} \and Roger Temam\inst{2}}
\institute{Princeton University, Princeton NJ 08544, USA
\and
Universit\'{e} de Paris-Sud,
Laboratoire d'Analyse Num\'{e}rique, B\^{a}timent 425,\\
F-91405 Orsay Cedex, France}
\maketitle
%
% Modify the bibliography environment to call for the author-year
% system. This is done normally with the citeauthoryear option
% for a particular contribution.
\makeatletter
\renewenvironment{thebibliography}[1]
{\section*{\refname}
\small
\list{}%
{\settowidth\labelwidth{}%
\leftmargin\parindent
\itemindent=-\parindent
\labelsep=\z@
\if@openbib
\advance\leftmargin\bibindent
\itemindent -\bibindent
\listparindent \itemindent
\parsep \z@
\fi
\usecounter{enumiv}%
\let\p@enumiv\@empty
\renewcommand\theenumiv{}}%
\if@openbib
\renewcommand\newblock{\par}%
\else
\renewcommand\newblock{\hskip .11em \@plus.33em \@minus.07em}%
\fi
\sloppy\clubpenalty4000\widowpenalty4000%
\sfcode`\.=\@m}
{\def\@noitemerr
{\@latex@warning{Empty `thebibliography' environment}}%
\endlist}
\def\@cite#1{#1}%
\def\@lbibitem[#1]#2{\item[]\if@filesw
{\def\protect##1{\string ##1\space}\immediate
\write\@auxout{\string\bibcite{#2}{#1}}}\fi\ignorespaces}
\makeatother
%
\begin{abstract}
The abstract should summarize the contents of the paper
using at least 70 and at most 150 words. It will be set in 9-point
font size and be inset 1.0 cm from the right and left margins.
There will be two blank lines before and after the Abstract. \dots
\keywords{graph transformations, convex geometry, lattice computations,
convex polygons, triangulations, discrete geometry}
\end{abstract}
%
\section{Fixed-Period Problems: The Sublinear Case}
%
With this chapter, the preliminaries are over, and we begin the search
for periodic solutions to Hamiltonian systems. All this will be done in
the convex case; that is, we shall study the boundary-value problem
\begin{eqnarray*}
\dot{x}&=&JH' (t,x)\\
x(0) &=& x(T)
\end{eqnarray*}
with $H(t,\cdot)$ a convex function of $x$, going to $+\infty$ when
$\left\|x\right\| \to \infty$.
%
\subsection{Autonomous Systems}
%
In this section, we will consider the case when the Hamiltonian $H(x)$
is autonomous. For the sake of simplicity, we shall also assume that it
is $C^{1}$.
We shall first consider the question of nontriviality, within the
general framework of
$\left(A_{\infty},B_{\infty}\right)$-subquadratic Hamiltonians. In
the second subsection, we shall look into the special case when $H$ is
$\left(0,b_{\infty}\right)$-subquadratic,
and we shall try to derive additional information.
%
\subsubsection{The General Case: Nontriviality.}
%
We assume that $H$ is
$\left(A_{\infty},B_{\infty}\right)$-sub\-qua\-dra\-tic at infinity,
for some constant symmetric matrices $A_{\infty}$ and $B_{\infty}$,
with $B_{\infty}-A_{\infty}$ positive definite. Set:
\begin{eqnarray}
\gamma :&=&{\rm smallest\ eigenvalue\ of}\ \ B_{\infty} - A_{\infty} \\
\lambda : &=& {\rm largest\ negative\ eigenvalue\ of}\ \
J \frac{d}{dt} +A_{\infty}\ .
\end{eqnarray}
Theorem 21 tells us that if $\lambda +\gamma < 0$, the boundary-value
problem:
\begin{equation}
\begin{array}{rcl}
\dot{x}&=&JH' (x)\\
x(0)&=&x (T)
\end{array}
\end{equation}
has at least one solution
$\overline{x}$, which is found by minimizing the dual
action functional:
\begin{equation}
\psi (u) = \int_{o}^{T} \left[\frac{1}{2}
\left(\Lambda_{o}^{-1} u,u\right) + N^{\ast} (-u)\right] dt
\end{equation}
on the range of $\Lambda$, which is a subspace $R (\Lambda)_{L}^{2}$
with finite codimension. Here
\begin{equation}
N(x) := H(x) - \frac{1}{2} \left(A_{\infty} x,x\right)
\end{equation}
is a convex function, and
\begin{equation}
N(x) \le \frac{1}{2}
\left(\left(B_{\infty} - A_{\infty}\right) x,x\right)
+ c\ \ \ \forall x\ .
\end{equation}
%
\begin{proposition}
Assume $H'(0)=0$ and $ H(0)=0$. Set:
\begin{equation}
\delta := \liminf_{x\to 0} 2 N (x) \left\|x\right\|^{-2}\ .
\label{2eq:one}
\end{equation}
If $\gamma < - \lambda < \delta$,
the solution $\overline{u}$ is non-zero:
\begin{equation}
\overline{x} (t) \ne 0\ \ \ \forall t\ .
\end{equation}
\end{proposition}
%
\begin{proof}
Condition (\ref{2eq:one}) means that, for every
$\delta ' > \delta$, there is some $\varepsilon > 0$ such that
\begin{equation}
\left\|x\right\| \le \varepsilon \Rightarrow N (x) \le
\frac{\delta '}{2} \left\|x\right\|^{2}\ .
\end{equation}
It is an exercise in convex analysis, into which we shall not go, to
show that this implies that there is an $\eta > 0$ such that
\begin{equation}
f\left\|x\right\| \le \eta
\Rightarrow N^{\ast} (y) \le \frac{1}{2\delta '}
\left\|y\right\|^{2}\ .
\label{2eq:two}
\end{equation}
\begin{figure}
\vspace{2.5cm}
\caption{This is the caption of the figure displaying a white eagle and
a white horse on a snow field}
\end{figure}
Since $u_{1}$ is a smooth function, we will have
$\left\|hu_{1}\right\|_\infty \le \eta$
for $h$ small enough, and inequality (\ref{2eq:two}) will hold,
yielding thereby:
\begin{equation}
\psi (hu_{1}) \le \frac{h^{2}}{2}
\frac{1}{\lambda} \left\|u_{1} \right\|_{2}^{2} + \frac{h^{2}}{2}
\frac{1}{\delta '} \left\|u_{1}\right\|^{2}\ .
\end{equation}
If we choose $\delta '$ close enough to $\delta$, the quantity
$\left(\frac{1}{\lambda} + \frac{1}{\delta '}\right)$
will be negative, and we end up with
\begin{equation}
\psi (hu_{1}) < 0\ \ \ \ \ {\rm for}\ \ h\ne 0\ \ {\rm small}\ .
\end{equation}
On the other hand, we check directly that $\psi (0) = 0$. This shows
that 0 cannot be a minimizer of $\psi$, not even a local one.
So $\overline{u} \ne 0$ and
$\overline{u} \ne \Lambda_{o}^{-1} (0) = 0$. \qed
\end{proof}
%
\begin{corollary}
Assume $H$ is $C^{2}$ and
$\left(a_{\infty},b_{\infty}\right)$-subquadratic at infinity. Let
$\xi_{1},\allowbreak\dots,\allowbreak\xi_{N}$ be the
equilibria, that is, the solutions of $H' (\xi ) = 0$.
Denote by $\omega_{k}$
the smallest eigenvalue of $H'' \left(\xi_{k}\right)$, and set:
\begin{equation}
\omega : = {\rm Min\,} \left\{\omega_{1},\dots,\omega_{k}\right\}\ .
\end{equation}
If:
\begin{equation}
\frac{T}{2\pi} b_{\infty} <
- E \left[- \frac{T}{2\pi}a_{\infty}\right] <
\frac{T}{2\pi}\omega
\label{2eq:three}
\end{equation}
then minimization of $\psi$ yields a non-constant $T$-periodic solution
$\overline{x}$.
\end{corollary}
%
We recall once more that by the integer part $E [\alpha ]$ of
$\alpha \in \bbbr$, we mean the $a\in \bbbz$
such that $a< \alpha \le a+1$. For instance,
if we take $a_{\infty} = 0$, Corollary 2 tells
us that $\overline{x}$ exists and is
non-constant provided that:
\begin{equation}
\frac{T}{2\pi} b_{\infty} < 1 < \frac{T}{2\pi}
\end{equation}
or
\begin{equation}
T\in \left(\frac{2\pi}{\omega},\frac{2\pi}{b_{\infty}}\right)\ .
\label{2eq:four}
\end{equation}
%
\begin{proof}
The spectrum of $\Lambda$ is $\frac{2\pi}{T} \bbbz +a_{\infty}$. The
largest negative eigenvalue $\lambda$ is given by
$\frac{2\pi}{T}k_{o} +a_{\infty}$,
where
\begin{equation}
\frac{2\pi}{T}k_{o} + a_{\infty} < 0
\le \frac{2\pi}{T} (k_{o} +1) + a_{\infty}\ .
\end{equation}
Hence:
\begin{equation}
k_{o} = E \left[- \frac{T}{2\pi} a_{\infty}\right] \ .
\end{equation}
The condition $\gamma < -\lambda < \delta$ now becomes:
\begin{equation}
b_{\infty} - a_{\infty} <
- \frac{2\pi}{T} k_{o} -a_{\infty} < \omega -a_{\infty}
\end{equation}
which is precisely condition (\ref{2eq:three}).\qed
\end{proof}
%
\begin{lemma}
Assume that $H$ is $C^{2}$ on $\bbbr^{2n} \setminus \{ 0\}$ and
that $H'' (x)$ is non-de\-gen\-er\-ate for any $x\ne 0$. Then any local
minimizer $\widetilde{x}$ of $\psi$ has minimal period $T$.
\end{lemma}
%
\begin{proof}
We know that $\widetilde{x}$, or
$\widetilde{x} + \xi$ for some constant $\xi
\in \bbbr^{2n}$, is a $T$-periodic solution of the Hamiltonian system:
\begin{equation}
\dot{x} = JH' (x)\ .
\end{equation}
There is no loss of generality in taking $\xi = 0$. So
$\psi (x) \ge \psi (\widetilde{x} )$
for all $\widetilde{x}$ in some neighbourhood of $x$ in
$W^{1,2} \left(\bbbr / T\bbbz ; \bbbr^{2n}\right)$.
But this index is precisely the index
$i_{T} (\widetilde{x} )$ of the $T$-periodic
solution $\widetilde{x}$ over the interval
$(0,T)$, as defined in Sect.~2.6. So
\begin{equation}
i_{T} (\widetilde{x} ) = 0\ .
\label{2eq:five}
\end{equation}
Now if $\widetilde{x}$ has a lower period, $T/k$ say,
we would have, by Corollary 31:
\begin{equation}
i_{T} (\widetilde{x} ) =
i_{kT/k}(\widetilde{x} ) \ge
ki_{T/k} (\widetilde{x} ) + k-1 \ge k-1 \ge 1\ .
\end{equation}
This would contradict (\ref{2eq:five}), and thus cannot happen.\qed
\end{proof}
%
\paragraph{Notes and Comments.}
The results in this section are a
refined version of \cite{2clar:eke};
the minimality result of Proposition
14 was the first of its kind.
To understand the nontriviality conditions, such as the one in formula
(\ref{2eq:four}), one may think of a one-parameter family
$x_{T}$, $T\in \left(2\pi\omega^{-1}, 2\pi b_{\infty}^{-1}\right)$
of periodic solutions, $x_{T} (0) = x_{T} (T)$,
with $x_{T}$ going away to infinity when $T\to 2\pi \omega^{-1}$,
which is the period of the linearized system at 0.
\begin{table}
\caption{This is the example table taken out of {\it The
\TeX{}book,} p.\,246}
\begin{center}
\begin{tabular}{r@{\quad}rl}
\hline
\multicolumn{1}{l}{\rule{0pt}{12pt}
Year}&\multicolumn{2}{l}{World population}\\[2pt]
\hline\rule{0pt}{12pt}
8000 B.C. & 5,000,000& \\
50 A.D. & 200,000,000& \\
1650 A.D. & 500,000,000& \\
1945 A.D. & 2,300,000,000& \\
1980 A.D. & 4,400,000,000& \\[2pt]
\hline
\end{tabular}
\end{center}
\end{table}
%
\begin{theorem} [Ghoussoub-Preiss]
Assume $H(t,x)$ is
$(0,\varepsilon )$-subquadratic at
infinity for all $\varepsilon > 0$, and $T$-periodic in $t$
\begin{equation}
H (t,\cdot )\ \ \ \ \ {\rm is\ convex}\ \ \forall t
\end{equation}
\begin{equation}
H (\cdot ,x)\ \ \ \ \ {\rm is}\ \ T{\rm -periodic}\ \ \forall x
\end{equation}
\begin{equation}
H (t,x)\ge n\left(\left\|x\right\|\right)\ \ \ \ \
{\rm with}\ \ n (s)s^{-1}\to \infty\ \ {\rm as}\ \ s\to \infty
\end{equation}
\begin{equation}
\forall \varepsilon > 0\ ,\ \ \ \exists c\ :\
H(t,x) \le \frac{\varepsilon}{2}\left\|x\right\|^{2} + c\ .
\end{equation}
Assume also that $H$ is $C^{2}$, and $H'' (t,x)$ is positive definite
everywhere. Then there is a sequence $x_{k}$, $k\in \bbbn$, of
$kT$-periodic solutions of the system
\begin{equation}
\dot{x} = JH' (t,x)
\end{equation}
such that, for every $k\in \bbbn$, there is some $p_{o}\in\bbbn$ with:
\begin{equation}
p\ge p_{o}\Rightarrow x_{pk} \ne x_{k}\ .
\end{equation}
\qed
\end{theorem}
%
\begin{example} [{{\rm External forcing}}]
Consider the system:
\begin{equation}
\dot{x} = JH' (x) + f(t)
\end{equation}
where the Hamiltonian $H$ is
$\left(0,b_{\infty}\right)$-subquadratic, and the
forcing term is a distribution on the circle:
\begin{equation}
f = \frac{d}{dt} F + f_{o}\ \ \ \ \
{\rm with}\ \ F\in L^{2} \left(\bbbr / T\bbbz; \bbbr^{2n}\right)\ ,
\end{equation}
where $f_{o} : = T^{-1}\int_{o}^{T} f (t) dt$. For instance,
\begin{equation}
f (t) = \sum_{k\in \bbbn} \delta_{k} \xi\ ,
\end{equation}
where $\delta_{k}$ is the Dirac mass at $t= k$ and
$\xi \in \bbbr^{2n}$ is a
constant, fits the prescription. This means that the system
$\dot{x} = JH' (x)$ is being excited by a
series of identical shocks at interval $T$.
\end{example}
%
\begin{definition}
Let $A_{\infty} (t)$ and $B_{\infty} (t)$ be symmetric
operators in $\bbbr^{2n}$, depending continuously on
$t\in [0,T]$, such that
$A_{\infty} (t) \le B_{\infty} (t)$ for all $t$.
A Borelian function
$H: [0,T]\times \bbbr^{2n} \to \bbbr$
is called
$\left(A_{\infty} ,B_{\infty}\right)$-{\it subquadratic at infinity}
if there exists a function $N(t,x)$ such that: