forked from christophersanborn/Radiative3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedia.cpp
970 lines (823 loc) · 34.1 KB
/
media.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
// media.cpp
//
#include <cmath> /* sqrt, etc. */
#include <iostream> /* std::cerr; remove when no longer needed */
#include <stdio.h> //remove
#include <algorithm>
#include "media.hpp"
#include "grid.hpp"
#include <iomanip>
// In this file:
// CLASS IMPLEMENTATIONS FOR:
//
// o Class MediumCell
// o Class RCUCylinder
// o Class Tetra
// o Class SphereShell
//
// Search on "&&&&" to jump between class implementations in this
// file.
//
//////////////////////////////////////////////////////////////////////////
// &&&& ****
// **** CLASS: MediumCell ****
// **** ****
//
//
// Static Member Initialization: (MediumCell Class)
//
Real MediumCell::cmPhononFreq = 1.0; // Responsibility to set at
// runtime lies with Model
// constructor
//////
// METHOD: MediumCell :: IsPointInside()
//
// Reports whether a given point is "inside" the Cylinder cell by returning
// a "mismatch" factor.
//
// If the return value is:
//
// <= 0: then the point is definitively inside or on-the-boundary
// of the cell.
//
// > 0: then the point is outside the cell. The numeric value
// represents the direct-distance to the nearest cell-wall.
//
// THEORY of operation:
//
// A point is only inside the cell if it is inside ALL of the cell's bounding
// surfaces. Thus for each bounding surface (two planes and a cylinder) we
// compute the distance "above" the surface (such that a positive value means
// "outside" the surface and negative means inside), and thus, among these
// three distances we report the "greatest" value as the mismatch, which
// roughly equates to the distance inside (if negative) or outside (if
// positive) the cell.
//
Real MediumCell::IsPointInside(const R3::XYZ & loc) const {
auto x_this = (MediumCell *)this; // Promise not modify...
Count nFaces = NumFaces();
Real distance = x_this->Face(0).GetDistanceAboveFace(loc);
for (Index i = 1; i < nFaces; i++){
Real maybe_distance = x_this->Face(i).GetDistanceAboveFace(loc);
if(maybe_distance > distance){
distance = maybe_distance;
}
}
return distance;
}
//////
// METHOD: MediumCell :: HelperUniformAttenuation() (static)
//
// Computes the amplitude attenuation factor given the number of
// wave cycles (traveltime * frequency) and the Q factor in effect
// throughout the travel arc (assumes Q is a uniform quantity).
//
// Returns the exponential factor in the amplitude decay eqation:
//
// A(t) = A0 exp( -omega*t / 2Q )
//
// Note: (1) The factor of 2 in the denominator is because we are
// computing amplitude decay. When amplitude is squared to get
// energy, the factor of 2 goes away. (2) Omega = 2*pi*frequency,
// and since we're given cycles, the factor of 2*pi must appear in
// the numerator of our exponent. The 2 in the numerator and the 2
// in the denominator cancel out, however.
//
Real MediumCell::HelperUniformAttenuation(Real cycles, Real Q) {
return exp( ((-1)*Geometry::Pi * cycles) / (Q) );
}
//////////////////////////////////////////////////////////////////////////
// &&&& ****
// **** CLASS: RCUCylinder ****
// **** ****
//
// Methods Defined Here:
//
// o RCUCylinder()
// o Face()
// o GetVelocAtPoint()
// o GetWavelengthAtPoint()
// o GetDensityAtPoint()
// o GetQatPoint()
// o AdvanceLength()
// o GetPathToBoundary()
//
//
// Static Member Initialization: (RCUCylinder Class)
//
CylinderFace RCUCylinder::cmLossFace // The CellFace through which phonons get
(1, nullptr); // lost through the cylinder sidewall. We
// defer setting reasonable radius, and no
// MediumCell needs to be associated.
bool RCUCylinder::cmRangeSet = false; // Responsibility to set radius at runtime
// lies with Model constructor via call to
// RCUCylinder::SetRange().
//////
// CONSTRUCTOR: RCUCylinder()
//
RCUCylinder::RCUCylinder(
R3::XYZ N1_top, R3::XYZ N2_top, R3::XYZ N3_top,
R3::XYZ N1_bot, R3::XYZ N2_bot, R3::XYZ N3_bot,
Elastic::Velocity vpvs_top,
Elastic::Velocity vpvs_bot,
Real rho_top, Real rho_bot,
Elastic::Q q_top, Elastic::Q q_bot)
:
mTopFace ( N1_top, N2_top, N3_top, this ), // Makes a face pointing up.
mBottomFace ( N1_bot, N3_bot, N2_bot, this ) // Makes a face pointing down.
{
if (cmRangeSet==false) // (Ensure static vars have been initialized)
{throw(std::logic_error("RCUCylinder Range unset."));}
mVelTop[RAY_P] = vpvs_top.Vp(); // Seismic Velocities
mVelTop[RAY_S] = vpvs_top.Vs();
mVelBot[RAY_P] = vpvs_bot.Vp();
mVelBot[RAY_S] = vpvs_bot.Vs();
mDensity = rho_top; // Density, arbitrary units
mQ[RAY_P] = q_top.Qp(vpvs_top);
mQ[RAY_S] = q_top.Qs(vpvs_top);
}
//////
// METHOD: RCUCylinder :: Face()
//
// Returns a read-write reference to either the top or bottom
// CellFace object, as determined by the value of face_id
//
CellFace & RCUCylinder::Face(Index face_id) {
switch (face_id) {
case CellFace::F_TOP:
return mTopFace;
case CellFace::F_BOTTOM:
return mBottomFace;
case CellFace::F_SIDE:
return cmLossFace;
default:
throw Invalid("Invalid CellFace ID for RCUCylinder medium cell.");
}
}
//////
// METHODS: RCUCylinder :: GetVelocAtPoint()
// RCUCylinder :: GetWavelengthAtPoint()
// RCUCylinder :: GetDensityAtPoint()
// RCUCylinder :: GetQatPoint()
//
Real RCUCylinder::GetVelocAtPoint(const R3::XYZ & loc, raytype type) const {
return mVelTop[type];
}
Real RCUCylinder::GetWavelengthAtPoint(const R3::XYZ & loc, raytype type) const {
return mVelTop[type] / cmPhononFreq;
}
Real RCUCylinder::GetDensityAtPoint(const R3::XYZ & loc) const {
return mDensity;
}
Real RCUCylinder::GetQatPoint(const R3::XYZ & loc, raytype type) const {
return mQ[type];
}
//////
// METHOD: RCUCylinder :: AdvanceLength()
//
// WHAT-IT-DOES:
//
// Computes a travel record for the path travelled through the
// MediumCell assuming the path length is known in advance.
//
//
TravelRec
RCUCylinder::AdvanceLength(raytype rt, Real len,
const R3::XYZ & startloc,
const S2::ThetaPhi & startdir) const {
TravelRec rec;
rec.PathLength = len;
rec.TravelTime = len / mVelTop[rt];
rec.NewLoc = startloc + R3::XYZ(startdir).ScaledBy(len);
rec.NewDir = startdir;
rec.Attenuation = HelperUniformAttenuation(rec.TravelTime * cmPhononFreq, mQ[rt]);
return rec;
}
//////
// METHOD: RCUCylinder :: GetPathToBoundary()
//
// WHAT-IT-DOES:
//
// Computes a travel record for a path travelled through the
// MediumCell from the starting location/direction until a cell
// boundary is hit. Travel record encodes the length/time
// travelled, and location of boundary intersection and direction of
// raypath tangent at that point.
//
TravelRec RCUCylinder::GetPathToBoundary(raytype rt, const R3::XYZ & loc,
const S2::ThetaPhi & dir) const {
TravelRec rec;
enum exitface_e {TOP=CellFace::F_TOP,
BOTTOM=CellFace::F_BOTTOM,
LOSS=CellFace::F_SIDE,
NUM_FACES=3};
Real dists[NUM_FACES];
// :::
// :: Get distances to cylinder sidewall and top/bottom faces:
// :
// Note: negative distances imply that we have already exited
// through the surface. (They most likely result from slight
// numerical errors.) We squash these negative numbers to zero to
// avoid engaging in retrograde motion. The zero should result in
// immediate handover (at the caller level) to the neighboring cell,
// which presumably will be the definitive home of the point in
// question (or at least stands a good chance of it).
//
dists[LOSS] = cmLossFace.LinearRayDistToExit(loc, dir);
dists[TOP] = mTopFace.LinearRayDistToExit(loc, dir);
dists[BOTTOM] = mBottomFace.LinearRayDistToExit(loc, dir);
if (dists[LOSS] < 0) dists[LOSS] = 0; // Squash negatives to
if (dists[TOP] < 0) dists[TOP] = 0; // zero.
if (dists[BOTTOM] < 0) dists[BOTTOM] = 0; //
//
// >0 : Implies ordinary forward path to the cylinder.
// ==0 : Implies on the surface and exiting or outside
// surface and not entering
// <0 : (We should never see this value due to squash)
// +inf : Entering through face, or else running parallel either on
// or inside face. Interpret as "We'll hit another face
// before we hit this one."
// ::::::
// :: Determine exit face: (Phase 1)
// :
// We default to Cylinder wall (LOSS) exit. But check
// whether Top or Bottom face have shorter distances.
//
exitface_e exf = LOSS; // The default,
Real shortest = dists[LOSS]; //
if (dists[TOP] < shortest) { // But maybe we hit these
exf = TOP; // sooner...
shortest = dists[TOP];
}
if (dists[BOTTOM] < shortest) {
exf = BOTTOM;
shortest = dists[BOTTOM];
}
// ::::::
// :: Count the Zeros: (Phase 2)
// :
// If >1 dists are EXACTLY zero, then we are exiting through a
// corner. Ditch the phonon rather than deal with the complexity of
// figuring out into which cell to inject it.
//
// UPDATE: This situation is so incredibly improbable in responsibly-
// designed models that the check isn't worth it. If we've hit a
// corner with the loss face, it'll be prefered anyway. If between
// top and bottom... I can think of little real harm of letting it
// prefer the top exit, given the already existing ambiguity implied
// by a model where layer interfaces cross within the cylinder bounds.
//
// (Corner-check code removed.)
// ::::::
// :: Populate the TravelRec and return it to the caller:
// :
rec.PathLength = shortest;
rec.TravelTime = shortest / mVelTop[rt];
rec.NewLoc = loc + R3::XYZ(dir).ScaledBy(shortest);
rec.NewDir = dir;
rec.Attenuation = HelperUniformAttenuation(rec.TravelTime * cmPhononFreq, mQ[rt]);
switch (exf) {
case TOP:
rec.pFace = &mTopFace;
break;
case BOTTOM:
rec.pFace = &mBottomFace;
break;
default:
rec.pFace = &cmLossFace;
}
return rec;
}
//////////////////////////////////////////////////////////////////////////
// &&&& ****
// **** CLASS: Tetra ****
// **** ****
//
// Methods Defined Here:
//
// o Tetra()
// o Face()
// o GetVelocAtPoint()
// o GetWavelengthAtPoint()
// o GetDensityAtPoint()
// o GetQatPoint()
// o AdvanceLength()
// o GetPathToBoundary()
//
//////
// CONSTRUCTOR: Tetrahedral()
//
Tetra::Tetra(R3::XYZ N1, R3::XYZ N2, R3::XYZ N3, R3::XYZ N4,
const GridData & dataA, const GridData & dataB,
const GridData & dataC, const GridData & dataD):
mFaces (PlaneFace( N2, N3, N4, N1, this ),
PlaneFace( N3, N4, N1, N2, this ),
PlaneFace( N4, N1, N2, N3, this ),
PlaneFace( N1, N2, N3, N4, this ))
{
//
// Temporary Matrix and Columns
// used to compute gradients
//
R4::Rows LocMatrix = R4::Rows(N1, 1, N2, 1, N3, 1, N4, 1);
R4::Column DensCol = R4::Column(dataA.Rho(), dataB.Rho(),
dataC.Rho(), dataD.Rho());
R4::Column VelColP = R4::Column(dataA.Vp(), dataB.Vp(),
dataC.Vp(), dataD.Vp());
R4::Column VelColS = R4::Column(dataA.Vs(), dataB.Vs(),
dataC.Vs(), dataD.Vs());
R4::Column VelCoefP = LocMatrix.SolveAXB(VelColP);
R4::Column VelCoefS = LocMatrix.SolveAXB(VelColS);
R4::Column DensCoef = LocMatrix.SolveAXB(DensCol);
/////////////////////////
// Tetra Class Members //
/////////////////////////
mVelGrad[RAY_P] = VelCoefP.TruncXYZ(); // P Velocity Gradient
mVelGrad[RAY_S] = VelCoefS.TruncXYZ(); // S Velocity Gradient
mDensGrad = DensCoef.TruncXYZ(); // Density Velocity Gradient
mVel0[RAY_P] = VelCoefP.x(3); // P Velocity at (0,0,0)
mVel0[RAY_S] = VelCoefS.x(3); // S Velocity at (0,0,0)
mDens0 = DensCoef.x(3); // Density at (0,0,0)
mQ[RAY_P] = (dataA.Qp() + dataB.Qp() // TODO: needs
+ dataC.Qp() + dataD.Qp())/4; // geometric center weights
mQ[RAY_S] = (dataA.Qs() + dataB.Qs() // TODO: needs
+ dataC.Qs() + dataD.Qs())/4; // geometric center weights
}
//////
// METHOD: Tetra :: Face()
//
CellFace & Tetra::Face(Index face_id) {
return mFaces[face_id];
}
//////
// METHODS: Tetra :: GetVelocAtPoint()
// Tetra :: GetWavelengthAtPoint()
// Tetra :: GetDensityAtPoint()
// Tetra :: GetQatPoint()
//
Real Tetra::GetVelocAtPoint(const R3::XYZ & loc, raytype type) const {
return loc.Dot(mVelGrad[type]) + mVel0[type];
}
Real Tetra::GetWavelengthAtPoint(const R3::XYZ & loc, raytype type) const {
return (GetVelocAtPoint(loc,type)/ cmPhononFreq);
}
Real Tetra::GetDensityAtPoint(const R3::XYZ & loc) const {
return loc.Dot(mDensGrad) + mDens0;
}
Real Tetra::GetQatPoint(const R3::XYZ & loc, raytype type) const {
return mQ[type];
}
//////
// METHOD: Tetra :: AdvanceLength()
//
// WHAT-IT-DOES:
//
// Computes a travel record for the path travelled through the
// MediumCell assuming the path length is known in advance.
//
//
// THEORY of operation:
//
// A phonon travels along a circular arc in the t-g plane
// where t is the tangential direction of the phonon and g is
// the of the cell. Using a coordinate transformation and a given
// length, the new location and new direction are calculated in this
// 2D plane.
TravelRec
Tetra::AdvanceLength(raytype rt, Real len,
const R3::XYZ & startloc,
const S2::ThetaPhi & startdir) const {
CoordinateTransformation CT = CoordinateTransformation(GetVelocAtPoint(startloc, rt),mVelGrad[rt],
startloc, startdir.XYZ());
Real theta = len/CT.Radius(); //Angle separating 2D current location
//and 2D exit.
//////////////////////////////
/// Determine New Location ///
//////////////////////////////
//2D new location in rotated system
R3::XYZ newLocRot2D = R3::XYZ(CT.Radius()*sin(theta/2),0,CT.Radius()*cos(theta/2));
//rotation angle to return to prime 2D system
Real angletoX0 = atan2(CT.PrimeLoc().x(),CT.PrimeLoc().z());
Real rotAngle = angletoX0 + (theta/2);
rotAngle = (rotAngle > Geometry::Pi360) ? rotAngle-Geometry::Pi360 : rotAngle;
//2D new location
R3::XYZ newLoc2D = R3::XYZ(cos(rotAngle)*newLocRot2D.x() + sin(rotAngle)*newLocRot2D.z() , 0,
-sin(rotAngle)*newLocRot2D.x() + cos(rotAngle)*newLocRot2D.z());
//Transform the new location from 2D to 3D space
R3::XYZ newLoc = CT.RotMat().T() * (newLoc2D + CT.Trans());
///////////////////////////////
/// Determine New Direction ///
///////////////////////////////
//New Direction in 2D plane is the
//tangential direction at the new location
Real AngleNewLoc2D = atan2(newLoc2D.x(),newLoc2D.z());
R3::XYZ newDir2D = R3::XYZ(cos(AngleNewLoc2D),0,(-1)*sin(AngleNewLoc2D));
//Transform the new direction from 2D to 3D space
R3::XYZ newDir = CT.RotMat().T()*newDir2D;
newDir.Normalize();
Real travelTime =(1/mVelGrad[rt].Mag())*( log(fabs(tan((AngleNewLoc2D/2 + Geometry::Pi45))))
- log(fabs(tan((angletoX0/2 + Geometry::Pi45)))));
//Generate Travel Rec using new direction and new location
TravelRec rec;
rec.PathLength = len;
rec.TravelTime = travelTime;
rec.NewLoc = newLoc;
rec.NewDir = S2::Node(newDir.x(),newDir.y(),newDir.z());
rec.Attenuation = HelperUniformAttenuation(rec.TravelTime * cmPhononFreq, mQ[rt]);
return rec;
}
//////
// METHOD: Tetra :: GetPathToBoundary()
//
// WHAT-IT-DOES:
//
// Computes a travel record for a path travelled through the
// MediumCell from the starting location/direction until a cell
// boundary is hit. Travel record encodes the length/time
// travelled, and location of boundary intersection and direction of
// raypath tangent at that point.
//
// RETURNS:
//
// o Distance travelled, as the actual return value
// o The TravelRec, (received by pointer and modified)
//
TravelRec
Tetra::GetPathToBoundary(raytype rt,
const R3::XYZ & loc,
const S2::ThetaPhi & dir) const {
CoordinateTransformation CT = CoordinateTransformation(GetVelocAtPoint(loc, rt),
mVelGrad[rt],loc,dir.XYZ());
//Determine azimuthal angle to current location
//in transformed 2D system
Real ColatAngletoX0 = atan2(CT.PrimeLoc().x(),CT.PrimeLoc().z());
//Compute entry and exit angles for each cell face.
//Angles stored in an XYZ object:
// X = Entry into face
// Y = Exit out of face
// Z = Bisector (+/- Pi to orient with cell face normal)
GCAD_RetVal retvals[4];
for(int i = 0; i < 4; i++)
{
retvals[i] = mFaces[i].GetCircArcDistToFace(CT.Radius(),CT.Trans(),CT.RotMat());
}
Real len = 1.0/0.0;
int faceID = 0;
for (int i=0; i < 4; i++){
if( retvals[i].IsProper(retvals[(i+1)%4],retvals[(i+2)%4],retvals[(i+3)%4]) == true ){
Real newlen = (retvals[i].Exit() - ColatAngletoX0) * CT.Radius();
if ( newlen < 0 && (ColatAngletoX0 > retvals[i].Half()) ){
newlen = len; //dismiss exit
}
if( newlen < len){
len = newlen;
faceID = i;
}
}
}
//Generate Travel Rec using function Advance Length
TravelRec rec;
rec = Tetra::AdvanceLength(rt,len,loc,dir);
rec.pFace = &mFaces[faceID];
return rec;
}
//////
// CONSTRUCTOR: SphereShell()
//
// V(r) = A*r*r + C
// V(rT) = A*rT2 + C = vT
// V(rB) = A*rB2 + C = vB
// A(rT2-rB2) = (vT-vB)
//
SphereShell::SphereShell(Real RadTop, Real RadBot,
const GridData & DataTop, const GridData & DataBot) :
mFaces( SphereFace(RadTop, CellFace::F_TOP, this),
SphereFace(RadBot, CellFace::F_BOTTOM, this))
{
if (RadTop <= RadBot) {
throw Runtime("SphereShell: Top surface must have greater radius than bottom surface.");
} if (RadBot < 0) {
throw Runtime("SphereShell: Bottom radius is less than zero. Check grid.");
} if (DataBot.Vp() < DataTop.Vp() || DataBot.Vs() < DataTop.Vs()) {
throw Runtime("SphereShell: Reverse velocity gradients within model cells not currently supported. "
"Ensure velocity at bottom of cell is greater than or equal to the top of the cell.");
} if (DataTop.Vp() <= 0 || DataTop.Vs() <= 0 || DataBot.Vp() <= 0 || DataBot.Vs() <= 0) {
throw Runtime("SphereShell: Elastic velocities must be greater than zero. "
"If goal is to model liquid, try very small but non-zero velocites.");
}
// Coefficient 'A' on the quadratic term: ( v = A*r^2 + C )
mVelCoefA[RAY_P] = (DataTop.Vp()-DataBot.Vp()) / (RadTop*RadTop - RadBot*RadBot);
mVelCoefA[RAY_S] = (DataTop.Vs()-DataBot.Vs()) / (RadTop*RadTop - RadBot*RadBot);
mDensCoefA = (DataTop.Rho()-DataBot.Rho()) / (RadTop*RadTop - RadBot*RadBot);
// Coefficient 'C', the constant term:
mVelCoefC[RAY_P] = DataTop.Vp() - (mVelCoefA[RAY_P]*RadTop*RadTop);
mVelCoefC[RAY_S] = DataTop.Vs() - (mVelCoefA[RAY_S]*RadTop*RadTop);
mDensCoefC = DataTop.Rho() - (mDensCoefA*RadTop*RadTop);
// Zero-surface for velocities:
Real uradP = -mVelCoefC[RAY_P] / mVelCoefA[RAY_P];
Real uradS = -mVelCoefC[RAY_S] / mVelCoefA[RAY_S];
mZeroRadius2[RAY_P] = uradP;
mZeroRadius2[RAY_S] = uradS;
mZeroRadius[RAY_P] = (uradP > 0) ? sqrt(uradP) : (1./0.);
mZeroRadius[RAY_S] = (uradS > 0) ? sqrt(uradS) : (1./0.);
// Q Values: (Take top value and apply to whole cell)
mQ[RAY_P] = DataTop.Qp();
mQ[RAY_S] = DataTop.Qs();
//std::cout << "~~> SphereShell: Vp = " << mVelCoefA[RAY_P] << "*r^2 + " << mVelCoefC[RAY_P] << "; ZeroSurf at r = " << mZeroRadius[RAY_P] << "\n";
//std::cout << " Vs = " << mVelCoefA[RAY_S] << "*r^2 + " << mVelCoefC[RAY_S] << "; ZeroSurf at r = " << mZeroRadius[RAY_S] << "\n";
assert(mZeroRadius[RAY_P] >= 0);
assert(mZeroRadius[RAY_S] >= 0);
assert(mZeroRadius[RAY_P] > RadTop); // May be able to relax this one in future...
assert(mZeroRadius[RAY_S] > RadTop); //
}//
//
//////
// METHOD: SphereShell :: Face()
//
// Returns a read-write reference to either the top or bottom
// CellFace object, as determined by the value of face_id
//
CellFace & SphereShell::Face(Index face_id) {
return mFaces[face_id];
}
//////
// METHODS: SphereShell :: GetVelocAtPoint()
// SphereShell :: GetWavelengthAtPoint()
// SphereShell :: GetDensityAtPoint()
// SphereShell :: GetQatPoint()
//
Real SphereShell::GetVelocAtPoint(const R3::XYZ & loc, raytype type) const {
return mVelCoefC[type] + mVelCoefA[type]*loc.MagSquared();
}
Real SphereShell::GetWavelengthAtPoint(const R3::XYZ & loc, raytype type) const {
return (GetVelocAtPoint(loc,type)/ cmPhononFreq);
}
Real SphereShell::GetDensityAtPoint(const R3::XYZ & loc) const {
return mDensCoefC + mDensCoefA*loc.MagSquared();
}
Real SphereShell::GetQatPoint(const R3::XYZ & loc, raytype type) const {
return mQ[type];
}
//////
// METHOD: SphereShell :: GetPathToBoundary()
//
// Compute a ray path that extends until it hits a boundary of the cell.
//
// We actually dispatch here based on whether cell codes a Degree 0 (uniform
// velocity) or Degree 2 (quadratic velocity) elastic profile. The former
// assumes straight-line rays, the latter assumes circular arc rays.
//
TravelRec SphereShell::
GetPathToBoundary(raytype rt, const R3::XYZ & loc, const S2::ThetaPhi & dir) const {
if (mVelCoefA[rt] < 0) {
return GetPath_Variant_RD2(rt, loc, dir); // Bottoming ray arcs
} else if (mVelCoefA[rt] == 0) {
return GetPath_Variant_RD0(rt, loc, dir); // Straight-line rays
} else {
// TODO: Eventual handler for cresting ray arcs...
throw std::runtime_error("SphereShell: No handler for inverted radial velocity profiles.");
}
}
//////
// METHOD: SphereShell :: GetPath_Variant_RD0()
//
// Handler for GetPathToBoundary() wherin we assume uniform velocity, and
// corresponding straight-line ray paths, bounded by two spherical
// SphereFace cell faces.
//
TravelRec SphereShell::
GetPath_Variant_RD0(raytype rt, const R3::XYZ & loc, const S2::ThetaPhi & dir) const {
TravelRec rec;
enum exitface_e {TOP=CellFace::F_TOP,
BOTTOM=CellFace::F_BOTTOM,
NUM_FACES=2};
Real dists[NUM_FACES];
dists[TOP] = mFaces[TOP].LinearRayDistToExit(loc, dir);
dists[BOTTOM] = mFaces[BOTTOM].LinearRayDistToExit(loc, dir);
exitface_e ef = (dists[TOP] < dists[BOTTOM]) ? TOP : BOTTOM;
if (dists[ef] < 0) dists[ef] = 0; // Squash retrograde motion
// ::::::
// :: Populate the TravelRec and return it to the caller:
// :
rec.PathLength = dists[ef];
rec.TravelTime = dists[ef] / mVelCoefC[rt];
rec.NewLoc = loc + R3::XYZ(dir).ScaledBy(dists[ef]);
rec.NewDir = dir;
rec.Attenuation = HelperUniformAttenuation(rec.TravelTime * cmPhononFreq, mQ[rt]);
rec.pFace = &mFaces[ef];
return rec;
}
//////
// METHOD: SphereShell :: GetPath_Variant_RD2()
//
// Handler for GetPathToBoundary() wherin we assume quadratic radial
// velocity, and ray paths that are circular arcs. Note in this version we
// take for granted a velocity profile that increases with depth, and that we
// are below the "zero surface" (i.e. that velocities are positive). I.e. we
// assume that ray arcs are "bottoming" ray arcs, as opposed to "cresting"
// ray arcs.
//
// The procedure for computing the ray path begins with finding the center
// point of the ray arc, which is a function of the current location and
// direction, and of the velocity profille in the cell.
//
TravelRec SphereShell::
GetPath_Variant_RD2(raytype rt, const R3::XYZ & loc, const S2::ThetaPhi & dir) const {
enum exitface_e {TOP=CellFace::F_TOP,
BOTTOM=CellFace::F_BOTTOM,
NUM_FACES=2};
Real dists[NUM_FACES];
RayArcAttributes arc = GetRayArc_RD2(rt, loc, dir);
dists[TOP] = mFaces[TOP].CircularArcDistToExit(loc, dir, arc);
dists[BOTTOM] = mFaces[BOTTOM].CircularArcDistToExit(loc, dir, arc);
exitface_e ef = (dists[TOP] < dists[BOTTOM]) ? TOP : BOTTOM;
if (dists[ef] < 0) dists[ef] = 0; // Squash retrograde motion
//std::cout << "PathToBoundary: Two faces considered: dists[TOP,BOT] = (" << dists[TOP] << "," << dists[BOTTOM] << "); (Chose: Face " << ef << " at dist " << dists[ef] <<")\n";
TravelRec rec;
rec = AdvanceLength_Variant_RD2_Impl(rt,dists[ef],loc,dir,arc);
rec.pFace = &mFaces[ef];
//std::cout << "PathToBoundary: TravelRec is: " << rec.str() << "\n";
return rec;
}
//////
// METHOD: SphereShell :: GetRayArc_RD2()
//
// Computes Ray Arc attributes in radial quadratic velocity gradients.
//
// Method of Solution: Bottoming radius:
//
// Assume ray path follows { sin i = G/r * (A*r^2 + C) }, where the paren-
// thetical is the velocity profile and G is a boundary value constant. We
// bottom when sin i == 1, which yields: { G*A*r^2 - r + G*C = 0 }, and
// solution:
// r_bottom = ( 1 - sqrt(1-4*G*G*A*C) ) / 2*G*A,
//
// where we take the negative root on the grounds that we are assuming A
// negative and C positive. The parameter G comes from assuming that our
// initial equation must be satisfied for a known initial location, take-off
// angle, and velocity, by:
//
// G = (sin i0) * r0 / v0
//
// Method of Solution: Arc radius:
//
// We assume that the arc center is at the intersection of two tangent-lines
// from the v=0 isosurface (since the ray arc must approach perpendicular as
// it hits the isosurface.) Thus the center is at the corner of a right-
// triangle with side-lengths r_zero, r_arc, and hypotenuse (r_bottom +
// r_arc), allowing solution from: (r_zero and r_bottom are known)
//
// r_zero^2 + r_arc^2 = (r_bottom + r_arc)^2
//
// Method of Solution: Arc center:
//
// Once the arc radius is known, we simply move perpendicular to 'dir' (the
// current ray tangent) a distance r_arc from the 'loc', and we find the
// center.
//
RayArcAttributes SphereShell::
GetRayArc_RD2(raytype rt, const R3::XYZ & loc, const S2::ThetaPhi & dir) const {
RayArcAttributes Ray;
// REFERENCE BASIS anchored on CURRENT LOCATION:
// These will be orthonormal unless dir is straight up or down, then v3=v2=0.
R3::XYZ v3 = ECS.GetDown(loc); // Downwards; Also direction of veloc gradient.
R3::XYZ v2 = v3.Cross(dir).UnitElse(R3::XYZ(0,0,0)); // Out-of-plane.
R3::XYZ v1 = v2.Cross(v3); // Tangent to iso-surface, oriented "forward"
// w.r.t. direction of travel.
// Determine incidence angle-sine into isosurface:
Real sini = v1.Dot(dir); // Positive or zero.
if (sini > 1.0) sini = 1.0; // (very unlikely, numerical error only.)
Real cosi = v3.Dot(dir); // [-1, 1]
// (NOTE: If 'dir' is pure vertical then we'll have sini==0, cosi==+/-1.)
// Get BOTTOMING Radial Coordinate:
const Real G = sini * loc.Mag() / GetVelocAtPoint(loc, rt);
const Real TwoGA = 2. * G * mVelCoefA[rt];
const Real urad = 1. - (2. * TwoGA * G * mVelCoefC[rt]);
// urad >= 1, assuming downward-gradient velocity;
// urad == 1 implies singular straight up/down 'dir' direction.
// urad < 1 implies assumptions violated.
Real Bottom = (urad>1) ? (1. - sqrt(urad)) / TwoGA : 0;
// ARC RADIUS:
Ray.Radius = (mZeroRadius2[rt]/Bottom - Bottom) / 2.0;
Ray.Rad2 = Ray.Radius*Ray.Radius;
// (NOTE: If 'dir' is vertical then we'll have Ray.Bottom == 0.)
// (NOTE: If 'dir' is vertical then we'll have Ray.Radius == +inf.)
// (NOTE: We check 'urad' again below for another detection of vertical up/down.)
// VECTOR from 'loc' to ARC CENTER:
R3::XYZ LocToArcCenter = v1.ScaledBy(Ray.Radius*cosi) + v3.ScaledBy(-Ray.Radius*sini);
Ray.Center = loc + LocToArcCenter;
// REFERENCE BASIS anchored on ARC CENTER:
Ray.u3 = ECS.GetDown(Ray.Center); // Points towards center-of-Earth
Ray.u2 = v2; // Out-of-plane
Ray.u1 = Ray.u2.Cross(Ray.u3); // Forward-tangent to arc at bottom.
// Catch straight up/down:
if (urad <= 1) {
Ray.Center = R3::XYZ(0,0,0);
Ray.u3 = Ray.u2 = R3::XYZ(0,0,0);
Ray.u1 = dir;
}
// Useful pre-computes:
Ray.c.RD2 = cache_RD2_precompute(Ray.Center.MagSquared(), Ray.Radius, mZeroRadius2[rt], mVelCoefA[rt]);
/*
std::cout << "GRAD2: OrNormal check: [" << v3.MagSquared() << ", " << v1.MagSquared() << ", " << v1.Cross(v2).MagSquared() << ", " << v2.Cross(v3).MagSquared() << "]"
<< ", Sin(i) is: " << sini << " Cos(i) is: " << cosi << "; Uptrending-at-loc: " << -(v3.Dot(dir)) << "\n";
std::cout << " BottomRad: " << Ray.Bottom << " ArcRadius: " << Ray.Radius << " Sum: " << (Ray.Bottom+Ray.Radius) << " (ArcCenterMag: " << Ray.Center.Mag() << ") Dir.Theta: " << dir.Theta()
<< " {{ G: " << G << " urad: " << urad << " 1-sqrad: " << (1.-sqrt(urad)) << " }}\n";
std::cout << " ArcNormal check: " << Ray.u1.Cross(Ray.u2).Mag() << ", " << Ray.u2.Cross(Ray.u3).Mag() << ", " << Ray.u1.Mag() << " u1 Parallality check: " << Ray.u1.Dot(dir) << " Uptrending check: " << -(Ray.u3.Dot(dir)) << " Out-of-plane check: " << Ray.u2.Dot(dir) << "\n";
std::cout << " Location now is: " << loc.str() << " direction: " << R3::XYZ(dir).str() << " v1: " << v1.str() << " v3: " << v3.str() << "\n";
std::cout << " RayAttributes is: " << Ray.str() << "\n";
*/
return Ray;
}
//////
// METHOD: SphereShell :: AdvanceLength()
//
TravelRec
SphereShell::AdvanceLength(raytype rt, Real len, const R3::XYZ & startloc,
const S2::ThetaPhi & startdir) const {
if (mVelCoefA[rt] == 0) {
return AdvanceLength_Variant_RD0(rt, len, startloc, startdir);
} else {
return AdvanceLength_Variant_RD2(rt, len, startloc, startdir);
}
}
//////
// METHOD: SphereShell :: AdvanceLength_Variant_RD0()
//
TravelRec SphereShell::
AdvanceLength_Variant_RD0(raytype rt, Real len, const R3::XYZ & startloc, const S2::ThetaPhi & startdir) const {
TravelRec rec;
rec.PathLength = len;
rec.TravelTime = len / mVelCoefC[rt];
rec.NewLoc = startloc + R3::XYZ(startdir).ScaledBy(len);
rec.NewDir = startdir;
rec.Attenuation = HelperUniformAttenuation(rec.TravelTime * cmPhononFreq, mQ[rt]);
return rec;
}
//////
// METHOD: SphereShell :: AdvanceLength_Variant_RD2()
//
TravelRec SphereShell::
AdvanceLength_Variant_RD2(raytype rt, Real len, const R3::XYZ & startloc, const S2::ThetaPhi & startdir) const {
TravelRec rec;
RayArcAttributes arc = GetRayArc_RD2(rt, startloc, startdir);
// ^^ TODO: Often, if not always, this has been computed recently
// already, and we are re-computing it here. TODO: Find a way to
// keep previous computatin of this.
rec = AdvanceLength_Variant_RD2_Impl(rt,len,startloc,startdir,arc);
return rec;
}
//////
// METHOD: SphereShell :: AdvanceLength_Variant_RD2_Impl()
//
TravelRec SphereShell::
AdvanceLength_Variant_RD2_Impl(raytype rt, Real len, const R3::XYZ & startloc,
const S2::ThetaPhi & startdir, const RayArcAttributes & arc) const {
if (arc.Radius == (1./0.)) { // If vertical trajectory (no curvature)...
// Then fallback to RD0 variant, but we need to correct traveltime...
TravelRec fallback = AdvanceLength_Variant_RD0(rt, len, startloc, startdir);
Real r0 = startloc.Mag();
Real r1 = fallback.NewLoc.Mag();
Real sqnac = sqrt(-mVelCoefA[rt]*mVelCoefC[rt]);
Real sqnaoc = sqrt(-mVelCoefA[rt]/mVelCoefC[rt]);
Real tau0 = atanh(sqnaoc*r0);
Real tau1 = atanh(sqnaoc*r1);
Real tpm = (tau1-tau0)/sqnac;
fallback.TravelTime = abs(tpm);
if (std::isnan(fallback.TravelTime)) {
std::cerr << ")))) r0,r1: " << r0 << ", " << r1 << " sqnac: " << sqnac
<< " tau0,tau1: " << tau0 << ", " << tau1 << " tpm: " << tpm
<< " ==>vel: " << (len/tpm) << " a,c: " << mVelCoefA[rt] << ", " << mVelCoefC[rt]
<< " fbTRec Len: " << fallback.PathLength << "\n";
}
assert(!std::isnan(fallback.TravelTime));
assert(!std::isnan(fallback.PathLength));
return fallback;
}
Real startAngle = arc.AngleOffsetFromBottom(startloc);
Real angleDelta = len / arc.Radius;
Real endAngle = startAngle + angleDelta;
R3::XYZ newLoc = arc.PositionFromAngle(endAngle);
R3::XYZ newDir = arc.DirectionFromAngle(endAngle);
Real timeDelta = GetTravelTimeAngleToAngle_RD2(startAngle, endAngle, arc);
Real atten = HelperUniformAttenuation(timeDelta * cmPhononFreq, mQ[rt]);
TravelRec rec;
rec.PathLength = len;
rec.TravelTime = timeDelta;
rec.NewLoc = newLoc;
rec.NewDir = S2::Node(newDir.x(),newDir.y(),newDir.z()); // TODO: Proly a more efficient R3-S2 conversion possible...
rec.Attenuation = atten;
return rec;
}
//////
// METHOD: SphereShell :: GetTravelTimeAngleToAngle_RD2()
//
Real SphereShell::
GetTravelTimeAngleToAngle_RD2(Real angle0, Real angle1, const RayArcAttributes & arc) const {
const Real timeCoef = arc.c.RD2.timeCoef; // Pop some params off
const Real CotZetaBy2 = arc.c.RD2.CotZetaBy2; // the arc cache...
// Compute:
Real t0 = timeCoef*atanh(CotZetaBy2*tan(angle0/2));
Real t1 = timeCoef*atanh(CotZetaBy2*tan(angle1/2));
return t1 - t0;
}